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ABSTRACT

Hybrid Adaptive Multilevel Monte Carlo Algorithm for

Non-Smooth Observables of Itô Stochastic Differential

Equations.

Nadhir Ben Rached

The Monte Carlo forward Euler method with uniform time stepping is the standard

technique to compute an approximation of the expected payoff of a solution of an

Itô Stochastic Differential Equation (SDE). For a given accuracy requirement TOL,

the complexity of this technique for well behaved problems, that is the amount of

computational work to solve the problem, is O(TOL−3).

A new hybrid adaptive Monte Carlo forward Euler algorithm for SDEs with non-

smooth coefficients and low regular observables is developed in this thesis. This

adaptive method is based on the derivation of a new error expansion with com-

putable leading-order terms. The basic idea of the new expansion is the use of a

mixture of prior information to determine the weight functions and posterior infor-

mation to compute the local error. In a number of numerical examples the superior

efficiency of the hybrid adaptive algorithm over the standard uniform time stepping

technique is verified. When a non-smooth binary payoff with either Geometric Brow-

nian Motion (GBM) or drift singularity type of SDEs is considered, the new adaptive

method achieves the same complexity as the uniform discretization with smooth prob-
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lems. Moreover, the new developed algorithm is extended to the Multilevel Monte

Carlo (MLMC) forward Euler setting which reduces the complexity from O(TOL−3)

to O(TOL−2(log(TOL))2). For the binary option case with the same type of Itô

SDEs, the hybrid adaptive MLMC forward Euler recovers the standard multilevel

computational cost O(TOL−2(log(TOL))2). When considering a higher order Mil-

stein scheme, a similar complexity result was obtained by Giles using the uniform

time stepping for one dimensional SDEs. The difficulty to extend Giles’ Milstein

MLMC method to the multidimensional case is an argument for the flexibility of our

new constructed adaptive MLMC forward Euler method which can be easily adapted

to this setting. Similarly, the expected complexity O(TOL−2(log(TOL))2) is reached

for the multidimensional case and verified numerically.
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Chapter 1

Introduction

1.1 Project Framework

Differential Equation models are used not only in natural sciences such as physics

and biology, but also in engineering and finance. The aim is to model the evolution

of real systems, hence to understand and predict their future behavior.

Differential equations can be used also in the case where the problem in con-

sideration has, by nature, a randomness in its evolution. This gives rise to the so

called SDE, which are driven by deterministic and stochastic terms. For example,

the stochastic nature of the financial market makes the use of SDE crucial when

modeling the evolution of a stock price.

Option pricing is one of the most important applications in financial engineering.

An option is a contract between two parties that gives the buyer the right and not the

obligation to buy or to sell an underlying underlying asset at a certain price (strike

price) on or before an expiration date or exercise date. In this kind of application,

the underlying asset is modeled by an SDE and the option price is an expected payoff

based on the final underlying stock price. A major revolution of this field was achieved

by Fischer Black and Myron Scholes [9] by using SDEs to price various derivatives,

including options on commodities and financial assets.

The model in [9] is based on many unrealistic assumptions. For instance, the



15

underlying asset price is assumed to have a log normal distribution which makes the

solution of the model unlikely to represent the real evolution. Despite its drawbacks,

the Black-Scholes model is still widely used in practice because of its computational

simplicity and its robustness to be adjusted to fit real data. Complicated problems are

often modeled by relatively complicated SDEs which do not have analytical solutions.

Numerical analysis provides a wide range of methods to approximate the unknown

solution. Convergence, stability and consistency of any numerical methods are deeply

studied by mathematicians. Approximating the exact solution by an Euler scheme,

for example, is well studied in [2] and [3].

The Monte Carlo (MC) method, together with a numerical scheme, is the stan-

dard way to approximate an option price as the expected payoff g which depends on

the stock price X at the final time T , i.e. E[g(X(T ))]. It relies on generating M

independent and identically distributed realizations of g(X̄(T )) and approximating

the price as the sample mean

E[g(X(T ))] ≈
M∑
j=1

g(X̄(T, ωj))

M
,

where X̄(T) denotes the numerical approximation of X(T ). The forward Euler

method with uniform discretization of the time variable is the standard time step-

ping scheme. The complexity of the MC forward Euler for a smooth payoff and

SDE coefficients is O(TOL−3), where TOL is the accuracy of the MC forward Euler

approximation.

1.2 Objectives

The aim of this project is to construct an adaptive MC forward Euler algorithm for

the approximation of E[g(X(T ))] for singular observables and non-smooth SDE coeffi-

cients. Uniform time step discretization will then be more expensive than O(TOL−3)
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for the class of first order numerical schemes. Hence, our goal is to choose the time

steps adaptively, based on a new hybrid error estimate, to recover the optimal com-

plexity O(TOL−3). The work is thereafter extended to the MLMC setting introduced

by Giles [12] where uniform time steps are used. The MLMC algorithm is a variance

reduction technique which reduces the complexity from O(TOL−3) in the single level

setting to O(TOL−2(log(TOL−1)2)). The aim is again to develop an MLMC adap-

tive algorithm for non-smooth problems to obtain the standard MLMC complexity

O(TOL−2(log(TOL−1)2)). Finally, we will apply the MLMC adaptive algorithm to

the multidimensional setting to price options written on several underlying assets.

Here again, our goal is to reach the standard MLMC complexity.

1.3 Related Work

MC forward Euler adaptivity was introduced in [1] where, assuming a smooth payoff

g, the authors developed an adaptive algorithm based on an a posteriori estimate

of the weak error. The MLMC setting is introduced in [12] where a clever variance

reduction technique was developed using uniform time steps. However, this algorithm

is not optimal for the case of a binary option whose payoff is the Heaviside function,

see [13] and [14]. Adaptivity in the MLMC setting was derived in [15] using the a

posteriori error expansion [1].

1.4 Contribution

In the present work, we introduce a new hybrid adaptive method for the approxima-

tion of the binary option price which recovers the complexity O(TOL−3). A derivation

of a new error expansion which includes prior information is given and put into an

adaptive time stepping framework. The novelty of this work is that our hybrid MLMC

adaptive method reaches the expected complexity O(TOL−2(log(TOL−1)2)) using the



17

first order forward Euler scheme. A similar result was obtained in [14] when consid-

ering the higher order Milstein scheme with smooth SDE coefficients and non-smooth

payoff. Whereas extending the Milstein scheme to the multidimensional setting is not

straightforward, our algorithm is easy to apply in the higher dimensional case.

1.5 Thesis Organization

The thesis is organized as follows. In Chapter 2, we describe the single level MC

forward Euler method based on a posteriori error expansion. Numerical results for low

regular problems are discussed. In chapter 3, a new hybrid error expansion is derived.

The efficiency of the adaptive algorithm based on the hybrid error expansion is shown

using several numerical results. Chapter 4 consists of two parts. First, an extension of

the hybrid algorithm to the MLMC setting is described for one dimensional problems.

Second, we introduced a technique to express a multidimensional problem in the form

of one dimensional problem. Numerical results are provided to assess the performance

of the algorithm in both settings.
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Chapter 2

A Posteriori Adaptive Algorithm

for SDE

The uniform time steps is the most used method for weak approximation of SDE.

Under smoothness assumptions, this method gives optimal results. Adaptivity is an

alternative algorithm in the case where uniform time steps do not work, especially for

singular problems. A posteriori adaptive algorithm, see [1], is introduced in this chap-

ter. Numerical results for both GBM and drift singularity problems are presented.

2.1 Problem Setting

Let us consider the following SDE

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), 0 < t < T, (2.1)

X(0) = x0,

where X(t;ω) is a real stochastic process with randomness generated by the Wiener

process W (t;ω) in R. The functions a(t, x) ∈ R and b(t, x) ∈ R denote respectively

the drift and the diffusion fluxes while x0 is the initial condition.

The goal is to construct an approximation of the expected value E[g(X(T ))] by a
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MC forward Euler method in the final time T and for a given payoff function g. The

forward Euler method approximates the unknown process X by X̄(tn) as follows

X̄(t0) = x0,

X̄(tn+1) = X̄(tn) + a(tn, X̄(tn))∆tn + b(tn, X̄(tn))∆Wn, n = 0, 1, ..., N − 1, (2.2)

where ∆tn = tn+1 − tn is the time step and ∆Wn = W (tn+1) −W (tn) is the Wiener

increment. The aim is to choose the time step ∆tn and the number M of independent

identically distributed samples X̄(.;ωj), j = 1, 2, ...,M such that for a given tolerance

TOL

∣∣∣∣∣E[g(X(T ))]− 1

M

M∑
j=1

g(X̄(T ;ωj))

∣∣∣∣∣ ≤ TOL (2.3)

holds with high probability and as few time steps and realizations as possible. The

global error could be divided into two terms

∣∣∣∣∣E[g(X(T ))]− 1

M

M∑
j=1

g(X̄(T ;ωj))

∣∣∣∣∣ ≤ ∣∣E[g(X(T ))]− E[g(X̄(T ))]
∣∣

+

∣∣∣∣∣E[g(X̄(T ))]− 1

M

M∑
j=1

g(X̄(T ;ωj))

∣∣∣∣∣
= εT + εS, (2.4)

where εT is the time discretization error and εS is the statistical error.

The standard way to achieve this aim is to use uniform time steps. It can be

proved that, for smooth SDE coefficients and a well behaved payoff function g, the

uniform time steps is optimal in terms of computational cost, see [2] and [3]. A
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forward Euler scheme is first order accurate, we get

εT = O(∆t) = O

(
1

N

)
. (2.5)

In other words, the number of time steps N required to achieve the accuracy TOL

satisfies N = O(TOL−1). The order of the sample size M in the MC method is

M = O(TOL−2). In fact, using the Central Limit Theorem (CLT) we have the

following result

lim
M→∞

P [εS ≤ CC σ̂M ] = 1− αC , (2.6)

where σ̂M is the sample standard deviation of the MC estimator. The confidence

constant CC is related to the risk level αC as follows

Φ(CC) = 1− αC/2,

where Φ is the Cumulative Distribution Function (CDF) of a standard normal random

variable. Hence, a robust approximation of the statistical error is to set

εS ≈ CC σ̂M . (2.7)

Finally, for smooth problems and using forward Euler with uniform time steps, the

computational cost verifies

Total cost = O(TOL−3). (2.8)

Smoothness of the SDE coefficients and the payoff g are assumed in order to satisfy

(2.5). For non-smooth SDE, the uniform time steps may not give the single level cost

(2.8). A solution to recover optimality is to use adaptivity.
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2.2 A Posteriori Adaptive Method

The main inspiration of adaptivity is the work by Talay and Tubaro [4], where the

authors proved that for uniform time steps the time discretization error has an a

priori expansion based on the unknown process X. Kloeden and Platen [2] extend

the results of Talay and Tubaro on the existence of a leading-order a priori expansion.

Szepessy, Tempone, and Zouraris in [1] developed an efficient adaptive algorithm using

a posteriori error information. This a posteriori form was inspired from a posteriori

adaptive methods for Ordinary Differential Equations (ODE), see [5] and [6]. The

main new idea in [1] is the derivation of a posteriori error expansion with computable

leading-order terms on the form

εT = E[g(X(T ))− g(X̄(T ))] = E[
N∑
n=1

ρ(tn)∆t2n−1] + h.o.t., (2.9)

where ρ(tn)∆t2n−1 are computable error indicators which provide information about

the improvement of the time mesh and ρ(tn) is the error density defined as

ρ(tn) =
1

2

[
(at + aax +

b2

2
axx)φ(tn+1)

+ (bbt + abbx + b2ax +
b3

2
bxx +

(bbx)
2

2
)φ′(tn+1)

+ (b3bx)φ
′′(tn+1)

]
. (2.10)

All the terms in the previous expression are evaluated on (X̄(tn), tn). φ , φ′ and φ′′

are the weight functions which solve a discrete dual backward problem, see [1]

φ(tn) = cx(X̄(tn), tn)φ(tn+1), tn < T,

φ(T ) = gx(X̄(T )),
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φ′(tn) = c2
x(X̄(tn), tn)φ′(tn+1) + cx(X̄(tn), tn)φ(tn+1), tn < T,

φ′(T ) = gxx(X̄(T )),

φ′′(tn) = c3
x(X̄(tn), tn)φ′′(tn+1) + 3cx(X̄(tn), tn)cxx(X̄(tn), tn)φ′(tn+1)

+ cxxx(X̄(tn), tn)φ(tn+1), tn < T,

φ′′(T ) = gxxx(X̄(T )),

where c(x, tn) = a(x, tn)∆tn + b(x, tn)∆Wn.

It is important to notice that the payoff function is assumed to be smooth (at

least three times differentiable) in order to compute the dual functions. So, what can

we do for problems with non regular payoffs? One solution is to use mollification.

The replacement of g by its mollified version will introduce another error term which

will be estimated in the next section.

2.3 Mollification Procedure

For a given function g, the mollified function is defined as follows

gδ(y) =
1

δ

∫
R
g(y − z)H(

z

δ
)dz, (2.11)

where δ is the mollification parameter and H is a kernel density which has the fol-

lowing properties

1.
∫
RH(z)dz = 1,

2. H(z) = H(−z), ∀z ∈ R,

3. H(z) ≥ 0, ∀z ∈ R.

From the convolution properties, we note that if the kernel density is in Cp(R) then

our approximate function gδ is at least in Cp
(R). Once we get the approximate payoff
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function, we need to analyze our approximation error

εδ = E[(g − gδ)(X(T ))]. (2.12)

For a given tolerance TOL, the aim is to find the order of δ which guarantees that εδ

is bounded by TOL2. By considering the Probability Distribution Function (PDF)

ρXT of X(T ), the error can be written as follows

εδ =

∫
R

(g(y)− gδ(y))ρXT (y)dy

=

∫
R
ρXT (y)

[
1

δ

∫
R

(g(y)− g(y − z))H(
z

δ
)dz

]
dy

=

∫
R

1

δ
H(

z

δ
)

[∫
R

(g(y)− g(y − z))ρXT dy

]
dz

=

∫
R

1

δ
H(

z

δ
) [M(0)−M(−z)] dz,

where M(z) =
∫
R g(y + z)ρXT dy. We note that if the probability density ρXT is in

Cq(R) then M(z) is at least in Cq
(R). By making the change of variable ω = z

δ
, we find

εδ =

∫
R
H(ω)(M(0)−M(−δω))dω. (2.13)

Using the Taylor formula, we find

M(0)−M(−δω) = M
′
(0)(δω)− 1

2
M
′′
(0)(δω)2 +

1

6
M
′′′

(0)(δω)3 + · · · . (2.14)
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Substituting (2.14) in (2.13) , the approximation error becomes

εδ = −1

2
M
′′
(0)δ2

(∫
R
ω2H(ω)dω

)
− 1

24
M (4)(0)δ4

(∫
R
ω4H(ω)dω

)
− 1

6!
M (6)(0)δ6

(∫
R
ω6H(ω)dω

)
− · · · . (2.15)

Since the odd terms are canceled using the second property of the kernel density,

only even terms appear in the previous expansion. The leading term order in (2.15)

is δ2. Consequently, to bound the approximation error by TOL2, the value of δ should

satisfy

δ = O(TOL). (2.16)

For some problems, it is advisable to avoid that δ decreases with the same order as

the tolerance. In fact, the weights in the a posteriori error expansion are sensitive to

the mollification parameter δ. Therefore, for a small tolerance, the weak error may

become large for the case of δ = O(TOL).

Richardson Extrapolation

The aim when using the Richardson extrapolation is to cancel the leading order term

δ2 and to find another approximation of E[g(X(T ))] such that the leading order

term becomes δ4. We consider the following notation for the rest of this part: Eg =

E[g(X(T ))] and Egδ = E[gδ(X(T ))]. From (2.15), we have

Eg − Egδ = c1δ
2 + c2δ

4 +O(δ6). (2.17)
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Now, we rewrite the previous equation with δ replaced by δ
2

Eg − Eg δ
2

= c1
δ2

4
+ c2

δ4

16
+O(δ6). (2.18)

By multiplying (2.18) by 4 and subtracting (2.17), we find

Eg =
4Eg δ

2

− Egδ
3

+ ĉ2δ
4 +O(δ6). (2.19)

We remark that the range of δ-values for which the presented extrapolation technique

improves the convergence rate depends on the size of the constants c1 and c2 in (2.17).

From (2.19), we get another mollified function of g which is

hδ =
4g δ

2
− gδ
3

. (2.20)

By using the new approximation, the leading term of the error becomes δ4. Conse-

quently, the value of δ to be chosen to bound the error by TOL2 satisfies

δ = O(
√
TOL). (2.21)

As an example, let us mollify the Heaviside function. The Heaviside function is

defined as

g(y) = 1y≥0, (2.22)

and

gδ(y) =
1

δ

∫
R
g(y − z)H(

z

δ
)dz. (2.23)
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Using for example the standard Gaussian distribution density as a Kernel

H(z) =
1√
2π

exp(−z
2

2
),

the approximate function becomes

gδ(y) =
1

δ

∫
R
g(y − z)H(

z

δ
)dz

=
1

δ

∫
R

1y−z≥0
1√
2π

exp(− z2

2δ2
)dz

=
1

δ

∫ y

−∞

1√
2π

exp(− z2

2δ2
)dz

=

∫ y
δ

−∞

1√
2π

exp(−u
2

2
)du.

Finally, the Heaviside approximate function is

gδ(y) = Φ(
y

δ
), (2.24)

where Φ is the CDF of a standard Gaussian random variable.

2.4 Numerical Implementation

Through the mollification procedure introduced in the previous section, we are able

to apply the a posteriori adaptive algorithm using the replacement of g by gδ. In

[1], the authors presented two adaptive a posteriori algorithms: one using determin-

istic time steps and another where the time stepping stochastically depends on the

realization. The stochastic time stepping algorithm is more suitable in our case than

the deterministic one since we are dealing with problems where singularities are path

dependent. Therefore, we will only present the stochastic time stepping method.

For a given tolerance TOL for which we desire that (2.3) is satisfied, we split the
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tolerance into a time discretization tolerance TOLT and a statistical tolerance TOLS

such that

TOLT + TOLS = TOL. (2.25)

The average number of time steps is chosen through the control of the time discretiza-

tion error which has the a posteriori expansion (2.9). This control is based on refine-

ment and stopping criteria. Consider a grid with increments ∆t = (∆t0, ...,∆tN−1)

which depends on the realization ω. This grid is accepted if the following stopping

criterion is satisfied

max
1≤n≤N

ρ(tn)∆t2n−1 ≤ Cs
TOLT
N̄

, (2.26)

where N̄ is the expected number of time steps. As long as the previous condition is

not fulfilled, the nth interval is refined if the following criterion is not satisfied

ρ(tn)∆t2n−1 ≤ CR
TOLT
N̄

, (2.27)

where CR and CS are constants CS > CR, see [7] and [8]. In our numerical tests,

CR = 2 and CS = 5.

For M random samples {Yi}Mi=1, the sample average is denoted by

AVM [Y ] =
1

M

M∑
i=1

Yi. (2.28)

Similarly, the sample variance is denoted by

νM [Y ] =
1

M − 1

M∑
i=1

(Yi −AVM [Y ])2. (2.29)

The number of samples M in the MC method is chosen via the control of the statistical
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error which is approximated in (2.7). Bounding εS by TOLS gives the following

stopping criterion

σ̂M ≤
TOLS
CC

, (2.30)

where σ̂M is the sample standard deviation of the MC estimator, see (2.28) and (2.29),

and CC is the confidence constant, see (2.6).

The algorithm is composed of an inner and an outer loop. The outer loop starts

with an initial number of realizations M which is doubled until (2.30) is satisfied. The

inner loop constructs M paths by the forward Euler scheme. For each realization,

it starts with an initial grid. Using the refinement criterion (2.27) and the stopping

criterion (2.26), the corresponding grids are constructed. The a posteriori adaptive

technique is described in Algorithm 1 and 2:

Algorithm 1 A Posteriori Adaptive SLMC Algorithm
Inputs: M , TOLS
Outputs: µ
Compute µ and σ̂ by calling Generate Realizations( ∆t−1, M , TOLT , N̄)
while (2.30) is violated do

Update the average number of time steps N̄
Update the number of realizations M = 2M
Compute µ and σ̂ by calling Generate Realizations( ∆t−1, M , TOLT , N̄)

end while

2.5 Numerical Results

This section presents simulation results using the algorithm described in the previous

section. We will consider the binary option whose payoff is the Heaviside function

with strike K. Its mollification, which will be used in the a posteriori algorithm, is

gδ(x) =
4Φ(2(x−K)/δ)− Φ((x−K)/δ)

3
, (2.31)
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Algorithm 2 Generate Realizations

Inputs: ∆t−1, M , TOLT , N̄
Outputs: µ, σ̂
for j = 1, 2, ...,M do

Start from the initial grid ∆t−1 and compute the error indicators.
while (2.26) is violated do

Refine the grid by
for Each interval on the grid do

if (2.27) is not satisfied then
Divide the interval into two equal parts

end if
end for
Compute the error indicators on the new refined grid

end while
Compute the forward Euler path on the constructed grid
µ = µ+ gδ(X̄(T ))

end for
µ = µ/M and estimate σ̂ by sample standard deviation (2.29)

where Φ is the CDF of a standard Gaussian.

2.5.1 GBM Problem

The SDE for a GBM problem is defined as

dX(t) = rX(t)dt+ σX(t)dW (t), 0 < t < T, (2.32)

X(0) = x0,

where r is the interest rate and σ is the volatility. The GBM is frequently used

in mathematical finance to model stock prices in the Black Scholes model [9]. The

problem parameters are r = 0.05, σ = 0.2, T = 1, K = 1, and x0 = 0.9.

For a range of tolerances, we aim to check if the accuracy condition (2.3) is fulfilled.

In Figure 2.1, we plot the global error function of the tolerance. It can be seen that

the accuracy condition is satisfied as the global error is always below the tolerance

line. Since the red curve has the same order as the blue one, the number of MC
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samples has the expected order O(TOL−2) .

Figure 2.1: Accuracy plot for the a posteriori adaptive SLMC algorithm with the
GBM problem and the binary option payoff.

In the second simulation, we are interested in the computational cost measured

as the total number of time steps in all MC realizations as function of the tolerances.

From Figure 2.2, we point out that the cost is asymptotically O(TOL−3.5). This

illustrates that the algorithm fails to give the optimal computational cost which is

O(TOL−3). The jumps observed in Figure 2.2 could be explained by the non-smooth

update of the number of realizations M , which is doubled if the stopping rule (2.30)

is not fulfilled.

2.5.2 Drift Singularity Problem

We consider a non-smooth SDE where we have a known singularity point on the drift

dXt = rfαXtdt+ σXtdWt, t < T,

X(0) = x0, (2.33)

where fα(t) = |t− α|−0.5 and α is the singularity, α = 1
π
. To avoid an eventual blow

up on the numerical implementation due to the singularity, we consider the following
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Figure 2.2: Total computational cost for the a posteriori adaptive SLMC algorithm
with the GBM problem and the binary option payoff.

modified drift

f̄α(tn) =


fα(tn), if fα(tn)∆tn < 2∆t

1/2
n ,

2∆t
−1/2
n , otherwise.

(2.34)

For the same purpose, we do the modification on the first derivative as follows

f̄α(tn) =


f ′α(tn), if fα(tn)∆tn < 2∆t

1/2
n ,

f ′α(s∗), otherwise,

(2.35)

where s∗ = 1
4
∆tn. Even if these two modifications are not derived from a rigorous

theoretical proof, we will show in the numerical part that they still give convincing

results and do not introduce a non controllable error.

Comparing to the GBM problem with the Heaviside payoff, this example is more

challenging since we add a singularity on the SDE to the non-smoothness of g. We

use the same mollified function gδ as in (2.31) and the same problem parameter values

as in the GBM case. The accuracy plot for this example is shown in Figure 2.3. It is

clear that again the accuracy is satisfied. Moreover, the number of MC realizations
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has the expected order, i.e., O(TOL−2).

Figure 2.3: Accuracy plot for the a posteriori adaptive SLMC algorithm with the
drift singularity problem and the binary option payoff.

Let us examine the computational cost for this problem. In Figure 2.4, we plot

the total cost against the range of tolerances. Again, the algorithm has a complexity

of order O(TOL−3.5) which is different from the expected complexity.

Figure 2.4: Total computational cost for the a posteriori adaptive SLMC algorithm
with the drift singularity problem and the binary option payoff.

To conclude, the a posteriori adaptive algorithm does not give the optimal single

level computational cost for either GBM or drift singularity problems. This failure is
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due to the mollification parameter δ. In fact, the dual functions in the a posteriori

error expansion are strongly influenced by this parameter which gives, in the final

time T , a large value of the error density in the region where we are close to the strike

K. Hence, solving the backward problem may result in a grid with too small time

steps.
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Chapter 3

Hybrid Adaptive Algorithm for

SDE

A hybrid adaptive algorithm is presented in this chapter. A derivation of a new

hybrid error expansion is described. The expansion is similar to the a posteriori one

with a small modification on the weight functions. A brief theoretical proof will show

that this new introduced method will give the expected cost O(TOL−3) for the GBM

and the drift singularity problems. Numerical tests are presented at the end of this

chapter to confirm our theoretical results.

3.1 Hybrid Error Expansion

Let X̄(tn) denote the forward Euler numerical realization (2.2) of the SDE (2.1) on

the grid {∆tn}N−1
n=0 , and

u(x, t) = E[g(X(T ))|X(t) = x].
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Using the mean value theorem, the weak error can then be written as

E[g(X(T ))− g(X̄(T ))] =
N∑
n=1

E
[
u(X(tn; X̄(tn−1), tn−1), tn)− u(X̄(tn), tn)

]
=

N∑
n=1

E
[
ux(X̄(tn), tn)en + uxx(X̄(tn) + snen, tn)

e2
n

2

]
, (3.1)

where sn ∈ [0, 1] and en is the local error defined as :

en = X(tn; X̄(tn−1), tn−1)− X̄(tn).

Using Itô formula, we obtain

en =

∫ tn

tn−1

a(t,X(t))− a(tn−1, X̄(tn−1))dt+

∫ tn

tn−1

b(t,X(t))− b(tn−1, X̄(tn−1))dWt

= ∆an−1 + ∆bn−1

where

∆an−1 =

∫ tn

tn−1

∫ tn

tn−1

(at + axa+
axx
2
b2)(s,X(s))dsdt,

∆bn−1 =

∫ tn

tn−1

∫ t

tn−1

(axb)(s,X(s))dWsdt+ (bt + bxa+
bxx
2
b2)(s,X(s))dsdWt

+ (bxb)(s,X(s))dWsdWt.

So the local error term has the expression en = ∆an−1 + ∆bn−1. Our objective is to

prove that under boundedness assumptions on ux(x, t), uxx(x, t) and uxxx(x, t) for all

(x, t) ∈ R× [0, T ], we can develop a hybrid error density for weak approximations of
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SDE. Using Taylor expansion for the first term in (3.1) to get

ux(X̄(tn), tn)en = ux(X̄(tn), tn)∆an−1 +
[
ux
(
X̄(tn)− bn−1∆Wn−1, tn

)
+ uxx

(
X̄(tn)− bn−1∆Wn−1, tn

)
bn−1∆Wn−1

+ uxxx
(
X̄(tn)− bn−1∆Wn−1, tn

) 1

2
b2
n−1∆W 2

n−1 + h.o.t.
]
∆bn−1, (3.2)

where bn−1 = b(tn−1, X̄(tn−1)). The first term in (3.2) satisfies

E
[
ux
(
X̄(tn), tn

)
∆an−1

]
= E

[
ux
(
X̄(tn)− bn−1∆Wn−1, tn

)
∆an−1 + h.o.t.

]
= E

[
ux
(
X̄(tn)− bn−1∆Wn−1, tn

)
E
[
∆an−1|Ftn−1

]
+ h.o.t.

]
= E

[
ux(X̄(tn)− bn−1∆Wn−1, tn)

at + aax + axxb
2/2

2
(X̄(tn−1), tn−1)∆t2n−1

]
+ E

[
o(∆t2n−1)

]
. (3.3)

Let us consider the second summand of (3.2). Its first term is zero,

E
[
ux
(
X̄(tn)− bn−1∆Wn−1, tn

)
∆bn−1

]
= E

[
ux
(
X̄(tn)− bn−1∆Wn−1, tn

)
E
[
∆bn−1|Ftn−1

]]
= 0.

For the second term,

E
[
uxx
(
X̄(tn)− bn−1∆Wn−1, tn

)
bn−1∆Wn−1∆bn−1

]
= E

[
uxx
(
X̄(tn)− bn−1∆Wn−1, tn

)
bn−1E

[
∆Wn−1∆bn−1|Ftn−1

]]
= E

[
uxx
(
X̄(tn)− bn−1∆Wn−1, tn

) axb2 + btb+ abxb+ bxxb
3/2

2
(X̄(tn−1), tn−1)∆t2n−1

]
+ E

[
o(∆t2n−1)

]
. (3.4)
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For the third term, we apply Itô isometry formula, see [2], twice to get

E
[
∆W 2

n−1∆bn−1

]
=E

[∫ tn

tn−1

∫ tn

tn−1

1dWsdWt

∫ tn

tn−1

∫ t

tn−1

(bxb)(s,X(s))dWsdWt

]
=

∫ tn

tn−1

E
[∫ tn

tn−1

1dWs

∫ t

tn−1

(bxb)(s,X(s))dWs

]
dt

=

∫ tn

tn−1

∫ t

tn−1

E[(bxb(s,X(s)))]dsdt.

Consequently,

E
[
uxxx

(
X̄(tn)− bn−1∆Wn−1, tn

) 1

2
b(tn−1, X̄(tn−1))2∆W 2

n−1∆bn−1

]
= E

[
uxxx

(
X̄(tn)− bn−1∆Wn−1, tn

) 1

2
b2
n−1E[∆W 2

n−1∆bn−1|Ftn−1 ]

]
= E

[
uxxx(X̄(tn)− bn−1∆Wn−1, tn)

b3bx
4

(X̄(tn−1, tn−1))∆t2n−1

]
+ E

[
o(∆t2n−1)

]
.

(3.5)

where Ftn−1 is the filtration generated by the Wiener process up to the time tn−1. For

the second term in (3.1), we have

uxx
(
X̄(tn) + snen, tn

) e2
n

2
= uxx

(
X̄(tn)− bn−1∆Wn−1, tn

) e2
n

2
+ h.o.t.

Hence,

E
[
uxx
(
X̄(tn) + snen, tn

) e2
n

2

]
= E

[
uxx
(
X̄(tn)− bn−1∆Wn−1, tn

) e2
n

2

]
= E

[
uxx
(
X̄(tn)− bn−1∆Wn−1, tn

)
E[
e2
n

2
|Ftn−1 ]

]
= E

[
uxx
(
X̄(tn)− bn−1∆Wn−1, tn

) (bbx)
2

4
(X̄(tn−1), tn−1)∆t2n−1)

]
+ E

[
o(∆2

tn−1
)
]
.

(3.6)
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Finally, using (3.3), (3.4), (3.5) and (3.6) the time discretization error is written as

follows

∣∣∣E [g(X(T ))− g(X̄(T ))
] ∣∣∣ =

∣∣∣ N∑
n=1

E
[
ux(X̄(tn), tn)en + uxx(X̄(tn) + snen, tn)

e2
n

2

]∣∣∣
≤

N∑
n=1

∣∣∣E [ux(X̄(tn)− bn−1∆Wn−1, tn)
at + aax + axxb

2/2

2
∆t2n−1

] ∣∣∣
+
∣∣∣E [uxx(X̄(tn)− bn−1∆Wn−1, tn)

axb
2 + btb+ abxb+ (bxxb

3 + (bxb)
2)/2

2
∆t2n−1

] ∣∣∣
+
∣∣∣E [uxxx(X̄(tn)− bn−1∆Wn−1, tn)

b3bx
4

∆t2n−1

] ∣∣∣+
∣∣∣E [o(∆t2n−1)

] ∣∣∣,
and the boundedness of ux, uxx and uxxx with respect to the first space variable x

leads to

∣∣∣E [g(X(T ))− g(X̄(T ))
] ∣∣∣ ≤ N∑

n=1

‖ux(·, tn)‖∞E
[∣∣∣at + aax + axxb

2/2

2

∣∣∣∆t2n−1

]
+ ‖uxx(·, tn)‖∞E

[∣∣∣axb2 + btb+ abxb+ bxxb
3/2 + (bxb)

2/2

2

∣∣∣∆t2n−1

]
+ ‖uxxx(·, tn)‖∞E

[∣∣∣b3bx
4

∣∣∣∆t2n−1

]
+
∣∣∣E [o(∆t2n−1)

] ∣∣∣
=

N∑
n=1

E
[
ρ(tn)∆t2n−1

]
+
∣∣∣E [o(∆t2n−1)

] ∣∣∣,
where ρ is the error density

ρ(tn) = ‖ux(·, tn)‖∞
∣∣∣at + aax + axxb

2/2

2
(X̄(tn−1), tn−1)

∣∣∣
+ ‖uxx(·, tn)‖∞

∣∣∣axb2 + btb+ abxb+ bxxb
3/2 + (bxb)

2/2

2
(X̄(tn−1), tn−1)

∣∣∣
+ ‖uxxx(·, tn)‖∞

∣∣∣b3bx
4

(X̄(tn−1), tn−1)
∣∣∣. (3.7)

This new hybrid error expansion has almost the same form as the a posteriori error

expansion derived in [1]. In other words, both the error density in the hybrid and the
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a posteriori expansions could be written as

ρ(tn) =
∑

local error(tn)× weight(tsn).

We notice that the only difference between the a posteriori and the hybrid expansions

is the weights. In fact, in the a posteriori expansion the weights were bounded by

the dual functions φ, φ′ and φ′′ which solve pathwise the discrete dual backward

problems. In the hybrid error expansion, the error density weights are the bounds

for the first, the second and the third derivatives of u and are usually smoother than

their φ counterparts.

From the hybrid error expansion, we conclude that if we have reasonable upper

bounds for ‖ux‖∞, ‖uxx‖∞ and ‖uxxx‖∞, then we may construct a reasonably efficient

hybrid adaptive method for weak approximations of SDEs. In practice, the upper

bounds will be derived through rough a priori analysis of the first, the second and

the third variations of the SDE paths and the Fokker-Planck (FP) density.

An advantage of the hybrid algorithm compared to the a posteriori one is the

following: in the a posteriori method, we need to solve backward the discrete dual

problem and then we go forward to construct paths. In the hybrid method, paths are

constructed by going only forward in time. Furthermore, in the a posteriori method

we need to start with an initial grid which is refined using the whole path information

in order to compute backward the dual functions. For the hybrid method, on the other

hand, the time step is directly constructed without any initial guess.
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3.2 Error Density: GBM and Drift Singularity

GBM Problem

In this section, we will derive the error density expression for the GBM problem

dX(t) = rX(t)dt+ σX(t)dW (t), 0 < t < T, (3.8)

X(0) = x0.

The GBM is a good example to start with in our work due to the prior information

it contains. In fact, its FP density of X(T ;x, t) takes the explicit form

p(y, T ;x, t) =
1

yσ
√

2π(T − t)
e
− (log(y/x)−(r−σ2/2)(T−t))2

2σ2(T−t) . (3.9)

Let us define X ′(T ;x, t) = ∂xX(T ;x, t) which represents the path’s first variation of

X(T ;x, t). the first variation is governed by the following SDE

dX ′(s;x, t) = a′(X(s;x, t), s)X ′(s;x, t)ds+ b′(X(s;x, t), s)X ′(s;x, t)dWs,

= rX ′(s;x, t)ds+ σX ′(s;x, t)dWs, s > t,

with initial condition X ′(t;x, t) = 1. When considering the GBM problem, X ′(s;x, t)

follows the same SDE as X(s;x, t) with

X ′(s;x, t) = X(s; 1, t) =
X(s;x, t)

x
.
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We consider the binary option whose payoff g is the Heaviside function (2.22) with

strike K. Let us derive bounds for the derivatives of u. By definition we have

ux(x, t) = ∂xE[g(X(T ;x, t))]

= E[g′(X(T ;x, t))∂xX(T ;x, t)]

= E[δX(T ;x,t)−K∂xX(T ;x, t)]

= E[X ′(T ;x, t)|X(T ;x, t) = K]p(K,T ;x, t).

By introducing the variable z = log(K/x) and using (3.9), we obtain

ux(x, t) =
exp(z)

Kσ
√

2π(T − t)
e
− (z−(r−σ2/2)(T−t))2

2σ2(T−t)

= er(T−t)
1

Kσ
√

2π(T − t)
e
− (z−(r+σ2/2)(T−t))2

2σ2(T−t)

=: û(z, t)

Consequently, it follows that

max
x∈R+

|ux(x, t)| = max
z∈R
|û(z, t)|

=
er(T−t)

Kσ
√

2π(T − t)

=
Cx(t, T )√
T − t

.

Now, let us find a bound for the second derivative of u. Using the chain rule we get

uxx(x, t) = ûz(z, t)
∂z

∂x

= er(T−t)
(z − (r + σ2/2)(T − t))
K2σ3(T − t)3/2

√
2π

e
z− (z−(r+σ2/2)(T−t))2

2σ2(T−t)

=
e(2r+σ2)(T−t)

K2σ2(T − t)
√
π

(
(z − (r + 3σ2/2)(T − t))√

2σ2(T − t)
+
σ
√
T − t√

2

)
e
− (z−(r+3σ2/2)(T−t))

2σ2(T−t) ,
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and thus that

‖uxx(·, t)‖∞ = supz∈R|ûz(z, t)
∂z

∂x
|

≤ e(2r+σ2)(T−t)

K2σ2(T − t)
√
π

(
supx∈R+(xe−x

2

) +
σ
√
T − t√

2

)
=

e(2r+σ2)(T−t)

K2σ2(T − t)
√

2π

(
e−1/2 + σ

√
T − t

)
=
Cxx(t, T )

T − t
.

For the third derivative of u, a similar computation gives

‖uxxx(·, t)‖∞ ≤
Cxxx(t, T )

(T − t)3/2
.

Summing up, we find upper bounds for the derivatives of u which will be used

in the definition of the error density. Let us include these upper bounds expression

into the error density expression. For the GBM problem, the error density has the

following upper bound

ρ(tn) ≤ 1

2

(Cx(tn, T )√
T − tn

r2|X̄(tn−1)|+ Cxx(tn, T )

T − tn
(2rσ2 + σ4/2)X̄(tn−1)2

+
Cxxx(tn, T )

2(T − tn)3/2
σ4|X̄(tn−1)3|

)
.

Now, let us determine an upper bound on the time steps ∆t such that the weak

approximation criterion

|E[g(X(T ))− g(X̄(T ))]| ≤ TOL (3.10)

is fulfilled for a given tolerance TOL. Using our new hybrid error expansion, the
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criterion (3.10) is replaced by

E[
N∑
n=1

ρ(tn)∆t2n−1] ≤ TOL.

The above summands are known as error indicators. In terms of computational cost,

the optimal way the criterion (3.10) is met is by ensuring that all error indicator

contributions are of the same size, i.e.,

ρ(t1)∆t20 = ρ(t2)∆t21 = ... = ρ(tN)∆t2N−1 =
TOL

N
.

In addition to estimating the weak error, the error indicators give information on

where to refine in order to get the optimal mesh. Equal contributions by all the error

indicators leads to

∆tn−1 = O

(√
TOL

ρ(tn)N

)
= O

(√
TOL(T − tn)3/2

N

)
, ∀n.

The previous expression was derived by assuming that X̄(tn−1) = O(1) and neglecting

the last error indicator which will blow up since the error indicator at the final time

is O((T − t)−3/2). Finally, using the Cauchy Schwarz inequality, we obtain a bound

on the average number of time steps

E[N ] = E[

∫ T

0

∆t(s)−1ds]

= O

(
TOL−1/2E[

√
N

∫ T

0

(T − s)−3/4ds]

)
= O

(
TOL−1/2

√
E[N ]

)
,
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which implies that

E[N ] = O(TOL−1).

This result is a brief theoretical proof confirming that our hybrid method will achieve

the computational cost O(TOL−3), which is the aim when using adaptivity. It is

important to see that the error density at the final time has the order O((T − t)−3/2).

Therefore, an eventual blow up at the final time will occur. One way to solve this issue

is to mollify our payoff function by a convolution with a kernel. In Section 2.3, we

have presented a mollification procedure. In the present method, we need to ensure

boundedness for ‖ux(·, t)‖∞, ‖uxx(·, t)‖∞ and ‖uxxx(·, t)‖∞. To do that, we will use

a kernel with compact support instead of a Gaussian kernel. One way to construct

a compact support nth order differentiable kernel is to convolve the window function

to itself n times , see [10]. The resulting approximate function gδ is presented in

Appendix B.

Error density with a mollified payoff version

As it was mentioned above, the aim when using this mollification is to provide upper

bounds for ‖ux(·, t)‖∞, ‖uxx(·, t)‖∞ and ‖uxxx(·, t)‖∞ which do not blow up at the

final time. Let us consider the slightly altered problem where gδ is used instead of g.

The first variation of u is then

ux(x, t) = ∂xE[gδ(X(T ;x, t))]

= E[g
′

δ(X(T ;x, t))X ′(T ;x, t)]

= E[Hδ(X(T ;x, t))X ′(T ;x, t)].
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For GBM problem we have shown that

X ′(s;x, t) = X(s; 1, t) =
X(s;x, t)

x
.

Consequently

ux(x, t) =

∫
R+

Hδ(y)
y

x
P (T, y;x, t)dy

=

∫ K+δ

K−δ
Hδ(y)

1

xσ
√

2π(T − t)
e
− (log(y/x)−(r−σ2/2)(T−t))2

2σ2(T−t) dy.

From the previous expression we see why the kernel is chosen to have compact support.

In fact, the term inside the integral was equal to ux(x, t) before the mollification with

K is now replaced by y. In other words, to obtain bounds for ‖ux(·, t)‖∞, ‖uxx(·, t)‖∞

and ‖uxxx(·, t)‖∞ we follow the same procedure as in the previous section with K

replaced by K − δ.

‖ux(·, t)‖∞ ≤
Cx,δ(T, t)√
T − t

,

‖uxx(·, t)‖∞ ≤
Cxx,δ(T, t)

T − t
,

‖uxxx(·, t)‖∞ ≤
Cxxx,δ(T, t)

(T − t)3/2
.

The mollification will allow us to find alternative bounds and so avoid an eventual

blow up at the final time. For a GBM problem we have the following property

∫
R+

yP (T, y;x, t)dy = xer(T−t).
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This leads to the bound

|ux(x, t)| = |E[Hδ(X(T ;x, t))
X(T ;x, t)

x
]|

= |
∫
R+

Hδ(y)
y

x
P (T ;x, t)dy|

≤ 1

xδ

∫
R+

yP (T ;x, t)dy

=
er(T−t)

δ
=
Dx(T, t)

δ
,

where we have used the fact that |Hδ(y)| ≤ 1
δ
. For the second derivative of u, The

property X ′(s;x, t) = X(s; 1, t) implies that X ′′(s;x, t) = 0 and that

uxx(x, t) = E[g′′δ (X(T ;x, t))(X ′(T ;x, t))2]

= E[H ′δ(X(T ;x, t))(X ′(T ;x, t))2].

Using the fact that |H ′δ(y)| ≤ 2
δ2

and considering z = log(y/x), we get

|uxx(x, t)| ≤
2

δ2

∫
R+

(
y

x
)2P (T, y;x, t)dy

=
2

δ2

∫
R

e2z

σ
√

2π(T − t)
e
− (z−(r−σ2/2)(T−t))2

2σ2(T−t) dz

= 2
e(2r+σ2)(T−t)

δ2
=
Dxx(T, t)

δ2
.

Finally, for the third derivative we have

uxxx(x, t) = E[g′′′δ (X(T ;x, t))(X ′(T ;x, t))3]

= E[H ′′δ (X(T ;x, t))(X ′(T ;x, t))3].
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Consequently,

|uxxx(x, t)| ≤
4

δ3

∫
R+

(
y

x
)3P (T, y;x, t)dy

=
4

δ3

∫
R

e3z

σ
√

2π(T − t)
e
− (z−(r−σ2/2)(T−t))2

2σ2(T−t) dz

= 4
e3(r+σ2)(T−t)

δ3
=
Dxxx(T, t)

δ3
.

We have used that |H ′′′δ (y)| ≤ 4
δ3

. To sum up, we have found the following three upper

bounds

‖ux(·, t)‖ ≤ min(
Cx,δ√
T − t

,
Dx

δ
),

‖uxx(·, t)‖ ≤ min(
Cxx,δ
T − t

,
Dxx

δ2
),

‖uxxx(·, t)‖ ≤ min(
Cxxx,δ

(T − t)3/2
,
Dxxx

δ3
).

It is clear that the mollification will ensure that the error density is finite at the final

time T , and in a small region of order O(δ3) near the final time it will be constant.

Let us examine the expected number of time steps using this mollification procedure.

For the GBM problem, the resulting error density is

ρ(tn) = O
(
min(δ−3, (T − t)−3/2)

)
= O

(
1

max(δ3, (T − t)3/2)

)
.

It results into

∆tn = O

(√
TOL

Nρ(tn)

)
= O

(√
TOLmax(δ3, (T − t)3/2)

N

)
.
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Hence, using the Cauchy Schwarz inequality, we get the following bound on the av-

erage number of time steps

E[N ] = E
[∫ T

0

∆t(s)−1ds

]
= CTOL−1/2E

[
√
N

(∫ T−O(δ3)

0

(T − s)−3/4ds+O(δ3/2)

)]

= O
(
TOL−1/2

√
E[N ]

)
.

This yields to a desired rate on the number of time steps for the hybrid adaptive

forward Euler numerical scheme

E[N ] = O(TOL−1).

The above analysis shows that whatever δ > 0 that is used in the mollification of the

payoff, the expected number of time steps has the right order which guarantees that

the hybrid adaptive algorithm will reach the complexity O(TOL−3). However, for a

small value of δ, the weights might reach big values and thereby generate too small

time steps.

Drift Singularity Problem

The drift singularity SDE defined in (2.33) is an example where the complexity

O(TOL−3) is not obtained using uniform time stepping with a first order numeri-

cal method. Therefore, we aim to use our hybrid adaptive method to recover this

complexity. Again we need to determine upper bounds for the three derivatives of u.

Since the drift singularity SDE is again a GBM, the FP density is also known. In

other words, we need to replace the term r(T − t) in the FP expression of the GBM
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problem by
∫ T
t
rfα(s)ds = 2r(

√
T − α + sign(α− t)

√
|t− α|)

p(y, T ;x, t) =
1

yσ
√

2π(T − t)
exp

(
−

(log(y/x)− (r
∫ T
t
fα(s)ds− σ2/2(T − t)))2

2σ2(T − t)

)
.

The same replacement should be done then to get the upper bounds expression. In

summary we get

||ux(·, t)||∞ ≤
Cα,x,δ(T, t)√

T − t
,

||uxx(·, t)||∞ ≤
Cα,xx,δ(T, t)

T − t
),

||uxxx(·, t)||∞ ≤
Cα,xxx,δ(T, t)

(T − t)3/2
.

Again using the mollification technique we get alternative bounds

||ux(·, t)||∞ ≤
er
∫ T
t fα(s)ds

δ
,

||uxx(·, t)||∞ ≤ 2
e2r

∫ T
t fα(s)ds+σ2(T−t)

δ2
,

||uxxx(·, t)||∞ ≤ 4
e3(r

∫ T
t fα(s)ds+σ2(T−t))

δ3
. (3.11)

Finally, a similar analysis as for the GBM case shows that E[N ] = O(TOL−1), and

hence the hybrid adaptive algorithm will achieve the desired computational cost.

3.3 Numerical Implementation

In this section, we will describe the hybrid adaptive Single Level Monte Carlo (SLMC)

algorithm for both GBM and drift singularity problems. The binary option whose

payoff is the Heaviside function is considered. As before, the given tolerance TOL

is split it into a time discretization and a statistical tolerance as in (2.25). We have
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proved in the beginning of this chapter that

E[gδ(X(T ))− gδ(X̄(T ))] =
N∑
n=1

E[ρ(tn)∆t2n−1] + h.o.t.,

where ρ(tn) is given by (3.7). The refinement procedure is simple in the hybrid algo-

rithm, the time steps are chosen adaptively and by going forward in time according

to the following refinement criterion

ρ(tn)∆t2n ≤
TOLT
N̄

, (3.12)

where N̄ denotes the average number of time steps. It is important to note that we

are using stochastic time steps where the mesh is path dependent. The algorithm will

adaptively update N̄ using sample average estimates. To start, we need a first guess

of the expected number of time steps.

On the other hand, the number of MC realizations is chosen by controlling the

statistical error. The algorithm of the hybrid adaptive MC method is composed of

an inner and an outer loop. The outer loop uses the MC technique and update

the number of realizations M if (2.30) is not fulfilled. The inner loop generates M

realizations using forward Euler method to the accuracy TOLT . A description of the

hybrid SLMC adaptive algorithm is given in Algorithms 3 and 4.

Algorithm 3 Hybrid Adaptive SLMC Method
Inputs: M , TOLS
Outputs: µ
Call Generate SLMC Realizations(M , TOLT , N̄) to compute µ and σ
while 2.30 is not satisfied do

Update the average number of time steps N̄ .
Set M = 2M
Call Generate SLMC Realizations(M , TOLT , N̄) to compute µ and σ̂

end while
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Algorithm 4 Generate SLMC Realizations()

Inputs: M , TOLT , N̄
Outputs: µ, σ̂
for J = 1, 2, ...,M do
x = x0, t = 0,
∆t = 0.1,
while t < T do

Find the next time steps by dividing ∆t until 3.12 is satisfied
if t+ dt > T then

Set ∆t = T − t and t = T
else

Set t = t+ ∆t
end if
Update the number of time steps
Generate X̄(t) by forward Euler method and set ∆t = max(2∆told, 0.1)

end while
µ = µ+ gδ(X̄(T ))

end for
µ = µ/M and estimate σ̂ by the sample standard deviation (2.29).

3.4 Numerical Results

As in the previous chapter, we will carry out some numerical tests using the GBM

and the drift singularity problem.

3.4.1 GBM Problem

Let us consider the GBM problem (3.8). Again we consider the binary option with the

mollification given in Appendix B. The problem parameters are: r = 0.05, σ = 0.2,

T = 1, K = 1, x0 = 0.9. Essentially, we are interested, as in the a posteriori case, in

investigating the accuracy and the complexity of the algorithm.

In Figure 3.1, we present the accuracy plot to check if (2.3) is satisfied. From this

plot, we conclude that our algorithm succeeds to meet the accuracy condition since

all the points (global error) are below the accuracy line (the range of tolerances).

The important result to check is the algorithm’s complexity. Theoretically, we

have seen that the hybrid adaptive method will give the complexity O(TOL−3). In
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Figure 3.1: Global error for the hybrid adaptive SLMC algorithm with the GBM
problem and the binary option payoff.

Figure 3.2, we plot the computational cost against the range of tolerances, and from

that we can deduce that numerical result also gives the expected single level com-

plexity.

Figure 3.2: Total computational cost for the hybrid adaptive SLMC algorithm with
the GBM problem and the binary payoff.
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3.4.2 Drift Singularity Problem

For the binary option GBM problem, the MC forward Euler algorithm with uniform

time stepping achieves the desired complexity O(TOL−3), see [11]. So, to motivate

the need of our hybrid adaptive algorithm, we will consider a more difficult problem

which in addition to the discontinuous Heaviside payoff also has a singularity in the

SDE drift function. The same problem parameters are used as in the GBM case with

the mollified function gδ described in Appendix A, and to avoid possible numerical

blow ups, we use the drift modifications (2.34) and (2.35).

Figure 3.3 shows the accuracy plot. We conclude that the hybrid adaptive al-

gorithm meets the accuracy condition (2.3) for this problem as well. The second

Figure 3.3: Global error for the hybrid adaptive SLMC algorithm with the drift
singularity problem and the binary option payoff.

important result to investigate is the complexity of the method. In Figure 3.4, the

computational cost has approximatively the expected order O(TOL−3). We remark

also that the cost for the drift singularity problem is slightly bigger than the one with

a GBM which is a reasonable result since we need to refine more near the singularity

point.

Through our numerical results, we have shown that our hybrid adaptive MC for-
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Figure 3.4: Total computational cost for the hybrid adaptive SLMC algorithm with
the drift singularity problem and the binary option payoff.

ward Euler method has the optimal computational rate for first order numerical algo-

rithms for SDE. The problem with drift singularity, where the uniform time stepping

method is unable to meet the desired cost, is an example which proves the efficiency,

in terms of computational cost, of the hybrid adaptive method. In the next chapter,

we will extend the hybrid adaptive method to the multilevel Monte Carlo setting.
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Chapter 4

Hybrid Adaptive MLMC for SDE

In this chapter, we will introduce the MLMC method, which is a variance reduction

technique for the approximation of expected values depending on the solution of

SDEs. First, the standard uniform time stepping MLMC method, developed in [12],

will be presented. Then, the MLMC with hybrid adaptivity will be introduced to solve

the binary payoff problem for both plain GBM and drift singularity SDEs. The main

result, which will be presented in the numerical part, is the observed hybrid adaptivity

MLMC complexity O(TOL−2(log(TOL))2) for the considered non-smooth problems.

Finally, we will extend the hybrid adaptive MLMC forward Euler algorithm to the

multidimensional case and we show that the desired complexity again is reached.

4.1 The standard MLMC Method

The MLMC method based on uniform time steps was first introduced by Giles in [12].

He developed a clever type of variance reduction technique for the approximation of

an expected value of a quantity of interest. The idea of this method is to construct a

hierarchy of uniform grids with step sizes

∆t` = C−`∆t0
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where C ∈ {2, 3, ...} and ` ∈ 0, 1, ..., L. The smallest time step ∆tL is the time step

which will determine the bias error. Giles’ source of inspiration for the multilevel

algorithm from the multigrid method for the iterative solution of linear systems of

equations.

Instead of using the standard SLMC estimator, the idea is to use the following

telescopic sum

E[gL] = E[g0] +
L∑
`=1

E[g` − g`−1], (4.1)

where g` = g(X̄`(T )) and X̄`(T ) is a numerical approximation of X(T ) using the

forward Euler method on the mesh ∆t`. Hence, by generating {M`}L`=0 realizations

on each level ` and using the telescopic sum, the MLMC estimator Amlmc of E[gL] is

defined as follows

Amlmc(g(X̄L(T )) =

M0∑
i=1

g(X̄0(T ;ωi,0))

M0

+
L∑
`=1

M∑̀
i=1

g(X̄`(T ;ωi,`))− g(X̄`−1(T ;ωi,`))

M`

. (4.2)

An important feature of the MLMC estimator is that, for each ` > 0, the pairs

X̄`(T ;ωi,`) and X̄`−1(T ;ωi,`) in the expression g(X̄`(T ;ωi,`)) − g(X̄`−1(T ;ωi,`)) are

generated by the same Brownian path but on two different grids ∆t` and ∆t`−1,

respectively.

The computational cost for the MLMC algorithm using uniform time steps is

Total Cost =
L∑
`=0

M`

∆t`
. (4.3)

For a given tolerance TOL > 0, the main result in [12] is that the computational cost

to achieve a mean square accuracy of order TOL is reduced from O(TOL−3), in the
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single level setting, to O((TOL−1log(TOL−1))2) in the multilevel setting for the first

order forward Euler scheme. This cost is achieved when the contribution to the work

is of equal size on each level, that is

M`

∆t`
=
M0

∆t0
.

Hence, the number of realization on each level is computed as M` = M`−1/C. In the

rest of this work, C is chosen to be equal to 2.

4.2 Hybrid Adaptive MLMC

Many assumptions have been assumed in the work by Giles [12] to achieve the com-

plexity O(TOL−2(log(TOL))2). In order to control the strong convergence of the

forward Euler scheme and to ensure that it gives the right order 1/2, the payoff

function, for example, is assumed to be a Lipschitz continuous function. Another

assumption in the coefficients of the the SDE have been considered to ensure a first

order weak error in the forward Euler scheme (2.5).

The binary option payoff is an example where the standard MLMC does not work

since the Lipschitz condition is not valid. In the work by Avikainen [13], it is proved

that for the binary option, the forward Euler scheme has strong convergence strictly

less than 1/2 . This low convergence rate makes the MLMC algorithm more expensive

to control the variance, hence, the desired MLMC cost O(TOL−2(log(TOL))2) could

not be achieved. In [14], the authors solved the problem of the binary payoff in one

dimension by considering a higher order Milstein scheme. The aim of the present

section is to extend the hybrid method, introduced in Chapter 3, to the multilevel

setting and to show that, using some prior information, it will achieve the standard

MLMC computational cost O(TOL−2(log(TOL))2) with the forward Euler scheme

and without considering any higher order numerical method as in [14].
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Adaptivity in the multilevel setting is introduced in [15]. In that work, the a

posteriori MLMC algorithm was presented. The work in [15] was inspired from the

a posteriori adaptive SLMC method described in Chapter 2. The hybrid adaptive

MLMC algorithm, which will be introduced in this section, will be similar to the work

in [15], with the difference of considering the hybrid error expansion (3.7) instead of

the a posteriori expression (2.10). The accuracy condition for our case is

∣∣Amlmc(gδ(X̄L(T ))− E[gδ(X(T ))]
∣∣ ≤ TOL, (4.4)

where gδ is defined in Appendix B. The choice of the δ value will be discussed in the

numerical part. Again, for a given tolerance TOL, we split it into a time discretization

tolerance TOLT and a statistical tolerance TOLS as in (2.25). The global error (4.4)

is divided into two terms, the time discretization error εT and the statistical error εS

εT =
∣∣E[gδ(X(T ))]− E[gδ(X̄L(T ))]

∣∣ (4.5)

εS =
∣∣Amc(gδ(X̄L(T ))− E[gδ(X̄L(T ))]

∣∣ (4.6)

In the standard MLMC algorithm, the mesh hierarchy is easily constructed since the

mesh size is known. In our setting, these sizes are not known since we are using

adaptivity. One way to construct the mesh hierarchy is to successively increase the

accuracy. In other words, we consider a hierarchy of tolerances defined as follows

TOL` =
TOL0

2`
, for ` ∈ {0, 1, ..., L} (4.7)

and using our refinement procedure described in Chapter 3, the grid ∆t` is constructed

adaptively such that for each ` ∈ {0, 1, ..., L}

∣∣E[gδ(X(T ))]− E[gδ(X̄`(T ))]
∣∣ ≤ TOL`. (4.8)
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On the finest level L, we have would like to have TOLL = TOLT , which would ensure

that εT ≤ TOLT . Therefore, we choose the number of levels L as follows

L =

⌈
log2

(
TOL0

TOLT

)⌉
. (4.9)

The MLMC algorithm is constructed, as in the single level setting, with an inner and

an outer loop. Given an initial number of realizations M0, the number of samples on

the higher levels are chosen from the relation

M` =
M0

2`
. (4.10)

The outer loop uses the MLMC estimator (4.2) to control the statistical error εS. The

variance of the MLMC estimator is estimated through the sample variance

σ̂2
M =

νM0 [gδ(X̄0(T ))]

M0

+
L∑
`=1

νM`
[gδ(X̄`(T ))− gδ(X̄`−1(T ))]

M`

. (4.11)

While the stopping criterion (2.30) is not satisfied, the number of samples M0 is

doubled.

The inner loop consists on generating M` realizations of X̄`−1(T ) and X̄`(T ) by

constructing the corresponding grids ∆t`−1 and ∆t` to the accuracy TOL`−1 and

TOL` respectively. Since these pairs should be generated by the same Wiener path,

we start by constructing the grid ∆t`−1 to the accuracy TOL`−1 using the refinement

criterion (4.12). Then, we use Brownian bridge (see Appendix A) and (4.12) to

construct the ∆t`. It is important to ensure that the grid ∆t` on the level ` is

constructed in the same way as the grid ∆t` on the level `+1, for each ` ∈ {1, ..., L−1}.

For each realization on level `, the grid ∆t` is constructed iteratively from the

beginning t = 0 to the end tN = T . The criterion to accept a time step is the
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following

ρ(tn)∆t2n−1 ≤
TOL`
N̄`

, (4.12)

where N̄` denotes the approximate average number of time steps on level `. Until

(4.12) is satisfied, the time step is halved. The initial guess of the next time steps

is ∆tini = min(∆tmax, 2∆told) The implementation of the hybrid adaptive MLMC

method is described in Algorithms 5 and 6.

Algorithm 5 Hybrid Adaptive MLMC forward Euler Method
Inputs: M0, TOLS
Outputs: µ
Call Generate MLMC Realizations({M`}L`=0, TOLT , {N̄`}L`=0)
while (2.30) is not satisfied do

Update the average number of time steps N̄ .
Set M = 2M
Call Generate MLMC Realizations({M`}L`=0, TOLT , {N̄`}L`=0)

end while

4.3 Numerical Results

The hybrid adaptive MLMC algorithm is used in this section to present numerical

results. The binary option payoff will be used as a non-smooth observable. The

mollified version gδ of g is used in the numerical implementation. The same SDE

will be used as in the previous two chapters: GBM and drift singularity problems.

The problem parameters used in all the following simulations are: r = 0.05, σ = 0.2,

x0 = 0.9, K = 1 and T = 1.

As a motivation for the use of adaptivity on the binary option type of problems,

we will show numerically that the uniform time steps is not optimal, for the class

of first order weak error numerical methods, in this setting. This result was proved

theoretically in [13]. We consider a GBM type of SDE with the binary payoff. The
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Algorithm 6 Generate MLMC Realizations

Inputs:{M`}L`=0, TOLT , {N̄`}L`=0

Outputs: µ, σ̂2

Set µ = 0 and σ̂2 = 0.
for i = 1, ...,M0 do

Evaluate gδ(X̄0(T ;ωi,0)) by constructing the grid ∆t0 to the accuracy TOL0 using
the refinement criterion (4.12).
Set µ = µ+ gδ(X̄0(T ;ωi,0)).

end for
Set µ = µ/M0 and σ̂2 = νM0 [gδ(X̄0(T ))]/M0

for ` = 1, ..., L do
Set β = 0
for i = 1, ...,M` do

Evaluate gδ(X̄`−1(T ;ωi,`)) by constructing the the grid ∆t`−1 to the accuracy
TOL`−1.
Evaluate gδ(X̄`(T ;ωi,`)) by constructing the grid ∆t` using Brownian bridge
and the refinement procedure (4.12)
Set β = β + gδ(X̄`(T ;ωi,`))− gδ(X̄`−1(T ;ωi,`)).

end for
Set µ = µ+ β/M` and σ̂2 = σ̂2 + νM`

[gδ(X̄`(T ))− gδ(X̄`−1(T ))]/M`.
end for

algorithm for the standard MLMC is described in [12]. In Figure 4.1, the accuracy

plot is presented. It is clear that the accuracy condition (4.4) is met.

Figure 4.1: Global error for the standard MLMC algorithm with the GBM problem
and the binary option payoff.

Let us look on the complexity of the standard MLMC for this problem. In Figure
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4.2, the average computational cost is plotted against the tolerances. We point out

that the computational cost is not optimal. In other words, the standard MLMC

algorithm gives a cost larger than the standard MLMC cost for smooth problems.

Figure 4.2: Total computational cost for the standard MLMC algorithm with the
GBM problem and binary option payoff.

Due to this fact, the hybrid adaptive MLMC is instead used to recover optimal-

ity in the cost, O(TOL−2(log(TOL))2). At this stage, it is important to note that

two ways of the choice of the mollification parameter δ could be tried. Either δ is

independent of the level ` and chosen to be in relation with only the tolerance on

the deepest level L, i.e. δ = O(TOLL), or δ is dependent of ` and chosen according

to the relation O(TOL`). These two methods will not affect the convergence of the

algorithm since we conserve the telescopic property of the MLMC estimator. Neither

one of them will affect the order of the computational cost but the second method is

worthy to try since it is more flexible and it may further reduce the variance of the

MLMC estimator. Again we consider the GBM problem with the binary option. The

mollified payoff (see Appendix B) is used again. Using the Algorithms 5 and 6 we

get the results in Figure 4.3 and Figure 4.4. Figure 4.3 shows that the algorithm con-

verges with the right order of accuracy. The complexity of the hybrid adaptive MLMC

algorithm with the forward Euler scheme is shown in Figure 4.4. The novelty of this
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Figure 4.3: Global error for the hybrid MLMC algorithm with the GBM problem and
the binary option payoff.

result is that the computational cost has the desired order O(TOL−2(log(TOL))2).

This result shows the efficiency of adaptivity compared to the uniform stepping which

is optimal only using Milstein scheme, see [14].

Figure 4.4: Total computational cost for the hybrid MLMC algorithm with the GBM
problem and the binary option payoff.

The second SDE is the drift singularity problem. The standard MLMC does

not achieve the desired complexity in this case and the hybrid adaptivity is again

used. The accuracy plot is in Figure 4.5 where we can conclude that the algorithm is
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convergent with the right accuracy.

Figure 4.5: Global error for the hybrid MLMC algorithm with the drift singularity
problem and the binary option payoff.

The hybrid MLMC is again optimal, see Figure 4.6. The computational cost has

the desired MLMC complexity.

Figure 4.6: Total computational cost for the hybrid MLMC algorithm with the drift
singularity problem and the binary payoff.
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4.4 Multidimensional Extension

4.4.1 SDE Transformations

It is frequently the case that economic or financial considerations will suggest that

a stock price, exchange rate, interest rate or other economic variables evolve in time

according an SDE of the form (2.1). More generally, when several related economic

variables X1, X2,...,Xd are considered, the vector X = (X1, X2, ..., Xd) may evolve in

time according to a system of SDEs of the form

dXi = rXidt+
d∑
j=1

σijXjdWj, (4.13)

where W is a d-dimensional independent Wiener process and σ is the volatility matrix,

which represents the interaction between the stock prices. Using the hybrid adaptive

MLMC algorithm, the aim is to approximate the price E[g(Z(T ))] of an option written

on several underlying assets, g is the binary payoff and Z is defined as

Z = 〈X,w〉, (4.14)

where 〈, 〉 denotes the inner product in Rd and w is a weight vector whose elements

are equal to 1/d in this work. In this case, bounds in (3.7) are not easily derived

since the FP density of Z is not known. Therefore, a clever modification of the

multidimensional problem is instead used to reach our goal. First of all, we use Itô’s

formula on Z = 〈X,w〉 to get

dZ = rZdt+
d∑
i=1

wi

d∑
j=1

σijXjdWj. (4.15)
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The previous SDE has different noise sources, the first transformation is to represent

the evolution of Z by an SDE with only one noise source

dẐ = rẐdt+

√√√√ d∑
j=1

X2
j (

d∑
i=1

wiσij)2dŴ . (4.16)

Although the paths for (4.15) and (4.16) are different, the approximate SDE (4.16)

shares the same statistical properties as the original SDE (4.15). The one dimensional

SDE (4.16) could be now approximated by a GBM problem

dẐ = rẐdt+ σ̃ẐdŴ , (4.17)

where the constant σ̂ satisfies

σ̃ ≈

√∑d
j=1X

2
j (
∑d

i=1wiσij)
2

〈X,w〉
. (4.18)

The actual value of σ̃ can be estimated using a prior information of the actual ap-

proximate paths of X̄.

4.4.2 Implementation and Results

Transforming the multidimensional problem (4.15) into a one dimensional GBM (4.17)

will allow us to use the a hybrid error density (3.7) on the new GBM approximation

of the evolution of Z. In other words, the refinement process will be performed on

the one dimensional GBM (4.17). The implementation of the hybrid MLMC in the

multidimensional setting is similar to the implementation described in the previous

two sections with the following two modifications:

� The local error in the hybrid error density (3.7) is computed using the GBM

problem (4.17). The value of σ̃ in (4.18) is updated at each time step using
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the forward Euler scheme approximations of the underlying assets X, whose

components evolve in time according to (4.13).

� There are two alternatives to compute the bounds in the error density expres-

sion. Since σ̃ is not fixed and it should be updated in each time step, one may

choose to consider its lower bound which represent the worst case and then use

this value on the expression (3.11), or simply we may work with the dynamic

value of σ̃ and update the bounds (3.11) on each time step.

It is important to note that for each realization, we have d independent Wiener paths.

Besides, since the noise components are independent, Brownian bridges in the refine-

ment stage are performed independently to construct paths for Xi, i = 1, ..., d. In

numerical example given here, we will use the following volatility matrix

σ =


0.2 0 0

0.05 0.2 0

0.05 0.01 0.2

,

and the initial values : X1(0) = 0.9, X2(0) = 1 and X3(0) = 1. For the accuracy

plot, we need a reference value of the quantity of interest. In our numerical examples,

this reference value is computed using our adaptive algorithm with a tolerance value

smaller than the range of tolerances in consideration. In Figure 4.7, we plot the

global error function of the range of tolerances. We point out that the accuracy

condition is again satisfied. Then, we need to check the complexity of the algorithm.

In Figure 4.8, the total computational cost to achieve the accuracy condition is plotted

against the range of tolerances. It is clear from this figure that the desired complexity

O(TOL−2(log(TOL))2) is reached for the multidimensional case also.

In this chapter, we have extended the hybrid adaptive algorithm to the mul-

tilevel setting. We have proved numerically the efficiency of the adaptive algo-
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Figure 4.7: Global error for the hybrid MLMC adaptive algorithm in 3D with the
binary option payoff.

Figure 4.8: Total computational cost for the hybrid MLMC adaptive algorithm in 3D
with the binary option payoff.

rithm compared to the standard one which fails to reach the expected MLMC com-

plexity for non-smooth problems. In other words, using the hybrid adaptive for-

ward Euler scheme, our method recovers the desired MLMC computational cost

O(TOL−2(log TOL)2), which to the best of our knowledge only has been obtained

for uniform time steps when applying higher order schemes. Extension to the mul-

tidimensional case is also performed through the solution of a nearby problem. The

desired optimal computational cost is also reached for this setting through the use of
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the new introduced MLMC adaptive method.
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Chapter 5

Summary

5.1 Conclusion

In this work, we have discussed different adaptive algorithms for the approximation,

with a desired computational cost, of an expected value depending on a solution of a

SDE and a low regularity observable. A modified version of the a posteriori adaptive

method in the SLMC setting has been presented. A mollification procedure with a

Gaussian kernel was applied to the non-smooth binary payoff. Numerical results using

the a posteriori adaptive SLMC forward Euler method have shown the non optimality

of this adaptive method. The reason for these unsatisfactory results is related to the

dual function computations which are sensitive to the mollification parameter. In

fact, realizations ending in a region near the strike K are characterized by a large

value of the error density, hence solving the dual problem backward will result in a

small time step.

A hybrid adaptive MC forward Euler method, based on the derivation of a new

error expansion, has been then developed. The idea behind this method is to introduce

prior information in the a posteriori error expansion. In fact, both expansions share

the same a posteriori local error, but the weights for the hybrid method are computed

a priori. Numerical results using the hybrid SLMC forward Euler algorithm have

shown the computational efficiency of this technique for the binary payoff with either
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GBM or drift singularity problems.

The desired complexity in the MLMC setting has also been recovered using an

extended version of the hybrid adaptive SLMC method. In this case also, the MLMC

hybrid adaptive technique is based on the new derived hybrid error expansion. The

construction of the mesh hierarchy and its implementation has been also described.

Numerical results have confirmed the computational optimality of the MLMC hybrid

technique for non-smooth observable and singular SDE coefficients.

Finally, the multidimensional case has been also discussed. A suitable transfor-

mation into a one dimensional case has been introduced. The novelty of the present

work resides on achieving the desired complexity, using the hybrid MLMC forward

Euler adaptivity, in the multidimensional case.

5.2 Future Research Work

A possible extension of the present work is to consider more challenging SDE prob-

lems modeling the evolution of financial instruments. Constant Elasticity of Variance

model (CEV) is a relevant model to try. CEV model is a generalized version of the

GBM problem where the notion of stochastic volatility is introduced and hence the

model is more likely to fit the market. Another important model is the Cox Ingersoll

Ross model (CIR) which describes the evolution of the interest rate and is used for

bounds pricing.

Both CIR and CEV model include little information compared to the GBM prob-

lem where the FP density was a priori known. Hence, the weights in the time dis-

cretization error expansion will not be found as straightforwardly as in the GBM case.

Therefore, an approximation procedure to compute the weight functions needs to be

developed for the CEV, the CIR and more other complicated models.
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APPENDICES

A Brownian Bridge Interpolation

Let us consider the Wiener path W = (Wt1 ,Wt2 , . . . ,Wtn) which has the PDF

pW (x) =
1√

(2π)n|Σ|
e−

1
2
xTΣ−1x

with covariance matrix Σ ∈ Rn×n where Σ(ti, tj) = min(ti, tj). The structure of the

Cholesky factorized
√

Σ is particularly simple

√
Σ =



√
t1 0 . . . 0

√
t1
√
t2 − t1

. . . 0

...
...

. . . 0

√
t1
√
t2 − t1 . . .

√
tN − tN−1


.

Through a simple computation, we can easily show that

Σ−1/2 =



1√
t1

0 . . . 0

− 1√
t2−t1

1√
t2−t1

. . . 0

0 − 1√
t3−t2

1√
t3−t2

0

0 0 . . . . . .


,
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and hence the PDF of W can be written as

pW (x) =
1√

(2π)n|K|
e−

1
2

(K−1/2x)T (K−1/2x)

=
1√

(2π)n|K|
e
− x21

2|t1| e
− (x2−x1)

2

2(t2−t1) . . . e
− (xn−xn−1)

2

2(tn−tn−1) .

Suppose we want to add one more element vector at a time tm < t∗ < tm+1:

W ∗ = (Wt1 ,Wt2 , . . . ,Wtm ,Wt∗ ,Wtm+1 , . . . ,Wtn).

The Brownian bridge is then defined as the conditional distribution of W (t∗)|W . Con-

sidering x∗ = (x1, x2, . . . , xm, x∗, xm+1, . . . , xn), and letting Σ∗ denote W ∗’s covariance

matrix, we have that

pW (t∗)|W (x∗) = pW ∗(x
∗)/pW (x)

=

1√
(2π)n+1|K∗|

e
− x21

2|t1| . . . e−
(x∗−xm)2

2(t∗−tm) e
− (xm+1−x∗)

2

2(tm+1−t∗) . . . e
− (xn−xn−1)

2

2(tn−tn−1)

1√
(2π)n|K|

e
−

x21
2|t1| . . . e

− (xm+1−xm)2

2(tm+1−tm) . . . e
− (xn−xn−1)

2

2(tn−tn−1)

.

By a simple computation, we get

p(Wt∗ | ~W = x∗) =
1√

2π (tm+1−t∗)(t∗−tm)
(tm+1−tm)

e
− (tm+1−tm)

2(tm+1−t∗)(t∗−tm)

(
x∗−

(
xm+ t∗−tm

tm+1−tm
(xm+1−xm)

))2
,

and we conclude that for tm < t∗ < tm+1,

Wt∗|W ∼ N
(
Wtm +

t∗ − tm
tm+1 − tm

(Wtm+1 −Wtm),
(tm+1 − t∗)(t∗ − tm)

tm+1 − tm

)
.

So we see that the interpolation value Wt∗|W only depends on nearest neighbors, i.e.,

pWt∗ |W = pWt∗ |(Wtm ,Wtm+1 ).
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B Mollified Binary Payoff

Function

The window function wδ is defined by

wδ(x) = 1−δ≤x≤δ.

A first order differentiable kernel is obtained by

Hδ = wδ ∗ wδ.

In fact, once we do the convolution we determine a scaling factor such that φδ verifies

the property of a density. Then, we obtain

Hδ(y) =


0, if |y −K| > δ,

1−|y−K|δ−1

δ
, else.

To obtain a twice differentiable kernel function, we convolve the window function

with itself three times

Hδ = wδ ∗ (wδ ∗ wδ).
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The result of the convolution is then scaled to construct a kernel with compact support

in [−δ, δ]

Hδ(y) =



0, if |y −K| > δ,

3
2δ
− 2

δ2
(y −K)− 2

δ3
(y −K − δ/2)2, if 0 ≤ y −K ≤ δ

2
,

3
2δ
− 2

δ2
(y −K) + 2

δ3
(y −K − δ/2)2, if δ

2
≤ y −K ≤ δ,

3
2δ

+ 2
δ2

(y −K) + 2
δ3

(y −K + δ/2)2, if − δ ≤ y −K ≤ − δ
2
,

3
2δ

+ 2
δ2

(y −K)− 2
δ3

(y −K + δ/2)2, if − δ
2
≤ y −K ≤ 0.

The approximate function which is the convolution of the kernel and the Heaviside

function is then

gδ(x) =



0, if x < K − δ,

1, if x > δ +K,

5
12

+ 3
2δ

(x−K)− 1
δ2

(x−K)2 − 2
3δ3

(x−K − δ/2)3, if 0 ≤ x−K ≤ δ
2
,

5
12

+ 3
2δ

(x−K)− 1
δ2

(x−K)2 + 2
3δ3

(x−K − δ/2)3, if δ
2
≤ x−K ≤ δ,

7
12

+ 3
2δ

(x−K) + 1
δ2

(x−K)2 + 2
3δ3

(x−K + δ/2)3, if − δ ≤ x−K ≤ − δ
2
,

7
12

+ 3
2δ

(x−K) + 1
δ2

(x−K)2 − 2
3δ3

(x−K + δ/2)3, if − δ
2
≤ x−K ≤ 0.
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