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Abstract

In this report, we study, using real data from the market, the impact of the uncertainty

in the volatility on the European options pricing and hedging strategy in the single asset

and the multi assets case. This effect was measured and quantified by using a variety of

methods mainly Polynomial Chaos, Monte Carlo and sparse grid. These methods provide

a means of computing the variables of interest statistics such as the expected value, the

variance and the density estimation. Numerical tests show that Polynomial Chaos in

the 1D case as well as sparse grid in the multidimensional case yield results with high

precision and relatively less computational time than the standard Monte Carlo method.

Key words

European options, uncertainty quantification, volatility, pricing, hedging strategy, Monte

Carlo, Polynomial Chaos, sparse grid.
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Résumé

Dans ce rapport, nous étudions, en utilisant des données réelles du marché, l’impact de

l’incertitude de la volatilité sur la tarification des options européennes ainsi que la stratégie

de couverture dans le cas monodimensionnel et multidimensionnel. Cet effet a été mesuré

et quantifié en utilisant une variété de méthodes principalement les polynômes de chaos,

Monte Carlo et la grille clairsemée. Ces méthodes fournissent un moyen pour le calcul

des statistiques des variables d’intérêt tels que l’espérance, la variance et l’estimation de

densité. Les tests numériques montrent que la méthode des polynômes de chaos dans le cas

monodimensionnel ainsi que la grille clairsemée dans le cas multidimensionnel fournissent

des résultats avec une grande précision et un temps de calcul relativement moins en les

comparant à la méthode standard de Monte Carlo.

Mots clés

Options européennes, quantification de l’incertitude, volatilité, stratégie de couverture,

Monte Carlo, polynômes de chaos, grille clairsemée.
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Chapter 1

Introduction

1.1 Uncertainty Quantification

Mathematical models are used to simulate a wide range of systems and processes in many

fields such as engineering, physics, chemistry and finance. These systems are subject to

a wide range of uncertainties. The effects of this uncertainty should be followed through

the system meticulously enough to permit one to estimate their effects on the intended

use of the model usually related to forecast the simulation outputs.

In deterministic modeling, complete knowledge of input parameters is assumed. This

leads to simplified and tractable computations and produces simulations of outputs that

correspond to specific choices of inputs. However, most physical, biological, economical

and financial processes contain uncertainty.

Though the model equations may be deterministic, it may not be possible to rely on

a single deterministic simulation because the input data are not precisely known or are

known to admit intrinsic variability. Consequently, the inputs are replaced by random

variables in the corresponding mathematical models. It is imperative to incorporate

uncertainty from the beginning of the simulations.

The impact of uncertainty in data such as parameter values and initial and boundary

conditions has been considered much less in classical numerical analysis. The goal of

uncertainty quantification is to investigate the impact of such uncertainty in data and

subsequently to provide more reliable predictions for practical problems.

Uncertainty quantification in computational science and engineering is a quite new

area aiming at developing methods to describe quantitatively the origin and the impact

of model uncertainty on outputs from the model. It bridges several disciplines including

statistics, numerical analysis, and computational science.

Uncertainties are in general represented in terms of probability density functions or

intervals. The uncertainty in the inputs is then propagated through the mathematical

model into the uncertainty of the output quantity of interest, the goal of the computation.

In a general framework, probability density is unknown most of the time, thus, a model
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should be build and tested against real data in order to improve the a priori input

probability density assumptions.

In computational models, the quantification of uncertainties consists of three major

phases [?]:

1. Model calibration: the input parameters are characterized by their probability

distributions.

2. Uncertainty propagation: the variability in the input is propagated to the output

3. Output prediction: the outputs are characterized in terms of their statistical

properties.

In the model calibration phase, we identify the uncertain parameters we need to

take into account. These parameters are known as stochastic input variables or random

coordinates. After determining what parameters to consider, we need to describe them

by specifying their probability distributions. This step can be realized by using a prior

knowledge and/or experimental observations.

In the uncertainty propagation phase, the uncertainty coming from the stochastic

inputs are transmitted to the outputs. In general, the uncertainty propagation entails

solving a problem usually more complicated than the original deterministic problem.

Many methods exist in the literature and we will be discussing them in the next chapter.

In the last phase, we find output prediction where the outputs are characterized in

terms of their statistical properties such as mean, variance, higher statistical moments,

probability density function, tail probability and confidence interval.

1.2 Generalities on option pricing

An option is a derivative instrument giving the holder the right, but not the obligation to

buy or sell (whether it is an option to buy or sell) a certain amount of a financial asset at

an agreed date and at a price fixed in advance. Precise description of an option is based

on the following characteristics:

• The nature of the option: Call for an option to buy and Put for an option to sale.

• The underlying asset on which is written the option: in practice, it may be a stock,

bond, currency etc,...

• The amount: the quantity of underlying assets to buy or sell.

• The maturity: the expiration date which limits the lifetime of the option. If the

option is exercised at any time prior to maturity, it is called American option. If the

option can be exercised only at maturity, it is called European option.
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• The strike: the price, fixed in advance, as the transaction cost in case of exercise of

the option.

The option itself has a price, called the premium. When the option is traded on an

organized market, the premium is given by the market. In the absence of trading, the

problem of calculating the premium arises. And even for an option listed, it may be

advantageous to have a formula or model to detect any abnormalities in the market.

The vendor of the option has to answer two main questions:

1. How much should the buyer of the option pay, in other words how to assess at time

t = 0 the richness available at time T? This is the pricing problem.

2. How the vendor who receives the premium at time t = 0 will manage to produce

wealth at time T? This is the hedging problem.

Options have become extremely popular and the reasons behind that can be

summarized in these two points:

• Options are attractive tools for investors both for speculation and hedging.

• Their price can be determined; therefore their trading can be done with a certain

confidence.

In the literature, we could find a variety of models that helps us to answer these two

questions. However, the most famous mathematical model in the options market is the

Black and Scholes model introduced in the early 1970’s [?]. The theory developed in

the seventies by Black, Scholes and Merton has revolutionized the world of finance and

boomed the operating options markets. In fact, they were the first to propose a model

leading to an explicit formula for the price of a European Call option on a stock that

does not pay dividend and to determine a hedging strategy allowing the option seller to

be hedged perfectly.

Since we will be interested mainly in European contingent claims, we will be using the

Black and Scholes model in the 1D case and trying to adapt it in the multidimensional

case for the pricing and hedging of the European basket option.

1.3 Project framework

1.3.1 Objectives

The aim of the project is to quantify the uncertainty existing in the volatility on the option

pricing and hedging strategy in the case of European options. In fact, we start by a simple

case study in 1D when we deal with a Call option. In this case, we used Polynomial Chaos

as well as Monte Carlo method. The second part of the work is a generalization to the

multidimensional case when we tackle the problem for a basket option.
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1.3.2 Related work

In the literature, the concept of volatility has been modeled either as a random variable

or as a stochastic process. Some of the early works on stochastic volatility models could

be found in [?], [?] and [?]. The first paper with efficient results on modeling stochastic

volatility is the one written by Stein and Stein [?]. The second approach is when the

volatility is rather represented as a random variable. In this way, the random variable

reproduces the stochastic behavior of the volatility, which usually happens when this

parameter is estimated by historical data. The choice of the distribution can be done by

fitting the estimated density of the volatility.

In our study, we will rather choose the second approach. The outcome of our work

consists on computing the statistics of the option price as well as the hedging strategy

which can be obtained approximately by a Monte Carlo simulation.

However, a sufficiently accurate result requires a huge number of simulations. To

overcome this issue, we will be using two methods: Polynomial Chaos in 1D and sparse

grid in the multidimensional case.

Polynomial Chaos was first introduced by Wiener [?] in the case of uncertain inputs

with Gaussian distributions. This result was extended by Cameron and Martin [?] for

arbitrary random fields.

Apart from Monte Carlo, sparse grid is one of the methods that knew a success

to overcome the curse of dimensionality. In its basic form, the method was originally

implemented by Smoylak [?].

1.3.3 Contributions

In this thesis, our contribution resides essentially in the multidimensional case, i.e.

quantifying the uncertainty in the covariance matrix by using the Wishart distribution

and measuring the effects of this uncertainty on the European basket price and hedging

strategy. Another main contribution is using the sparse grid coupled with the dimension

reduction technique which enabled us to reduce significantly the computational cost of

our simulations.

1.3.4 Structure of the thesis

In Chapter 2, we will start by quantifying the effects of the uncertainty in the case of

vanilla options. Then, the work will be extended in Chapter 3 to the multidimensional

case where the option is written on several underlying assets. Finally, Chapter 4 contains

the numerical tests and the main results of the thesis regarding both the 1D and the

multidimensional case.
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Chapter 2

Uncertainty quantification in vanilla

options

The formula of Black and Scholes contains two sources of uncertainty: the volatility

and the risk free rate. Options generally have a short maturity and thus the uncertainty

coming from the risk free rate is negligible comparing to the one coming from the volatility

parameter.

The uncertainty in the volatility causes uncertainty in the option price. In this chapter,

we will try to quantify and understand the effect of the volatility uncertainty on the option

price and Delta hedging strategy in the case of European Call option.

In our study, we preferred to start by a simple problem in the 1D case mainly because

we wanted to focus on the uncertainty quantification objective and not to be distracted by

the option pricing problem. Once we get satisfying results in the 1D case, a generalization

to the multidimensional case should be smooth.

2.1 Uncertainty quantification: A review of literature

The uncertainty can be quantified by using deterministic or probabilistic methods. A

good review of the literature is given in [?]. In this section, we present briefly these

methods.

In the deterministic methods, we find essentially the interval analysis and the

sensitivity derivatives methods. Monte Carlo, the moment methods and Polynomial Chaos

are the common probabilistic methods used in the uncertainty quantification analysis.
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2.1.1 Interval analysis

This method is known also by the name of worst case analysis. In fact, we suppose

that the model input lies in an interval that presents all its possible values. In this way,

the output consists of all the results performed on the values of the model’s inputs and

therefore it has a bounded value.

This method was introduced in finance via the uncertain volatility model by Avellaneda

et al in [?]. In fact, one assumes that volatility parameters lies within two values σmin

and σmax. By solving a non linear variation of the PDE of Black and Scholes, Avellaneda

et al determined the worst case option prices defined as follows:
Vmin(S, t) = min

σmin≤σ≤σmax
V (S, t;σ)

Vmax(S, t) = max
σmin≤σ≤σmax

V (S, t;σ)

Where V is the option price for a given value of σ, t is the current time and S is the price

of the underlying at time t.

Using only the interval where the input exists gives little information about the model

output. In fact, the method sets all the possible values that the output could take without

specifying which value is more likely to be the most occurring.

2.1.2 Sensitivity derivatives

In finance, the sensitivity derivatives method has known a wide success. Actually, this

comes essentially from the wide use of the Greeks of an option. These Greeks are various

partial derivatives with respect to a parameter of interest.

If the output u depends on a set of independent variables (xi)i=1,..,n having an error

(∆xi)i=1,..,n associated with it, then a deterministic approximation to the output error,

∆u is given by:

∆u '

[
n∑
i=1

[
(
∂u

∂ξi
)i

]2

∆ξ2
i

] 1
2

Being a local operator, partial derivatives gives the local dependence of a model on a

parameter rather than the global uncertainty of the model. It allows quantifying how the

output variability depends on the model inputs.

The success of this method is due in a great part to its dependence on the mathematical

formulation of the model rather than the input data collection. However, the sensitivity

derivatives do not offer the possibility to predict the output behavior in response to the

uncertainty existing in the input.
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2.1.3 Monte Carlo

The basic idea behind the standard Monte Carlo method consists on following the next

steps:

1. To sample input random variables from their known or assumed probability density

function.

2. To calculate deterministic output for each sampled input value.

3. To determine the statistics of the output’s distribution, e.g: mean, variance,etc...

For the statistics calculation, the integrals are approximated by finite sums. In fact,

for a given function g, the Monte Carlo method consists on generating M number of

realizations of g(X(s)) and then approximates the value of E[g(X(s))]:

E [g(X(s))] ≈
M∑
i=1

g(X(s;ωi))

M

The Monte Carlo method converges to the exact solution as the number of samples

goes to the infinity. However, the rate of convergence of this method is relatively slow

since it is of the order of 1√
M

.

2.1.4 Moment methods

Suppose that Y = F (X) where F is a function from Rn to Rm and X = (x1, , xn) is a

vector of Rn . The method is based on a Taylor expansion of the function F about the

input mean µX . In general, since the resulting system of equations becomes very complex

for higher order, the second order expansion is employed.

For k = 1, ..,m, the second-order Taylor approximation of F is given by:

Fk(X) ≈ Fk(µX) +
n∑
i=1

∂Fk(µX)

∂xi
(Xi − µi) +

1

2

n∑
i=1

n∑
j=1

∂2Fk(µX)

∂xi∂xj
(Xi − µi)(Xj − µj)

From this approximation, one can compute the output statistics mainly the expected

value and the variance as follows:

- The mean approximation:

µY = E[F (X)] ≈

(
Fk(µX) +

1

2

n∑
i=1

∂2Fk(µX)

∂x2
i

σ2
i

)
k=1,...,m

- The covariance Approximation:

cov(Yk, Yl) = E[(Fk(X)− µYk)(Fl(X)− µYl)] ≈
n∑
i=1

∂Fk(µX)

∂xi

∂Fl(µX)

∂xi
σ2
Xi
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2.1.5 Polynomial Chaos

Polynomial Chaos (PC) is a method used to represent uncertain input quantities as

random variables. The term “Chaos” is related to the uncertainty existing in the input

characterization whereas “Polynomial” refers to the use of polynomial expansions to

propagate uncertainties.

Any random variable having a finite variance could be modeled by a finite sum of

polynomial expansion. The family of polynomials used in the representation satisfies the

orthogonality condition with respect to the input probability density function.

The basis of polynomials used to represent the output serves as a tool to enable the

computation of its statistics, computed generally using PC coupled with MC. Depending

on the solver speed, the PC/MC method is much more faster than crude MC method.

A more detailed presentation of Polynomial Chaos is the subject of the following

section of this chapter. At the end of this brief revue of literature, we chose Polynomial

Chaos to represent the uncertainty in the 1D case. This choice is justified mainly for two

reasons:

• Our aim to characterize the output of the pricing model guides us to choose a

probabilistic rather than deterministic method.

• The PC methods provide the same results for the output statistics as the standard

MC method but it is significantly faster.

In our study, we will be using the Polynomial Chaos approach in the case of 1D for

pricing and hedging strategy for the European Call option. In the following section, we

will be given a detailed presentation on this technique.

2.2 Quantifying the uncertainty in European Call pricing

The first step is to model the parameters as random variables either by supposing that

they follow a certain distribution or by measuring the parameter and fitting the data.

We recall that in our work, the uncertain parameter of the model is the volatility.

When using polynomial chaos, one can choose either to use:

• Collocation methods, which are non intrusive methods based on sampling,

using interpolation techniques and projecting a set of deterministic simulations,

determined using selected sampled parameter sets, onto a polynomial basis.

• Intrusive methods known as Galerkin methods based on a Galerkin projection in

order to minimize the error of the truncated expansion and the resulting set of

coupled equations can be solved to obtain the expansion coefficients.
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In our work, we opted for collocation methods which seem to be better in terms of

error versus computational cost; in other words, these methods show better performances

than Galerkin methods for moderate error tolerances. Collocation is more interesting

since it has similar convergence rate than Galerkin but offers great flexibility when doing

a variety of tests, for further details see [?].

Therefore, we will use stochastic collocation in the Polynomial Chaos approximation

to represent the European Call price.

2.2.1 Basics of Polynomial Chaos

Let V(S,t;σ) be the price of the Call option. We begin by specifying the uncertainty in

the input parameter. Let ξ be the uncertain input which will replace σ in the Call price

expression. The uncertainty in ξ is determined by its probability density function (pdf)

ρ(x).

Our aim is to determine the statistics of the output V when the input ξ varies. For

this aim, we shall start by expressing the output V as a series of orthogonal polynomials

(ϕk)k∈N with respect to the pdf ρ(x) as follows:

V (S, t; ξ) =
∞∑
i=0

vi(S, t)ϕi(ξ) (2.1)

Since the number of terms of the expansion in 2.1 is infinite and for computational

reasons, the price of the option can be approximated by a truncated sum:

V (S, t; ξ) ≈
p∑
i=0

vi(S, t)ϕi(ξ) (2.2)

where p denotes the maximum polynomial degree of the series approximation and (ϕk)k∈N

is the kth polynomial of the basis having k as a degree.

Definition 1. (Inner product) Let (Ω,F,P) be a probability space and f and g two

measurable and square integrable functions on this probability space.

The inner product,denoted 〈., .〉, is defined as follows :

〈f, g〉 =

∫
Ω

f(ω)g(ω)dP (2.3)

When Ω = R, F the Borel measure and P has a probability density function ρ, the

expression 2.2 becomes:

〈f, g〉 =

∫
R
f(ω)g(ω)ρ(ω)dω (2.4)
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The polynomial basis family (ϕk)k∈N verifies the orthogonality condition, i.e.

〈ϕk, ϕj〉 =
∫
R ϕk(ξ)ϕj(ξ)ρ(ξ)dξ = δkj.

As one could remarks, each term of the composition is formed by a deterministic

coefficient vi and a random component ϕk(ξ). In fact, when applying the Polynomial

Chaos technique to a random variable, we obtain also a random variable.

The expression of the deterministic coefficients can be obtained using the orthogonality

condition as follows:

vi =
〈V, ϕi(ξ)〉
〈ϕi(ξ), ϕi(ξ)〉

=

∫
R V (S, t; ξ)ϕi(ξ)ρ(ξ)dξ∫

R(ϕi(ξ))2ρ(ξ)dξ
(2.5)

Theorem 1. Let X ∈ L2(Ω,F,P) be a random variable expanded as a series of Polynomial

Chaos:

X =
∞∑
i=0

αiϕi(ξ) (2.6)

And we assume that ϕ0 = 1. In this case, we have:

E[X] = α0

V ar[X] =
∞∑
i=1

α2
i 〈ϕi(ξ), ϕi(ξ)〉

(2.7)

Theorem 1 is very useful since it permits to express the statistics of the random variable

X in terms of the deterministic coefficients (αi)i∈N.

2.2.2 Construction of PC basis for a given density

In this section, we illustrate how to construct a basis of polynomials (ϕj)j∈N that are

orthogonal with respect to ω(x), a positive integrable weight function on a finite domain.

For the infinite domain case, ω(x) has to go to zero at ±∞ faster than any polynomial.

The construction is based on a standard three-term relation for orthogonal polynomials.

Theorem 2. Let ω(x) be a positive and integrable function defined on the domain [a, b]

for which there exists a collection (ϕj)j∈N of orthogonal polynomials with respect to ω(x)

and ϕj has degree j. Then, the (ϕj)j∈N satisfy a three-term recurrence relation given by:

xϕn(x) = dn,n+1ϕn+1(x) + dn,nϕn(x) + dn,n−1ϕn−1(x), n ∈ N∗ (2.8)

where:

dn,j =

∫ b
a
xϕn(x)ϕj(x)ω(x)dx∫ b
a
xϕ2

j(x)ω(x)dx
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The construction of the PC family requires to eliminate the dependency of dn,n+1

on ϕn+1. For this purpose, Gautchi [?] elaborated a number of numerical methods

for orthogonal polynomials construction. One of these methods is monic orthogonal

polynomials, i.e. the coefficient of the highest degree monomial is one.

In this case, dn,n+1 is automatically equals to one since both xϕn and ϕn−1 are monic.

Therefore, the three-term relation in 2.8 becomes:

ϕn+1(x) = (x− dn,n)ϕn(x)− dn,n−1ϕn−1(x), n ∈ N∗ (2.9)

Now, we could compute ϕn+1 from ϕn and ϕn−1.

For specific density, the PC basis is known. Dongbin Xiu [?] gives a summary of the

most known density functions and their associated PC basis. This summary is given in

table 2.1.

Table 2.1: Correspondence between the underlying random variable and their PC basis

Distribution PC basis Support

Continuous Gaussian Hermite R
Gamma Laguerre [0,∞[
Beta Jacobi [a, b]
Uniform Legendre [a, b]

Discrete Poisson Charlier {0, 1, 2, ....}
Binomial Krawtchouk {0, 1, 2, ..., N}
Negative binomial Meixner {0, 1, 2, ....}
Hypergeometric Hahn {0, 1, 2, ..., N}

2.2.3 Choice of the volatility distribution

In our 1D case, we take the assumption that the volatility is lognormally distributed. This

particular choice for the volatility density is going to be justified later on in the report.

Definition 2. X is a lognormal random variable if its logarithm is normally distributed.

Let the parameters µ and σ denote respectively the mean and standard deviation of the

variable’s logarithm, then we have: X = eµ+σZ with Z a standard normal variable.

The density function of X in this case is given by:

fX(x;µ, σ) =
1√

2πσx
e−

(log(x)−µ)2

2σ2 , x > 0. (2.10)

For the 1D case, we will assume that the volatility has a lognormal distribution with

mean µLN and standard deviation σLN . This assumption is justified by many reasons:

- The simplicity and feasibility of the lognormal density: It assures the positivity of

the uncertainty parameter, i.e. the volatility.
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- Previous studies assuming the same model, see [?].

- The empirical density of the volatility obtained from the real market data, see figure

4.1.

The statistics of the volatility can be written in terms of its logarithms statistics µ

and σ as follows:
E[X] = eµ+ 1

2
σ2

V ar[X] = (eσ
2 − 1)e2µ+σ2 (2.11)

Our aim now is to construct a family of PC that is orthogonal with respect to the density

of the lognormal random variable σ.

I.C. Simpson [?] specifies the three-term relation in the case of lognormal polynomials.

In fact, if we assume that µ and σ are respectively the mean and standard deviation of

the logarithm of the lognormal random variable then the relation 2.9 used to form the

PC basis is given by:

pn+1 = (an + xbn)pn − cnpn−1

where:

an = −µ[enσ
2

(eσ
2

+ 1)− 1]e(2n−1)σ
2

2

bn = 1

cn = µ2(enσ
2 − 1)e(3n−1)σ2

We verify that the polynomial that we constructed respect the orthogonality condition:

〈pi, pj〉 =

∫ ∞
0

W (x, µ, σ)pi(x, µ, σ)pj(x, µ, σ)dx = Hi(µ, σ)δij

where:

H0 = 1; Hi = µ2i

i∏
j=1

ejσ
2−1ei(3i−1)σ

2

2 , i ∈ N∗.

In fact, the first polynomials are given below:

p0 = 1;

p1 = x− µe
σ2

2

p2 = x2 − µe
3
2
σ2

(eσ
2

+ 1)x+ µ2e3σ2

However, the problem of the lognormal polynomial as Oliver G.Ernst and al. signaled

in [?] is that these polynomials, unlike the Hermite polynomials for instance, are not dense

in the space L2(Ω,F,P).

The density of the PC basis ensures that each element of V ∈ Ω can be expressed in a

unique way as an expansion of series of polynomials that converges to V . One can check

the density of the PC basis in the space L2(Ω,F,P) via the theorem of M. Riesz.
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Theorem 3. The polynomials (ϕk)k∈N are dense in L2(Ω,F,P) if and only if the

Hamburger moment problem is uniquely solvable for the distribution of ξ i.e. the

distribution function fξ of ξ is uniquely defined by the sequence of its moments:

E[Xn] =

∫
R
xnfX(x)dx

A classical example to demonstrate that the lognormal polynomials are not dense is

given in [?]. In fact, if we take a lognormal random variable ξ and a measurable function

g : R 7→ R satisfying the following assumptions:

• g is odd and 1-periodic.

• 〈g(log(ξ)), g(log(ξ))〉 <∞

For instance, we could take g(x) = sin(2πx). Then, for all k ∈ N we have:

〈ψk(ξ), g(log(ξ))〉 =

∫ ∞
0

ψk(x)g(log(x))fξ(x)dx = 0.

Proof. We have to demonstrate that:
〈
ξk, g(log(ξ))

〉
=
∫∞

0
xkg(log(x))fξ(x)dx = 0.

∀k ∈ N. We consider the following variables change y = log(x) for all k ∈ N. This

change yields: ∫ ∞
0

xk
1

x
√

2π
e
−(log(x))2

2 g(log(x))dx =
1√
2π

∫
R
ekye

−y2
2 g(y)dy

=
e
k2

2

√
2π

∫
R
e
−(y−k)2

2 g(y)dy

=
e
k2

2

√
2π

∫
R
e
−z2
2 g(z + k)dz

=
e
k2

2

√
2π

∫
R
e
−z2
2 g(z)dz

= 0

And therefore, for η = g(log(ξ)) ∈ L2(Ω,F,P), η 6=
∞∑
i=0

αiψi(ξ).

To overcome this issue, one could write the lognormal variable as an exponential of a

Gaussian and use Hermite polynomials as a PC basis. In this case, the expression of the

price becomes:

V (S, t; eZ) ≈
p∑
i=0

vi(S, t)ϕi(Z) (2.12)

where Z is the normal random variable associated to ξ and (ϕi)i∈N are Hermite

polynomials.
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2.2.4 Quadrature methods

For the integral computation, one should use quadrature rules to compute numerically

the value of the integrals. In our case, since the integral support is R, the most adequate

quadrature rule is Gauss-Hermite quadrature.

In the mathematical field of numerical analysis, quadrature methods are

approximations of the numerical value of an integral. In general, the calculation of the

integral is replaced by taking a weighted sum of a number of points in the field integration.

The quadrature methods consist on the approximation of the value of the following integral

I =
∫ b
a
f(x)ω(x)dx where a ∈ R ∪ {−∞}, b ∈ R ∪ {+∞} and ω : [a, b] 7→ R+ a weighting

function.

The integral I is approximated by the finite sum
n∑
i=1

ωif(xi) where (ωi)i=1,...,n are called

the coefficients or the weights of the quadrature and (xi)i=1,...,n are the points or the nodes

of the quadrature. The nodes are real, distinct, unique and are the roots of orthogonal

polynomials for the scalar product defined in 2.4 and n is the number of points used for

the integral estimation. The table 2.2 gives some of the main configurations of Gauss

quadrature.

Table 2.2: Correspondence between the weight function and their associated polynomials

Support Weight function Orthogonal polynomials

[−1, 1] 1 Legendre polynomials
[−1, 1] (1− x)α(1 + x)β, α, β > −1 Jacobi polynomials
[0,∞[ e−x Laguerre polynomials
[0,∞[ xαe−x, α > −1 Generalized Laguerre polynomials

R e−x
2

Hermite polynomials

In the rest of this section, we will be focusing on Gauss-Hermite quadrature since it

is the one we will be using during our computations. The quadrature rule in this case is

the following one: ∫
R
f(x)ω(x)dx =

∫
R
f(x)e−x

2

dx ≈
n∑
i=1

ωif(xi)

The nodes (xi)i=1,...,n are calculated as the roots of the nth Hermite polynomial Hn. For

the weights, their expression is given by the following formula:

ωi =
2n+1n!

√
π

[H ′n(xi)]2

The nodes and weights corresponding to a set of points are summarized in table 2.3.

Regarding the integration of f over R, we can simply apply the quadrature formula to

the function x 7→ f(x)ex
2
.
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Table 2.3: Nodes and weights of Gauss Hermite quadrature

Number of points Nodes Weights

2 0.7071 0.8862
−0.7071 0.8862

3 1.2247 0.2954
0 1.1816

−1.2247 0.2954

4 1.6506 0.0813
0.5246 0.8049
−0.5246 0.8049
−1.6506 0.0813

2.3 Quantifying the uncertainty in European Call hedging

Using the polynomial chaos technique enable us not only to develop simple expressions for

the statistics of the price(see theorem 1 above) but also for the Delta hedging parameter.

In hedging, Delta is a sensitivity parameter that measures the sensitivity of the option,

or more generally that of the portfolio to variations in the price at time t, i.e. ∆ = dV
dS

. In

the case of call option, ∆ = N(d1) and it varies between 0 and 1. The call option whose

underlying does not pay dividends will grow with the Delta value, i.e. Delta tends to 0

when the option is out of money and tend to 1 when the option is in the money. Using a

centered difference finite approximation, we could determine the statistics of Delta.

The expectation E[∆] is approximated by:

E

[
∂V (Si; ξ)

∂S

]
≈ E

[
V (Si+1; ξ)− V (Si−1; ξ)

2h

]
≈ E[V (Si+1; ξ)]− E[V (Si−1; ξ)]

2h

=
α0(Si+1)− α0(Si−1)

2h

where α0 is the first term in the series expansion in equation 2.6 , Si = ih + S0 and h

denotes the grid spacing. For Delta variance computation, we have:

V ar[∆] = E[∆2]− E[∆]2

≈ E

[
(V (Si+1; ξ)− V (Si−1; ξ))2

4h2

]
−
(
α0(Si+1)− α0(Si−1)

2h

)2
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E

[
(V (Si+1; ξ)− V (Si−1; ξ))2

4h2

]
≈ E

[
V (Si+1; ξ)2 + V (Si−1; ξ)2 − 2V (Si+1; ξ)V (Si−1; ξ)

4h2

]
=
E[V (Si+1; ξ)2] + E[V (Si−1; ξ)2]− 2E[V (Si+1; ξ)V (Si−1; ξ)]

4h2

≈ 1

4h2

p∑
k=0

[αk(Si+1)2 + αk(Si−1)2 − 2αk(Si+1)αk(Si−1)]

∫
R
ϕ2
k(ξ)ρ(ξ)dξ

=
1

4h2

p∑
k=0

[αk(Si+1)− αk(Si−1)]2 〈ϕk, ϕk〉

And finally, we get the following approximation for the variance of ∆:

V ar[∆] ≈ 1

4h2

p∑
k=1

〈ϕk, ϕk〉 [αk(Si+1)− αk(Si−1)]2

Being a random variable, the asset price S presents a potential risk. The owner of the

option would like to know how the price of the option is affected by the variation of the

underlying price. This measure is nothing but the option Delta.

The goal behind hedging is to assure that the value of the portfolio will stay the same

no matter how the asset price varies.

We will consider a portfolio consisting of a Call option and a certain amount of the

underlying. Let Πt = ∆tSt − Vt denotes the portfolio value at time t. We should note

that if ∆ does not depend on time, the value of the portfolio will be Delta-neutral, i.e.
dΠ
dS

= 0. However, this is not the case in the practice; that is why one should follow a

hedging strategy to ensure that the value of the portfolio will be risk free.

One of the known hedging strategies is the Delta hedging. As its name indicates, this

strategy relies essentially on balancing the value of the portfolio at discrete time using the

Delta of the option. In order to make the option risk free, we want to have a long position

of ∆ units of the underlying and a short position on Call option at all times t 6 T so that

the portfolio position at time t will be: ∆tSt − Vt.

At initial time, we borrow ∆0S0 from a bank account and use it to buy ∆0 units of the

underlying and since we will be receiving initially V0 for the option price, the portfolio

value at t = t0 is Π0 = ∆0S0 − V0. At this stage, our portfolio is Delta-neutral. However,

as time goes, the portfolio value changes and we should adjust the amount of stocks ∆.

In fact at t = t1, we hold the portfolio Π1 = ∆0S1−V1. We can easily check that at t = t1

we want to have the portfolio Π1 = ∆1S1 − V1. Therefore, in case ∆1 6= ∆0, we should

balance the portfolio value by buying the quantity ∆1 −∆0 of the underlying.

As needed, we can use the bank account to borrow or lend money. The portfolio

hedging must be rebalanced in the same way throughout all the period at discrete times.
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In the limit, as we increase the frequency of rebalancing, this creates a perfect hedge.

One of our study’s objectives is to be able to see how the uncertainty in the volatility

affects the Delta hedging strategy. To this end,we choose a number of hedging dates N

and time steps δt = T
N

where T represents the maturity of the Call option. We assume

that β0 = f(0;S0)− ∂f(0;S0)
∂S0

where f(t;S0) represents the Call value at time t and βt is

the bank account position value at time t.

At each instant t = nδt where n = 0, 1, ..., N − 1, we follow these steps:

• Compute the value ∆(t) = ∂f(t;S0)
∂S0

.

• Generate M paths for the underlying price S(nδt, ω).

• Generate the corresponding time discrete realizations for the processes αn = ∆(nδt)

and βn and the portfolio value Πn = αnSn + βnBn.

Our goal is to generate the portfolio value after settling the contract at time

t = T : ΠN = αNSN + βNBN and to draw the density of the tracking error defined as

eN = ΠN −max(SN −K, 0).

The tracking error measures the difference between the value of hedging strategy designed

to replicate the option value and the payoff of this option at maturity; it is therefore

an essential quantity if we want to assess the model risk that stems from applying the

standard Black-Scholes theory in markets.

A positive (negative) value of eN indicates that we made a profit(loss) on our hedge.

In the output prediction phase,we need to determine the density of the model outputs

(price, Delta, hedging strategy,...) in order to see how the uncertainty is propagated in

the model. For that, we will be using the kernel density estimation method.

2.4 Kernel density estimation

2.4.1 Basics

In statistics, kernel estimation or Parzen-Rozenblatt method is a non-parametric method

of estimating the probability density of a random variable. It is based on a sample of a

statistical population and allows estimating the density at any point of support. In this

sense, this method generalizes cleverly the estimation method with a histogram.

Suppose that we have an independent and identically distributed sample {x1, x2, ..., xn}
of a random variable x, then the kernel density estimator is:

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
Where K is the kernel, a function satisfying:
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-
∫
K(x)dx = 1.

-
∫
xK(x)dx = 0.

-
∫
x2K(x)dx = k2 <∞.

Here h is the bandwidth, a positive parameter which governs the degree of smoothing of

the estimate. Often, K is chosen to be the density of a standard Gaussian function:

K(x) =
1√
2π
e−

1
2
x2

Other examples of kernel functions can be found in table 2.4

Table 2.4: Examples of kernel functions

Kernel K(t)

Epanechnikov 3
4
√

5
(1− 1

5 t
2) for |t| <

√
5

0 otherwise

Biweight 15
16(1− t2)2 for |t| < 1

0 otherwise

Triangular 1− |t| for |t| < 1
0 otherwise

Rectangular 1
2 for |t| < 1
0 otherwise

The kernel method depends on the choice of the two parameters: the kernel function and

the bandwidth. Whereas the choice of kernel has little influence on the estimator, the

bandwidth choice has great affect on the smoothness of the density estimation. In fact:

- If h decreases to zero, we will under-smooth the density estimation.

- If h increases towards infinity, the density estimation will be over-smoothed.

2.4.2 Optimal bandwidth

Since the bandwidth has a significant impact on the density estimation, it should be

chosen optimally in order to minimize the total error in the estimate. The determination

of the optimal bandwidth requires the calculation of the accuracy of kernel estimators

mainly by determining the mean squared error (MSE). Let f̂(x) be the kernel estimator.

The expression of the MSE is given by:

MSE(f̂(x)) = E
[
(f̂(x)− f(x))2

]
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In order to measure globally the accuracy of the estimator, we calculate the mean

integrated squared error (MISE):

MISE(f̂) =

∫
R
MSE(f̂(x))dx

=

∫
R
(E[f̂(x)]− f(x))2dx+

∫
R
E
[
(f̂(x)− E[f̂(x)])2

]
dx

=

∫
R
Bias2(f̂(x))dx+

∫
R
V ar(f̂(x))dx

We can detect two sources incurred in the estimation which compose the expression of

MSE:

- The systematic error: the bias of an estimate.

- The random error: the variance of an estimate.

Now, we will try to develop the expression of each term. We begin by calculating the bias

of the estimate.

E[f̂ ] =
1

n

n∑
i=1

1

h
E

[
K

(
x− xi
h

)]
=

1

n

n∑
i=1

1

h

∫
R
K

(
x− t
h

)
f(t)dt

=
1

h

∫
R
K

(
x− t
h

)
f(t)dt

The variable transformation z = x−t
h

yields:

E[f̂ ] =

∫
R
K(z)f(x− hz)dz (2.13)

Expanding f(x− hz) to the second order around x gives:

f(x− hz) = f(x)− hzf ′(x) +
1

2
(hz)2f ′′(x) + ◦(h2). (2.14)

Now, we replace the Taylor expansion of f(x − hz) developed in 2.14 in the expression

2.13:

E[f̂(x)] =

∫
R
K(z)f(x)dz −

∫
R
K(z)hzf ′(x)dz +

1

2

∫
R
K(z)(hz)2f ′′(x)dz + ◦(h2)

= f(x)

∫
R
K(z)dz − hf ′(x)

∫
R
zK(z)dz +

h2

2
f”(x)

∫
R
z2K(z)dz + ◦(h2)

= f(x) +
h2

2
k2f

′′(x) + ◦(h2)
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Since Bias(f̂(x)) = E[f̂(x)]− f(x) then Bias(f̂(x)) ≈ h2

2
k2f

′′(x).

We remark that the bias tends to zero as h goes to zero.The bias depends also on the

variance of the kernel k2 and the second derivative of the function f , which represents the

curvature of the density at the point x. Now, we turn our attention to the computation

of the variance of f̂(x).

V ar[f̂(x)] = V ar

[
1

nh

n∑
i=1

K

(
x− xi
h

)]

Using the fact that (xi)i are independent, we get:

V ar[f̂(x)] =
1

(nh)2

n∑
i=1

V ar

[
K

(
x− xi
h

)]
where:

V ar

[
K

(
x− xi
h

)]
= E

[
K

(
x− xi
h

)2
]
−

(
E

[
K

(
x− xi
h

)]2
)

=

∫
R
K

(
x− t
h

)2

f(t)dt−
(∫

R
K

(
x− t
h

)
f(t)dt

)2

Therefore, the expression of the variance becomes:

V ar[f̂(x)] =
1

n

(
1

h2

∫
R
K

(
x− t
h

)2

f(t)dt−
(

1

h

∫
R
K

(
x− t
h

)
f(t)dt

)2
)

=
1

n

(
1

h2

∫
R
K

(
x− t
h

)2

f(t)dt−
(
f(x) +Bias(f̂(x))

)2
)

Substituting z = x−t
h

and using a first order Taylor expansion of f(x− hz), one obtains:

V ar(f̂(x)) =
1

nh

∫
R
K(z)2(f(x)− hzf ′(x) + ◦(h))dz − 1

n

(
f(x) + ◦(h2)

)2

The value of the variance can be approximated in the case of large value of n and small

h which is the most recurrent case. In fact, the expression of the variance in this case

becomes:

V ar(f̂(x)) ≈ 1

nh
f(x)

∫
R
K(z)2dz

We note that this variance decreases as h increases. Let j2 denotes the value of the integral∫
RK(z)2dz then the expression of MISE becomes:

MISE(f̂) ≈ 1

4
h4k2

2

∫
R
f ′′(x)2dx+

1

nh
j2
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In order to determine the optimal value of the bandwidth h, one should minimize

MISE. In fact, we calculate the first derivative of MISE with respect to h and we set

its value equal to zero in order to find the optimal bandwidth.

dMISE(f̂)

dh
= h3k2

2

∫
R
f ′′(x)2dx− 1

nh2
j2 = 0 (2.15)

By solving equation 2.15, we find the optimal bandwidth expression:

hopt =

(
j2

nk2
2

∫
R f
′′(x)2dx

) 1
5

We remark that the value of hopt depends on the kernel that we are going to choose. For

instance, if we denote by σ the standard deviation of the sample, the value of hopt when

using a Gaussian kernel turns to be equal to:

hopt =

(
4σ5

3n

) 1
5

Another issue that needs to be dealt with in the density estimation is what we call the

boundary effects. The calculations done so far assume that the density support is the

whole real line. We should remember that our aim is to estimate the density of the option

price and hedging strategy. Since the data set includes points that may be near to zero,

the chosen kernel especially if it is the normal one will stray into the region where x is

negative.

2.4.3 Boundary effects

In the literature, we could find a variety of methods that enables us to tackle the problem

of boundary effects. B.W Silverman discusses in [?] a couple of methods for density

estimation near the boundary. In this section, we will restraint our presentation to positive

random variables.

One way of doing this consists on estimating the density for positive value and setting

the estimator equal to zero for negative data. However using kernel density estimation in

this way, the density estimated will no longer be a probability density function. In fact,

kernel density estimation produces estimates whose integral is equal to the unity. Even

if we rescale the estimate so that it looks like a probability density, the weights of the

points near the boundary in the integral
∫∞

0
f̂(x)dx calculation will be undervalued.

We could also try to transform the initial set of data that we have and try to calculate

the initial estimator from the transformed one. For instance, Copas and Fryer (1980) [?]

proposed that we estimate the logarithms of the data. If ĝ denotes the estimator of the

logarithm of data then our initial estimator f̂ is given by f̂(x) = 1
x
ĝ(log(x)) for x > 0.
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The presence of the multiplier 1
x

could cause some difficulties around the point x = 0.

In our representation of the output density, we will be using rather another adaptive

method which is the reflection method. It consists on widen the set of initial

data by adding reflections of all the boundary points. Let S = {X1, X2, ..., Xn}
be our initial data structure. Using the reflection method, our set will be rather

S ′ = {X1,−X1, X2,−X2, ..., Xn,−Xn}. If f ∗ denotes the estimator of the data S ′, then

the estimator f̂ of the original data S can be given by putting:{
f̂(x) = 2f ∗(x) if x > 0

= 0 otherwise

In the usual case, the reflection estimator is set as:
f̂(x) =

1

nh

n∑
i=1

[
K

(
x−Xi

h

)
+K

(
x+Xi

h

)]
if x > 0

= 0 otherwise

A very useful remark to reduce the computational cost, especially if the set of data is

large, is to reflect only points near the boundary and not the whole data set. In fact, if Xi
h

is very large, the reflected point −Xi
h

will not have a significant effect in the computation

of f ∗(x) for x > 0. For instance, if K is the normal kernel there is no need to reflect

points Xi larger than 4h.
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Chapter 3

Uncertainty quantification in basket

options

Basket options are options whose payment at maturity is linked to a portfolio or basket

of underlying assets. They have the same characteristics as a standard option with the

difference that the underlying is rather a basket of several assets. Therefore, the exercise

price is based on the weighted value of the assets in the portfolio.

The underlying basket can be a weighted sum of any asset to the extent that all weights

are positive. Thus, we can find basket options on currency, commodity, equity or interest

rate. Our focus will be on pricing and hedging basket option on stocks.

Basket options have been developed in order to provide a hedging instrument that

would cost less than the standard hedging with several options on each of the assets

comprising the basket. Indeed, the premium for the option basket is usually lower than

the weighted sum of the cost of individual options. This comparative advantage in cost of

hedging is even more important that the correlations between the different components

of the basket are low. Thus, the option holder can see the rise of an asset counterbalance,

in whole or in part, the fall down of another.

3.1 Approximation methods for basket option pricing

Basket options are much more complicated to price than the standard options since their

value depends on the weighted sum of several correlated underlying assets. The main

theoretical reason behind this difficulty is that the weighted sum of correlated lognormal

random variables does not follow a lognormal distribution.

We assume that there is n underlying assets (Si(t))i=1,...,n that follow the risk-neutral

stochastic differential equations:

dSi(t) = (r − qi)Si(t)dt+ σiSi(t)dWi(t) (3.1)
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Here r is the risk-free rate, qi and σi are respectively the dividend rate and the volatility

of each asset. (Wi)i are Brownian motions with a correlation structure (ρij)ij between

them.

Let A(t) denotes the weighted arithmetic sum of the underlings, i.e. A(t) =
n∑
i=1

ωiSi(t).

Here, ωi represents the weight of each asset in the basket. Our interest is in pricing the

price of the basket option price. The Cox-Ross fundamental theorem of derivative pricing

(1979) [?] states that, in a complete market, the no-arbitrage value of the Call basket

option will be:

V = e−rTE∗[max(A(T )−K, 0)]

As one could notice, the value of the basket option is equal to its expected payoff

discounted at the risk-free rate where E∗ denotes the expected value with respect to the

risk-neutral probability density function.

In this section, we develop two types of methods for the valuation of basket Call option:

- The numerical methods mainly the Monte Carlo techniques.

- The analytical approximations.

3.1.1 Monte Carlo

Several authors suggest using the Monte Carlo simulations since they are usually very

effective to price multi assets European type contingent claims and can be adapted to any

problem of multidimensional integration.

When the random variable has a large variance, we need a large number of simulations

to achieve the desired accuracy. Thus, it is interesting to make transformations to reduce

the variance of the variable obtained. In our study, we will be mainly combining Monte

Carlo with two conventional variance reduction techniques: the control variates and the

antithetic variates.

a) Control variates

We want to estimate the integral I = E[Y ] and we know a random variable C with mean

µ and correlated with Y , this variable is called control variable.

For β > 0, we set Y (β) = Y − β(C − µ), so that we have E[Y (β)] = E[Y ] = I. The

variance will be in this case:

V ar[Y (β)] = V ar[Y − β(C − µ)] = V ar[Y ] + β2V ar[C]− 2βCov(Y,C) (3.2)

This variance can be less than V ar[Y ] if β is well chosen. The optimal choice of β is

obtained when:
dV ar[Y (β)]

dβ
= 0⇒ βopt =

Cov(Y,C)

V ar[C]
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In this case, the expression of the new variance could be found by replacing β by βopt in

the expression 3.2:

V ar[Y (βopt)] = (1− ρ2(Y,C))V ar[Y ] < V ar[Y ].

The method has two difficulties:

- We do not necessarily know a control variable C, that is to say one that has known

mean and is correlated with Y .

- Even if we know a control variable C, the optimal value β depends on the covariance

between C and Y which is often unknown and therefore must be estimated.

In our case, a control variate candidate is the geometric mean of the assets

C =

(
n∏
i=1

Si

)1/n

.

On one hand, the distribution of C is lognormal since the assets are lognormally

distributed. In fact, log(C) = 1
n

n∑
i=1

log(Si) and we know that the sum of normal

distributions is normal. Therefore, log(C) is normally distributed and thus C is

lognormally distributed. In this sense, one could easily calculate the statistics of C.

On the other hand, the geometric mean and the arithmetic one in this context are

much correlated; therefore, the reduction of variance is more significant in this case.

Since we do not know the values of Cov(Y,C) and V ar[C], we have to estimate βopt

as follows:

β̂opt =

n∑
i=1

(Ci − C)(Yi − Y )

n∑
i=1

(Ci − C)2

.

b) Antithetic variates

The basic idea of this technique is to generate N random variables Xi and build N

other variables Xa
i having the same probability density but negatively correlated with the

generated variables.

Let m̂a denotes the empirical mean. By applying the antithetic variates technique,

one obtains:

m̂a =
1

2N

n∑
k=1

(Xk +Xa
k )

Cov(Xk, X
a
j ) = −δkjσ2

k

In this case, we will obtain a variance reduction by a 1
4n

factor. The construction of the

new variables Xa
i depends on the distribution of the original sample. For instance, if X
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follows a normal distribution with parameters µ and σ then we could take Xa = 2µ−X
as an antithetic variate.

Although the Monte Carlo method is flexible enough to be adapted to the pricing of

basket options and allows calculating error bounds, it is relatively long to implement. An

alternative to this method is to move towards an analytical approximation of the basket

option price.

The key idea of analytical approximations is to replace the unknown distribution of

the underlying basket option with a distribution known in the literature and which has

attractive features and this by matching the moments of the two distributions. In this

report, we will restrict our study to the most known analytic approximations used in the

literature.

3.1.2 Beisser approximation

Exploiting the idea of Rogers and Shi (1995) [?] for Asian option pricing, Beisser (1999) [?]

provided an analytical approximation for the basket option price by conditioning on a

random variable Z and using Jensen’s inequality.

In this case, the price of basket Call option is nothing but the weighted sum of artificial

European Call prices:

E
[
(A(T )−K)+] = E

[
E
[
(A(T )−K)+ |Z

]]
> E

[
E
[
(A(T )−K|Z)+]]

= E

[(
n∑
i=1

ωiE [Si(T )|Z]−K

)+]

Here, the random variable is Z =
n∑
i=1

ωiSi(0)σiWi(T ).

We could note that in this case, all the conditional expectations E [Si(T )|Z] are

lognormally distributed with respect to one brownian motion W (T ). Hence, there exists

an x∗ such that:
n∑
i=1

ωiE [Si(T )|W (T ) = x∗] = K

By defining:

K̃i = E [Si(T )|W (T ) = x∗]

The event
n∑
i=1

ωiE [Si(T )|Z] > K is equivalent to E [Si(T )|Z] > K̃i for all i ∈ {1, 2, ..., n}.
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Using this argument, we conclude:

E

[(
n∑
i=1

ωiE [Si(T )|Z]−K

)+]
=

n∑
i=1

ωiE

[(
E [Si(T )|Z]− K̃i

)+
]

=
n∑
i=1

ωi

[
Si(0)N(d1i)− e−rT K̃iN(d2i)

]
where:

K̃i = Si(0)e

(
r− σ̃i

2

2

)
T+σ̃i

√
Tφ−1(F

Sl
)(K)

σ̃i =

σi
n∑
j=1

ωjσjρij√
n∑
i=1

n∑
j=1

ωiωjρijσiσj

d1i =
log
(
Si(0)

K̃i

)
+
(
r + σ̃i

2

2

)
σ̃i
√
T

and d2i = d1i − σ̃i
√
T for i = 1, ..., N

Here Sl = E

[
n∑
i=1

Si|Z
]

is a lower bound for
n∑
i=1

Si. FSl is the cumulative distribution

function of Sl and FSl(K) satisfies the following relation:

n∑
i=1

ωiSi(0)e

(
r− σ̃i

2

2

)
T+σ̃i

√
Tφ−1(F

Sl
)(K)

= K

3.1.3 Lognormal approximation

Gentle (1993) [?] was the first to propose an analytical approximation to price basket

options. He provided a new method based on the technique of Vorst (1992) [?] used for

the pricing of Asian options.

The idea is that as the weighted sum of lognormal random variables is unknown, Gentle

approximates the arithmetic sum of the assets in the basket by their geometric sum. The

geometric sum follows a lognormal distribution and can be easily integrated to calculate

the price of the option.

The idea behind the method consists on computing the first two moments of the

basket’s risk-neutral structure at maturity and then matching them to the lognormal

distribution.

To begin with, let’s define the pseudo-forward of the basket as F =
n∑
i=1

wiFi where

Fi = Si(0)e(r−qi)T .

Now, we introduce the variable A∗(T ) as the ratio of A(T ) to F . At this stage, we will

express the two first moments of A∗ in terms of the problem parameters. To do this, we
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need to know the expression of E[Si(t)Sj(t)]. Let’s consider the following differential:

d(Si(t)Sj(t)) = Si(t)dSj(t) + dSi(t)Sj(t) + dSi(t)dSj(t) (3.3)

Substituting the expression of dSi(t) and dSj(t) using the equation 3.1, taking expectation

on both sides in 4.12 and recalling that E[W ] = 0, we conclude that:

dE[(Si(t)Sj(t))] = (2r − qi − qj − ρi,jσiσj)E[Si(t)Sj(t)]dt

which leads through integration to:

E[(Si(t)Sj(t))] = Si(0)Sj(0)e[(2r−qi−qj−ρi,jσiσj)t]

Going back to the first two moments of A∗, we obtain easily:

E[A∗(t)] = 1

E[(A∗(t))2] =
1

F 2

n∑
i=1

n∑
j=1

ωiωjFiFje
σiσjρij

Now, we could compute the basket option price simply by using the moments-matched

lognormal probability density function. The approximate formula resembles the one of

Black Scholes in 1D with some modifications:

VBasket = e−rT [FN(d1)−KN(d2)]

where:

d1 =
log(F/K) + v/2√

v
, d2 = d1 −

√
v and v = log(M2)

Here, N(.) is the standard normal cumulative distribution function.

3.1.4 Reciprocal Gamma approximation

The choice of the inverse gamma distribution to approximate the sum of lognormal

variables is justified by the fact that Milevsky and Posner (1998a) [?] showed that in

the context of Asian options the sum of correlated lognormal random variables converges

at the limit to the inverse gamma distribution.

Given that there is some similarity between Asian options and basket options, the

authors applied the same technique to price the basket options.

We demonstrate how to value basket options by using the reciprocal gamma

distribution as the state price density function for the underlying stochastic variable.

This, in turn, allows us to obtain a closed form expression for the price of a basket option,

employing moment matching techniques.
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Definition 3. Gamma distribution

The density function of a gamma random variable X of parameters (α, β) is given by:

g(x;α, β) =
xα−1e−

x
β

βαΓ(α)
, x > 0

where (α, β) ∈ R∗+ and Γ(.) is the Gamma function.

Definition 4. Inverse Gamma distribution

The variable Y =
1

X
follows the inverse gamma distribution and its density is defined as

follows:

gR(y;α, β) =
e
− 1

yβ

yα+1βαΓ(α)
, y > 0

The moments of the inverse gamma random variable Y ∼ gR(α, β) are given by:

E[Y n] =
1

βn
n∏
i=1

(α− i)
, n ∈ N∗

Taking the two first moments and keeping the same notations as in the previous section,

one could write the following system of equations:
1

β(α− 1)
= 1

1

β2(α− 1)(α− 2)
= M2

(3.4)

Solving the system 3.4 will give us the following value of α and β:
α =

2M2 − 1

M2 − 1

β = 1− 1

M2

Using the inverse gamma distribution with these parameters, we can compute the price

of the basket option:

VBasket = e−rT
[
FG(

F

K
,α− 1, β)−KG(

F

K
,α, β)

]
Here, G(.) is the cumulative distribution function of the gamma distribution.

3.1.5 Ju’s expansion

Based on the idea that the weighted sum of lognormal random variables can be

approximated correctly by a lognormal distribution whose first two moments are identical
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to those of the true distribution, Ju (2002) [?] develops a more accurate approximation

using Taylor expansion.

Indeed, the author considers a Taylor series expansion of the ratio of the characteristic

function of the unknown sum of lognormal random variables, compared with the

characteristic function of the approximate lognormal random variable around a volatility

equal to zero. The underlying assets of the basket generally have volatilities different from

zero. In order to develop its Taylor series around zero volatility, Ju assumes a fictitious

market where all volatilities are multiplied by a parameter z.

In fact, using the same notations as in 3.1 , the assets’ prices are given by:

Si(t) = Sie
(r−qi−σ

2

2
)t+σiWi(t) , i = 1, ..., n

whereas in the fictitious market, the prices become:

Si(t) = Sie
(r−qi−z2 σ

2

2
)t+σiWi(t) , i = 1, ..., n

When z = 1, the author recovers the initial process of the underlying asset. Thus, Taylor

expansion around zero volatility means that the development is carried out around z = 0

till z6. This implies that the proposed model converges around small values of z.

Let A(z) =
n∑
i=1

ωiSi(z, T ) be the arithmetic mean with volatilities scaled by the

parameter z. Using the moments matching technique, we define the normal random

variable Y (z) with mean m(z) and variance v(z) such that the first two moments of eY (z)

match those of A(z).

The adequate parameters can be deducted in the same way as in section 3.1.3 with a

minor change by taking zσi instead of σi. In fact, we find the following expressions:

m(z) = 2log(U1)− 0.5log(U2(z))

v(z) = log(U2(z))− 2log(U1)

where:
U1 = A(0)

U2(z) =
n∑
i=1

n∑
j=1

FiFje
z2σiρijσjT

Let X(z) = log(A(z)),then its characteristic function is given as:

E
[
eiφX(z)

]
= E

[
eiφY (z)

] E [eiφX(z)
]

E [eiφY (z)]
= E

[
eiφY (z)

]
f(z)
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Whereas we know that E
[
eiφY (z)

]
= eiφm(z)−φ2 v(z)

2 , Ju performed a Taylor expansion

of f(z) up to z6:

f(z) ≈ 1− iφd1(z)− φ2d2(z) + iφ3d3(z) + φ4d4(z) (3.5)

where di(z) are polynomials of z and terms of higher order then z6 are ignored. The

expression of these polynomials could be found in Appendix I. The expansion 3.5 leads

us to approximate the term E
[
eiφX(z)

]
as follows:

E
[
eiφX(z)

]
= eiφm(z)−φ2 v(z)

2

(
1− iφd1(z)− φ2d2(z) + iφ3d3(z) + φ4d4(z)

)
For the characteristic function expression, an approximation of the density h(x) of X(1)

is derived as:

h(x) =

(
1 + d1(1)

d

dx
+ d2(1)

d2

dx2
) + d3(1)

d3

dx3
) + d4(1)

d4

dx4
)

)
p(x)

where p(x) is the normal density with mean m(1) and variance v(1):

p(x) =
1√

2πv(1)
e−

(x−m(1))2

2v(1)

The approximate price of a basket call is then given by:

VBasket = e−rT
(
U1N(y1)−KN(y2) +K

(
z1p(y) + z2

dp(y)

dy
+ z3

d2p(y)

dy2

))
where:

y = log(K)

y1 =
m(1)− y√

v(1)
+
√
v(1); y2 = y1 −

√
v(1)

z1 = d2(1)− d3(1) + d4(1); z2 = d3(1)− d4(1); z3 = d4(1)

Note that the first summand is equal to the lognormal approximation and the second

summand gives the higher order corrections.

3.2 Sparse grid

The interpolation method called sparse grid technique uses hierarchical bases functions

(piecewise linear or polynomial) defined on a set of points of a sparse grid. In fact, the

number of points used is reduced compared to the conventional interpolation methods.

This method belongs to the category of sparse approximation methods adapted to

large-scale problems. This interpolation uses Smolyak construction. It allows us to select

only part of the tensor products that defines the multivariate basic functions. In fact,
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we define a hierarchical approach in which the basic functions that have a small support,

i.e. a little contribution to the representation of the function to be approximated, are

neglected.

The method starts generally from a coarse grid to detect the most important directions

and refine these directions. In this section, we will start by presenting the case of full

grid then move on to sparse grid case. Our presentation is based essentially on the notes

of [?].

3.2.1 Full grid

Let’s consider the following univariate function f : [0, 1] 7→ R. We recall the sample

quadrature rule in 1D as follows:

I =

∫ 1

0

f(x)ω(x)dx ≈ Uk(f) :=

nk∑
i=1

ωi,kf(xi,k) (3.6)

The weights (ωi)i and nodes (xi)i are determined once the quadrature rule is specified. In

our case, since the integration is done over the real line R, we will choose to use Gauss-

Hermite quadrature rule.

In the multidimensional case, the first approach is to use the full grid or product method

approach to approximate the integral.

Let Id =
∫

[0,1]d
f(x)dx denotes the integral of f over the unit cube [0, 1]d. Our aim is

to approximate this integral.

The use of full grid consists on a simple product tensor of the univariate quadrature

rules. In the general case, if we have d functions f1, ..., fd of one real variable, the tensor

product is the procedure that builds a function f of d real variables:

f = f1 ⊗ ...⊗ fd

where f(x1, ..., xd) =
d∏
i=1

fi(xi).

As for the interpolation formula in dimension, it is obtained by applying the tensor

product for the approximation formula in Equation 3.6:

Ud,nf =

n1∑
i1=1

...

nd∑
id=1

ωi1,1...ωid,df(xi1,1, ..., xid,d) (3.7)

This classical multidimensional interpolation is defined for nodes of a grid having
d∏

k=1

nk

points. The implementation of the expression in Equation 3.7 could be computed via the

following algorithms:
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Algorithm 1 : Computation of product quadrature rule (3.7)

Inputs: p ∈ N,i ∈ Nd
Outputs: Pd,nf
Set If = 0
Set p = 1 and i = (1, 1, ..., 1)
while i 6= (0, 0, ..., 0) do
If = If + ωi1,1...ωid,df(xi1,1, ..., xid,d)
Determine the next i = (i1, ..., id) by algorithm 2.

end while

Algorithm 2 : Drop algorithm for the iterative enumeration of all product indices i = (i1, ..., id)

Inputs: p ∈ N,i ∈ Nd
Outputs: i ∈ Nd
while i 6= (0, 0, ..., 0) do
ip = ip + 1
if ip > np then

if p = d then
return (0, ..., 0)

end if
ip = 1
p = p+ 1

else
p = 1
return i

end if
end while
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The algorithm 3.2.1 provides an efficient way to calculate the following vector of indices

i = (i1, i2, ..., id).

The main problem with the full grid approach is that it suffers from the curse of

dimensionality. In fact, the number of points used in the grid increases exponentially

with the dimension and quickly makes the product method impractical.

To overcome this issue, one could use the sparse grid method instead which enables to

overcome to some extent the curse of dimensionality. Table 3.1 summarizes the number

of points used in the product method for a 4 points quadrature in the 2D case:

Table 3.1: Number of points of full grid

Dimension Number of points

4 256
5 1024
10 106

20 1018

3.2.2 Sparse Grid

We could define the following difference quadrature for the index k ∈ N:

∆1,k = U1,k − U1,k−1 with U1,0 = 0 for k > 1 (3.8)

For a multi-index k = (k1, ..., kd), the d-dimensional difference formula is the result of the

tensor product of the 1D formula in 3.8:

∆d,kf = (∆1,k1 ⊗∆1,k2 ⊗ ...⊗∆1,kd)f (3.9)

Now, let’s consider a multidimensional function f : [0, 1]d 7→ R. The integral Id in this

case is nothing but the infinite telescoping sum:

Id =
∑
k∈Nd

∆d,kf

This formula detects the product of all possible combinations of the univariate difference

formula. Here k = (k1, ..., kd) denotes a multi-index with kj > 0 for j ∈ {1, ..., d} and

∆d,kf is defined in 3.9.

The sparse grid approach known also as Smoylak algorithm consists on calculating the

integral Id for all the indices k ∈ Nd that have their norm |.|1 less than a certain upper

bound. To be more explicitly, we consider a level l ∈ N and we define the approximation
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for the integral Id for this level as follows:

SGlf =
∑

|k|16l+d−1

∆d,kf where |k|1 =
d∑
j=1

kj (3.10)

We remark that the expression 3.10 is very similar to the one of the product method with

a minor difference: the norm used in the product method approach is |.|∞ whereas in the

sparse grid, the norm is rather |.|1.

Keeping in the sum only tensor products corresponding to the indices satisfying

|i|1 6 l + d− 1, the Smoylak algorithm eliminates the tensor products of the basis

functions having the smaller supports and thus the lowest contributions to the integral

calculation.

A numerical example to illustrate Smoylak algorithm could be find in appendix II.

As we could observe Smoylak algorithm is a sort of sum of low order grids. Therefore,

the method uses much fewer points. The following figure illustrates this statement in the

2D case for the level l = 4:

Figure 3.1: Comparison between the number of points in full and sparse grid

In this case, while the product rule uses 577 points, the Smoylak algorithm employs 321

points. This difference becomes more obvious for large dimension. For instance, for the

3D case and level l = 5, the product rule uses 3713 points whereas the Smoylak algorithm

employs only 1023 points.

The expression 3.10 could be written in a different way in order to facilitate the

implementation of algorithms 3 and 4:

SGlf =
l+d−1∑
l=d

∑
|k|1=l

∆d,kf (3.11)
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Algorithm 3 : Implementation of the sparse grid method (3.11)

Inputs: p ∈ N,k, k̂ ∈ Nd
Outputs: SGlf
Set SGlf = 0
Set m = l + d− 1
for l = d, ...,m do

Set p = 1, k = (m, 1, ..., 1) and k̂ = (m,m, ...,m)
while k 6= (0, 0, ..., 0) do

Compute the product formula ∆d,k using algorithm 3.2.1.
SGlf = 0 = SGlf + ∆d,k

Determine the next index k using algorithm 4
end while

end for
return SGlf

Algorithm 4 : Drop algorithm for the iterative enumeration of all product indices k ∈ Nd,
kj > 0 with |k|1 = l

Inputs: p ∈ N,k, k̂ ∈ Nd
Outputs: k ∈ Nd
while k 6= (0, 0, ..., 0) do
kp = kp + 1

if kp > k̂p then
if p = d then
return (0, ..., 0)

end if
kp = 1
p = p+ 1

else
for j = 1, .., p− 1 do
k̂j = k̂p − kj + 1

end for
k1 = k̂1

p = 1
return k

end if
end while

We recall that the univariate quadrature rule used here is also the Gauss Hermite

quadrature since the domain of integration is the whole real line R.
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To illustrate the advantage of sparse grid on Monte Carlo method, let’s have a look at

the rate of convergence of both methods:

• The convergence rate of MC is 1√
n
. It is independent of the dimension d, but

relatively low and a huge number n of function evaluations is needed to achieve

a high accuracy.

• The convergence rate of the sparse grid in its simplest form is n−r(log(n))(d−1)(r+1)

where r is the degree of smoothness of the integrand.

Appendix III provides some numerical tests using the sparse grid method.

3.3 Uncertainty quantification in pricing

In the multidimensional case, the uncertainty lies in the covariance matrix. The work

done in the 1D case is generalized with some modifications. In fact, our approach will

consists essentially on calculating the following multidimensional integral:

E[F (ST )] = E[F ◦ h(WT ,Σ)]

=

∫
RK

∫
Rd
F ◦ h(WT ,Σ)ρ(W )dWρ(Σ)dΣ

(3.12)

Here F represents the function that expresses the payoff of the basket option in function

of the vector ST = (ST,1, ST,2, ..., ST,d) where d is the number of assets. In our case,

F (ST ) = max (
d∑
i=1

ST,i −K, 0). h is the function that expresses the vector ST in function

of the brownian motions vector WT and the covariance matrix Σ.

The equation 3.12 could be written in another form:

E[F (ST )] =

∫
RK

G(Σ)ρ(Σ)dΣ (3.13)

Here, G(Σ) could be seen as the approximation of the basket option price and the integral

could be calculated using the sparse grid technique explained in the previous section.

Before computing the value of the price of the basket represented by the integral

expression in equation 3.13, we should model the uncertainty in the covariance matrix.

Another issue to be taken into consideration is the dimension of the problem. In fact,

the integration parameter K is of the order of m2 where m is the size of the covariance

matrix. To overcome this problem, we shall present a technique that enables us to reduce

K and thus the computational cost.
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a) Modeling the uncertainty

The parameter of uncertainty in the multidimensional case is the covariance matrix.

One way of representing the uncertainty in the covariance matrix is to use the Wishart

distribution.

Definition 5. Wishart Distribution

Let W be a K ×K absolutely continuous random real matrix whose support RW ,the set

of all symmetric positive definite real matrices. Let Σ be a symmetric positive definite

matrix and n > K − 1. We say that W follows a Wishart distribution with parameters Σ

and n if its joint probability density function is:

fW (ω) =
[det(ω)]

n−k−1
2 e−

1
2
tr(Σ−1ω)

2
nK
2 [det(Σ)]

n
2 πK(K−1)

4

K∏
j=1

Γ(n+1−j
2

)

where Γ(.) is the Gamma function.

The Wishart distribution is a family of probability distributions on symmetrical

positive definite matrices, which is the case of the covariance matrix. So, a Wishart

random variable is a random matrix. Two parameters characterize this distribution:

- Σ: a symmetric and positive definite matrix.

- n: the degree of freedom.

The first parameter of this distribution represents in our study the covariance matrix,

i.e. the parameter which we want to represent as an uncertain quantity. The degree of

freedom depends essentially on the set of data used in the generation of the estimated

covariance matrix.

The statistics of the matrix W could be written in function of the ones of Σ:

- The expected value of W : E[W ] = nΣ.

- The covariance of W : Cov[W ] = 2nΣ⊗ Σ.

Here, ⊗ is the usual Kronecker product of matrices.

When generating a random matrix X using the Wishart distribution, the first parameter,

i.e. the symmetric and positive definite matrix is taken as the estimated covariance matrix

divided by the degree of freedom. The statistics of X are in this case:E[X] = Σ

Cov[X] =
2

n
Σ⊗ Σ

(3.14)
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b)Dimension reduction technique

In this section, we will try to present a technique to reduce the dimension of integration.

Before applying this method, we recall that the integration dimension was of the order of

m2 where m is the size of the covariance matrix.

The basic idea behind this technique is to apply the spectral decomposition to the

covariance matrix in order to determine its eigenvalues densities by following the next

steps:

• Using Wishart distribution, we generate a sample of random matrices having Σ

and n as parameters. This step enables us to incorporate uncertainty in the model

uncertain input, i.e. the covariance matrix.

• For each single matrix of the previous sample, we perform a spectral decomposition

and we store the corresponding eigenvalues.

• Using kernel density estimation technique and the stored eigenvalues, we estimate

the density of each eigenvalue.

• We approximate the density estimation using a parametric density function.

In this way, each time we need to calculate the integral, the covariance matrix will be

calculated using the spectral decomposition and taking into consideration the estimated

densities of the eigenvalues.

Using this technique enabled us to reduce significantly the integration dimension and

therefore to minimize the computational cost. In fact, the integration dimension dropped

from m2 to m.

For the density approximation and as this will be shown later on in the numerical tests

chapter, we approximate the eigenvalues densities using the normal distribution.

c)Price computation

In the calculation of the integral 3.12, we will follow essentially these approaches:

• Calculating the expression 3.12 via Monte Carlo using the variance reduction

techniques.

• Computing the formula 3.13 by using the analytical approximation to calculate G(Σ)

and then use either sparse grid or Monte Carlo methods.

• Using Moments method based on the Taylor Young expansion.

Since the two first approaches have been detailed in previous sections, we will be

concentrating in this section on the third technique.
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For a 1D function f , the Taylor Young expansion around the point x0 gives:

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 + ...+

f (n)

n!
(x− x0)n + ◦((x− x0)n+1)

(3.15)

In our case, we have V = ψ(Σ) where V is the basket option price and Σ is the covariance

matrix. Let Σ be a random matrix, i.e. Σij = Σij + ξij where Σij is the deterministic

component of Σij and ξij is a Gaussian random variable. The expression in equation 3.15

can be adapted to the case of scalar function of matrix with a few modifications.

In fact, the Taylor expansion of ψ around the point Σ up to the second order is given by:

ψ(Σ) = ψ(Σ) +
m∑
i=1

m∑
j=1

∂ψ(Σ)

∂Σij

ξij +
1

2

m∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1

∂2ψ(Σ)

∂Σij∂Σkl

ξijξkl (3.16)

Here we should note that Σ is nothing but the expected value of Σ. As it will be shown

later on in the numerical tests section, the price distribution is very close to a normal one.

Knowing that the terms beyond the third order of the Taylor expansion are negligible, a

second order expansion is sufficient.

The main aim behind using the moments method is to reduce the computational time

compared to Monte Carlo and sparse grid simulations. Although the method may not

yield good results in the general case. In our study, the results were quite satisfying.

Knowing the probability density function of the price is almost a Gaussian, one could

exploit the expansion in equation 3.16 in order to calculate the parameter of this density:

E[ψ(Σ)] = ψ(Σ) +
1

2

m∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1

∂2ψ(Σ)

∂Σij∂Σkl

Cov(ξij, ξkl)

V ar[ψ(Σ)] =
m∑
i=1

m∑
j=1

(
∂ψ(Σ)

∂Σij

)2

V ar(ξij)

Using the results of the system 3.14, we have:

Cov(ξij, ξkl) =
ΣijΣkl + ΣikΣjl

n

V ar[ξij] =
Σ2
ij + ΣiiΣjj

n

For the derivatives calculation, we will be using the finite difference method:

∂ψ(Σ)

∂Σij

=
ψ(Σ + Ih)− ψ(Σ− Ih)

2h

∂2ψ(Σ)

∂Σij∂Σkl

=
ψ(Σ + Ih,p)− ψ(Σ + Ih,−p)− ψ(Σ + I−h,p) + ψ(Σ + I−h,−p)

4hp
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where h and p are two infinitesimal constants and Ih is the matrix having null values in

all its elements except for the element Σij = h. The matrix Ix,y is the matrix with null

values in all its elements except for the elements Σij = x and Σkl = y.

Using the above equations, one can calculate the expected value and the variance of

the price option density. Taking into consideration the results of Monte Carlo and sparse

grid and knowing that the density is almost Gaussian, we could plot the price option

density as a normal one with the corresponding parameters found with the Taylor Young

expansion.

3.4 Uncertainty quantification in hedging

In this section, we will try to quantify the effect of randomness in the covariance matrix

on the hedging more precisely on the Delta.

From a practical point of view, the market makers use the Delta as a hedging ratio to

create an almost riskless portfolio to meet the nature of their activity. In a Delta-neutral

portfolio, any gain on the value of shares as a result of an increase in the price of the

underlying asset is offset by the loss on the value of sold Call options and vice versa. In

another words, this strategy consists in balancing the number of underlying assets to own

in order to hedge the variability of the option with respect to its underlying.

As in the 1D case, the Delta of a basket option has the same expression with a slight

modification. In fact, in the basket option case, the Delta is a vector rather than a scalar.

However, its components have the same definition as the 1D case where they represent

the derivative of the option price with respect to the ith stock price.

Using a centered difference finite approximation combined with Monte Carlo

techniques, we were able to calculate the statistics of the hedging parameter Delta and

represent its density. For instance, we have:

∂V

∂Si
=
V (Si + h)− V (Si − h)

2h

Our interest when it comes to hedging is to see the impact of the uncertainty in the

covariance matrix on the Delta hedging strategy. We will follow a similar approach to the

one detailed in section 3 of the chapter 2 with minor modifications.

In fact, both the underlying price and the Delta of the basket are no longer scalar but

rather a vector. In this case, the path generation is quite different from the 1D case since

we will need to take into consideration the correlation between the assets. This could be

done using a Cholesky factorization for the correlation matrix of the basket option.

Apart from these tiny modifications, the approach remains the same and our aim

behind the Delta hedging strategy is always to assure a free-risk portfolio against the

variations of the assets prices.
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Chapter 4

Numerical tests

4.1 Uncertainty quantification in vanilla options

In this section, we will try to expose and comment the main results that we obtained after

applying the Polynomial Chaos to the European Call option. We will try to compute the

statistics of the option price as well as those of the Delta hedging strategy.

4.1.1 Data presentation

To begin with, we shall present the data sample that we used to estimate the volatility

density. For the volatility computation, we were not able to calculate the implied volatility

since we did not have access to the option prices. However, we used historical data from

finance.yahoo.com for a study period going from 03 January 2000 till 31 December 2012.

The asset in question is the Volkswagen stock “VOW.DE” and we used a 10 days moving

window.

Clearly, we can notice from the figure 4.1 that the value of σ presents a certain

uncertainty. In fact, this value lies between a minimum σmin = 0.075 and a maximum

σmax = 6.52. For the statistics of σ, the volatility presents an average σ = 36.4% and a

standard deviation of std(σ) = 41.2%.

In this way, our purpose for the quantification of the effect of the uncertainty in

the volatility on the Call option price and Delta hedging strategy is legitimate. In a

probabilistic framework, the Polynomial Chaos consists on representing the volatility as a

random variable. Therefore, we should look for a distribution to represent the uncertainty

in the input.
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Figure 4.1: Historical volatility from 2006 to 2012
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Figure 4.2: Fitting the sample density using lognormal density

Figure 4.2 establishes a comparison between the sample density estimated using the

kernel density estimation and the lognormal fitted density that we have chosen. As it can

be seen in this figure, the lognormal distribution models quite well the data reasonably

although it may fail to capture some rare events especially in the tail.

As argued in chapter 1 particularly in section 2, a variety of reasons pushed us to use

the lognormal distribution in representing the volatility.
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The sample density in figure 4.2 is plotted using the kernel density estimation technique

presented in section 4 of the chapter 2. The parameters of the fitted lognormal distribution

are µLN = −1.25 and σLN = 0.5.

4.1.2 Uncertainty quantification in the Call option pricing

In this section, we will try to compare the results of simulation for both standard MC

and PC/MC for the pricing of European Call option.

First of all, we will begin by using the standard Monte Carlo. The approach as

described in previous section consists on generating a sample containing N values of the

volatility (σi)i=1,..,N . This sample is drawn from the estimated distribution.

At this stage, we will compute V (S, t;σi) for each σi so that we obtain the sequence

(Vi(S, t))i=1,..,N where Vi(S, t) = V (S, t;σi). To calculate the value Vi(S, t), one should

either solve the Black-Scholes PDE:

∂Vi
∂t

= −1

2
S2σ2

i

∂2Vi
∂S2

− rS ∂Vi
∂S

+ rVi

Or we can simply use the Black-Scholes formula to compute the value of the price. Using

a sample of N = 100000, a risk free rate r = 5% and a maturity T = 1, we had computed,

for different stock price, the price, the standard error and 5% confidence interval which

are summarized in the table 4.1 for an in-the-money option, an at-the-money option and

an out-of-the money option.

Table 4.1: Standard Monte Carlo simulations

Stock price Call price Standard error Confidence interval

100 5.449 0.0561 [5.435, 5.559]
140 23.565 0.0319 [23.318, 23.812]
180 53.24 0.0119 [52.862, 53.618]

Now, we move to the Polynomial Chaos approach. Using the theoretical concept

detailed in chapter 2, we will be focusing on computing the statistics of the European

Call option.

All along this first part, we have chosen the highest polynomial degree in the PC expansion

to be p = 30 and the order of the Gauss-Hermite quadrature rule used to approximate

the value of the integrals to be J = 50. Taking these parameters ensures an error of 10−5

in the computed result of the equation 2.12.

Using polynomial Chaos, we compute the mean and standard deviation of the Call

price for different values of the underlying price. These results can be found in table 4.2.

Figures 4.3 and 4.4 show how the mean and the standard deviation of V (S, t;σ) vary

in general with S at the initial time t = 0.
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Table 4.2: Polynomial Chaos simulations

Stock price Call price Standard deviation

100 5.685 5.688
140 23.404 9.012
180 52.9768 7.459
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Figure 4.3: The mean of V (S, t;σ)

The sample density of the Call price may be computed using the kernel density

estimation method. The option price densities for S = 100, 140, 180 are given in figure

4.5.

The figures (a) and (c) in 4.5 show that for both in or out-of-the money options, the

Call price distribution is highly skewed whereas figure (b), which represents at-the-money

option density, indicates that the Call option density has a similar shape to the input

density.

For the in or out-of-the-money Call options, we note that the density tends to place a

large amount of mass near the minimum option value for the given S. This could be

explained by the fact that for small values of σ, the option price remains almost the same.

The figure 4.6 compares the mean and the standard deviation found using both a

standard MC and the PC/MC methods. The figures show that the two methods yield

the same results.
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Figure 4.4: The standard deviation of V (S, t;σ)

4.1.3 Uncertainty quantification in the Call option hedging

In this section, we will try in the first place to measure the effect of the volatility

uncertainty on the Delta of the Call option and then to see how it affects the Delta

hedging strategy.

Figures 4.7 and 4.8 show the mean and the standard deviation for the Delta of a

European Call.

As we already mentioned before, the Call Delta is an increasing function of the

underlying price and its value lies in the interval [0, 1]. In fact, we could distinguish

three parts in the figure 4.7:

- Out-of-the-money options: the Delta is between 0 and 0.5. More the Delta is close

to zero, the option is less sensitive to changes in the underlying.

- At-the-money options: the Delta is close to 0.5.

- In-the-money options: the Delta is between 0.5 and 1. More delta approaches 1, the

higher the premium option replicates the fluctuations in the underlying.

In figure 4.8, we observe that for at-the-money options, the Delta is insensitive to the

uncertainty in the volatility while it is more sensitive to this uncertainty for moderately

in or out-of-the-money options. This remark is confirmed when we represent the Delta

densities in figure 4.9.
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Figure 4.5: Call option price density

The Delta is of particular importance in the theory of derivatives as it enables the

setting of a hedging strategy that makes the portfolio risk-free towards the underlying price

fluctuations. So, how the uncertainty in volatility affects the Delta hedging strategy?

Figure 4.10 presents the tracking error density after settling the contract for different

time steps and using the same characteristics for the Call option and M = 10000 for the

generation of the paths of the underlying price.
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Figure 4.6: Comparison between MC and PC
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Figure 4.7: The mean of the Call Delta



CHAPTER 4. NUMERICAL TESTS 49

20 40 60 80 100 120 140 160 180 200 220 240 260 280
0

0.05

0.1

0.15

0.2

Stock price (S)

S
ta

n
d

ar
d

d
ev

ia
ti

on
of

d
el

ta

Standard deviation of delta hedging

Figure 4.8: The standard deviation of the Call Delta
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Figure 4.9: Call option Delta density
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Figure 4.10: Tracking error density at maturity for different time steps
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We note that the tracking error density looks like a normal one centered around zero.

In addition to that, the more the hedging interval becomes smaller, the more the density

of the tracking error tends to be more concentrated around zero.

We also observe that when the uncertainty in the volatility tends to be reduced,i.e. the

standard deviation of the volatility decreases (in figure 4.11, the reduction ratio is 1
10

), the

tracking error density for the same number of time steps becomes more centered around

zero as shows figure 4.11.
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Figure 4.11: Effect of the uncertainty reduction on the tracking error density at maturity for
N = 100

4.1.4 Cost analysis

The main advantage of Polynomial Chaos over the standard Monte Carlo method comes

from the reduction of the computational cost. In fact, we could analyze the cost of each

computation.

Let τ1 denotes the computation time of the option solver and τ2 the one of computing the

PC expansion. On could write the cost of each method as follow:

CMC = Nτ1

CPC = Jτ1 +Nτ2

(4.1)

From equations in 4.1, one could deduce that:

CPC
CMC

=
Jτ1 +Nτ2

Nτ1

=
J

N
+
τ2

τ1

(4.2)
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As we can see, equation 4.2 has two terms: J
N

and τ2
τ1

. In general, we have J � N . This

first term is independent from the option solver. For the second term, in order for the

PC method to be more cost efficient, the term τ1 should be larger than τ2. In our case,

we have used the parameters N = 100000 and J = 50. For the times, we got τ1 = 1s and

τ2 = 0.06. Therefore, we have:

CPC
CMC

=
50

100000
+

0.06

1
= 0.0605

In this way, the PC method is 16.5 times faster than the Crude Monte Carlo method.

The existence of an exact solution for the European Call has significantly reduced

the benefit of the Polynomial Chaos method. When quantifying the uncertainty in other

types of options which are more complicated, this ratio becomes greater. In the field of

computational fluid dynamics where problems are as complex as in pricing exotic options,

the speed-up ratio could reach 24000, for more details see [?].

4.2 Uncertainty quantification in basket options

We first analyzed in the previous section the effect of uncertainty in the volatility on

the price of a European Call under the Black and Scholes model as well as the Delta

hedging strategy. This section is a generalization of the 1D case; we are interested now

in quantifying the effect of the uncertainty in the case of a basket option.

4.2.1 Data presentation

The data we will be using in our case are taking from the same source finance.yahoo.com.

The derivative now is a Call basket option consisting of 5 assets. Table 4.3 presents these

assets. In fact, all of them are parts from the main German stock index DAX.

Table 4.3: Basket option assets

Asset Field Ticker

Volkswagen Group Automobile manufacturer VOW.DE
Siemens Engineering conglomerate SIE.DE
Allianz Insurance ALV.DE
Bayer Pharmaceutical Industry BAYN.DE
Deutsche Bank Bank DBK.DE

The estimation of the parameters mainly the volatilities and the correlations between the

assets were computed using the historical data for the year 2012. Ideally, we should have

computed implied volatility not the historical one. However, due to the lack of access to

the option prices and following a number of studies that were conducted in the basket
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option pricing, we find that this choice is reasonable to a certain extent.

The results of the estimation yielded the following parameters:

Table 4.4: The data used for the basket Call option

Asset Volatility Correlation

Volkswagen Group 0.2912 1 0.529 0.5085 0.4691 0.4533
Siemens 0.1915 0.529 1 0.6698 0.5973 0.6484
Allianz 0.2407 0.5085 0.6698 1 0.6868 0.7823
Bayer 0.2502 0.4691 .5973 0.6868 1 0.5626
Deutsche Bank 0.3978 0.4533 0.6484 0.7823 0.5626 1

In addition to that, we will be using the following variables for the simulations:

- The initial assets prices: S(0) = [106.2 75.44 76.71 50.81 30.35]

- The strike: K = 70.

- The expiry: T = 1 year.

- The risk neutral rate: r = 0.05.

- The weight of each asset: ωi = 0.2

In the following sections, our interest will be focused on determining the impact of the

uncertainty present in the covariance matrix on the basket option pricing as well as hedging

strategy. The uncertain parameter in the multidimensional case is no longer a scalar but

rather a whole matrix.

4.2.2 Uncertainty quantification in the basket option pricing

The first step consists on comparing the approximation methods developed in the section

1 of chapter 3. The aim behind this comparison is to choose the most adequate

approximation in order to be used for the rest of the computations.

Table 4.5 shows the results of the numerical simulations using the approximation methods.

Table 4.5: Call basket option price using approximation methods

Ju Beisser Reciprocal Gamma Lognormal Monte Carlo Confidence Interval

6.3818 6.2819 6.62 6.7272 6.4023 [6.3549, 6.3938]

As we can notice from the table 4.5, the best approximation method is Ju’s approximation.

In the rest of this report, we will be using only this method in order to approximate the

basket option price.
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Using the Wishart distribution to represent the uncertainty in the covariance matrix

and taking into consideration the variable reduction technique described in section 3.b) of

chapter 3, we developed the following approaches to quantify the impact of the uncertainty

on the basket option price using:

1. Monte Carlo simulation with one variance reduction technique: control variates.

2. Monte Carlo simulation with two variance reduction techniques: control variates

and antithetic variates.

3. Ju’s approximation combined with Monte Carlo method.

4. Ju’s approximation coupled with Sparse Grid technique.

The numerical tests of these approaches are summarized in table 4.6. For the Monte Carlo

method, the number of simulations is M = 100000.

Table 4.6: Call basket option price

Approach Price Standard Error Confidence Interval

1. 6.3861 0.0119 [6.3665, 6.4056]
2. 6.3789 0.0095 [6.3603, 6.3975]
3. 6.3764 0.0078 [6.3611, 6.3916]
4. 6.3804

Here the standard error is nothing but the square root of the ratio of the standard deviation

of the Monte Carlo simulations to the number of simulations.

Our use of sparse grid technique, as it is been justified in section 2 of chapter 3, is

due essentially to its relatively fast convergence rate comparing it with the Monte Carlo

convergence rate as we can see in figure 4.12.

Figure 4.13 presents the basket option price density. As you can notice, the density

has almost a Gaussian shape. Therefore, using a Taylor expansion to the second order can

be used in this case to compute the price statistics and density since beyond the second

order, the error is negligible. Figure 4.14 compares the results using the moments method

based on Taylor expansion and the Monte Carlo method.
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Figure 4.13: Basket option price via Monte Carlo

As we can see clearly in the figure 4.14 the moments method yields an interesting

result and the density curve plotted using this method almost match the one with Monte

Carlo.
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Figure 4.14: Comparison between moments method and Monte Carlo: basket option price

In addition to that, the huge difference in the computational time is in favor of the

moments method as you can see in table 4.7. However, we should note that our use for

the Taylor Young expansion in this case is justified because of the Gaussian shape of the

price density.

Table 4.7: Computational time comparison

Monte Carlo Moments method

CPU time (s) 150 5
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4.2.3 Uncertainty quantification in the basket option hedging

As in the 1D case, our hedging strategy is based essentially on the Delta parameter.

Therefore, we will try at the first place to see the influence of the uncertainty in the

covariance matrix estimation on the Deltas of the basket assets as a first step and then

on the Delta hedging strategy.

Our focus will be mainly on plotting the density functions of the Deltas of the basket

option. Figure 4.15 shows that the Deltas densities have almost a Gaussian shape with

some minor deformations at the tails. These densities are computed at the initial time

t = 0 and using a finite difference method based on the use of Ju’s approximation formula

for computing the basket price.

Table 4.8 presents the value, the standard error and the confidence interval relative to

each Delta of the basket option’s assets.

Table 4.8: Deltas of the basket option

Asset no Delta value Standard Error Confidence Interval

1 0.1175 0.0780 10−2 [0.1159, 0.1190]
2 0.1108 0.0611 10−2 [0.1096, 0.1119]
3 0.1149 0.0597 10−2 [0.1137, 0.1160]
4 0.1137 0.0806 10−2 [0.1121, 0.1152]
5 0.1232 0.1189 10−2 [0.1208, 0.1255]

Once we were able to compute the effect of the uncertainty in the volatility on the

hedging parameter Delta, we will be interested in measuring its impact on the Delta

hedging strategy. Therefore, we plotted the tracking error density at the maturity as you

can see in the figure 4.16 using N = 200 as hedging intervals. As we can see, the tracking

error density is almost normal. However, unlike the 1D case, we notice that the curve is

not really centered around zero but rather around 5.
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Conclusion

This report aims to quantify the effect of uncertainty in the volatility on the European

options pricing and Delta hedging strategy. Two main methods were developed to achieve

this goal: Polynomial Chaos coupled with Monte Carlo and sparse grid. As an application,

we worked with the European Call for the one dimension case, the basket Call for the

multidimensional case.

The contribution of the present report in the financial field is essentially in the

multidimensional case since we were able to represent the uncertainty in the covariance

matrix via Wishart distribution and propagated to the basket option and hedging

strategy using sparse grid method. Using a dimension reduction technique enabled us to

reduce significantly the computational cost of our simulations.

In the light of this thesis, the conducted study can be guidance for future research. In

fact, many possible extensions can be done. We can extend our work for other types

of exotic options. Another possible extension is to model the volatility as a stochastic

process and try to quantify the effect of uncertainty in the model parameters that are

generally estimated and therefore presents a certain uncertainty. In addition to that, we

could have improved the hedging strategy by using a Gamma-Delta rather than a Delta

hedging strategy. There is also the possibility of modeling the effect not of the volatility

but rather of the interest rate on the fixed income products.
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Appendices

Appendix I: Taylor Ju’ approximation

The following appendix main aim is to provide the expression of the terms (di)i=1,...,4 used

in the Taylor Ju’s approximation of the Call basket option price.

We begin by determining the expansion of f(z) around z = 0 up to z6. For that, let’s

recall the expression of f(z):

f(z) =
E
[
eiφX(z)

]
E [eiφY (z)]

= E
[
eiφX(z)

]
e−iφm(z)+φ2

v(z)
2

First, we expand e−iφm(z)+φ2
v(z)
2 . Since v′(z) = −2m′(z), we have:

e−iφm(z)+φ2
v(z)
2 ≈ e−iφm(0)+φ2

v(0)
2
−(iφ+φ2)m′(0)z2−(iφ+φ2)m′′(0) z

4

2
−(iφ+φ2)m(3)(0) z

6

6

≈ e−iφm(0)+φ2
v(0)
2 [1− (iφ+ φ2)a1 +

1

2
((iφ+ φ2)2a2

1 − (iφ+ φ2)a2)

+
1

6
(3(iφ+ φ2)2a1a2 − (iφ+ φ2)a3 − (iφ+ φ2)3a3

1)]

(4.3)

where:
a1 = z2m′(0)

a2 = z4m′′(0)

a3 = z3m(3)(0)

Now, we will try to expand the second term g(z) = E
[
eiφX(z)

]
. In order to do that, we

have to calculate the derivative of g(z) with respect to z. We start by differentiating g(z)

twice:

g′′(z) = E

[
eiφX(z)

(
−(iφ+ φ2)(X ′(z))2 + iφ

A′′(z)

A(z)

)]
(4.4)

Noting that E
[
A′′(0)
A(0)

]
= 0 and z2E[(X ′(z))2] = z2

A2(0)
E[(A′(0))2] = −2a1(z) , the

Equation 4.4 yields:
z2

2
g′′(0) = eiφX(0)(iφ+ φ2)a1(z)
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Differentiating g(z) four times yields:

g(4)(z) = E

[
eiφX(z)

(
−(iφ− 3)(iφ− 2)(iφ+ φ2)(X ′(z))4 − 6(iφ− 2)(iφ+ φ2)

A′′(z)(A′(z))2

A3(z)

−3(iφ+ φ2)

(
A′′(z)

A(z)

)2

− 4(iφ+ φ2)
A′(z)A(3)(z)

A2(z)
+ iφ

A(4)

A(z)

)]
(4.5)

The fact that X ′(0) is normally distributed with mean zero yields:

z4E[(X ′(0)4] = 3z4(E[(X ′(0)2])2 = 12a2
1(z)

Noting also that E
[
A′(0)A(3)(0)

A2(0)

]
= 0 and E

[
A(4)(0)
A(0)

]
= 0 and using Equation 4.5 for z = 0

gives:

z4

24
g(4)(0) = eiφX(0)(iφ+ φ2)(−(iφ− 3)(iφ− 2)

a2
1(z)

2
− (iφ− 2)b1(z)− b2(z))

where:

b1(z) =
z4

4A3(0)
E[(A′(0))2A′′(0)]

b2(z) =
z4

8A2(0)
E[(A′′(0))2]

The last step is to calculate the sixth derivative of g(z):

g(6)(z) = E[eiφX(z)(−(iφ− 5)(iφ− 4)(iφ− 3)(iφ− 2)(iφ+ φ2)(X ′(z))6

−15(iφ− 4)(iφ− 3)(iφ− 2)(iφ+ φ2)
A′′(z)(A′(z))4

A5(z)

−(iφ− 3)(iφ− 2)(iφ+ φ2)((45
A′′(z)A′(z)

A2(z)
)2 + 20

(A′(z))3A(3)(z)

A4(z)

−(iφ− 2)(iφ+ φ2)(15(
A′(z)

A(z)
)2A

(4)(z)

A(z)
+ 60

A′(z)A′′(z)A(3)(z)

A(3)(z)
+ 15

A′′(z)

A(z)
)3)

−(iφ+ φ2)(6
A′(z)A(5)(z)

A2(z)
+ 10(

A(3)(z)

A(z)
)2 + 15

A′′(z)A4(z)

A2(z)
) + iφ

A(6)(z)

A(z)
)]
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Taking into consideration the following equations:

E

[
(A′(0))2A(4)(0)

A3(0)

]
= 0

E

[
A′(0)A(5)(0)

A2(0)

]
= 0

E

[
A′′(0)A(4)(0)

A2(0)

]
= 0

E

[
A(6)(0)

A(0)

]
= 0

z6E
[
(X ′(0))6

]
= −120a3

1(z)

One can deduce the following expression:

z6

720
g(6)(z) = E[eiφX(0)(iφ+ φ2)((iφ− 5)(iφ− 4)(iφ− 3)(iφ− 2)

a3
1

6
−(iφ− 4)(iφ− 3)(iφ− 2)c1(z)− (iφ− 3)(iφ− 2)c2(z)

−(iφ− 2)c3(z)− c4(z)]

where:

c1(z) =
z6

48A5(0)
E[(A′(0))4A′′(0)]

c2(z) =
z6

144A4(0)
(9E[(A′(0))2(A′′(0))2] + 4E[(A′(0))3(A′′(0))3])

c3(z) =
z6

48A3(0)
(4E[(A′(0))2A′′(0)A(3)(0)] + E[(A′′(0))3])

c4(z) =
z6

72A2(0)
E[(A(3)(0))2]

Finally, we have:

g(z) ≈ g(0) +
z2

2
g′′(0) +

z4

24
g(4)(0) +

z6

720
g(6)(0) (4.6)

Multiplying the expansion of 4.3 and the one of 4.6, we could give the expansion of f(z)

around z = 0 up to the order of z6:

f(z) ≈ 1− iφd1(z)− φ2d2(z) + iφ3d3(z) + φ4d4(z)
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where:

d1(z) =
1

2
(6a2

1(z) + a2(z)− 4b1(z) + 2b2(z))− 1

6
(120a3

1(z)− a3(z) + 6(24c1(z)− 6c2(z)

+2c3(z)− c4(z)))

d2(z) =
1

2
(10a2

1(z) + a2(z)− 6b1(z) + 2b2(z))− (128
a3

1(z)

3
− a3(z)

6
+ 2a1(z)b1(z)− a1(z)

b2(z) + 50c1(z)− 11c2(z) + 3c3(z)− c4(z)))

d3(z) = 2a2
1(z)− b1(z)− 1

3
(88a3

1(z) + 3a1(z)(5b1(z)− 2b2(z)) + 3(35c1(z)− 6c2(z) + c3(z)))

d4(z) = −20

3
a3

1(z) + a1(z)(−4b1(z) + b2(z))− 10c1(z) + c2(z)
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Appendix II: Smoylak algorithm: a numerical example

In this appendix, we present a numerical example of the Smoylak algorithm in the

bidimensional space. The illustration uses Gauss-Hermite quadrature up to the level

l = 2. We recall the definition of the classical 1D formula:∫
Ω

f(x)ρ(x) ≈ U1,lf :=

ml∑
i=1

ωi,lf(xi,l) (4.7)

The following table gives the nodes and weights of Gauss Hermite quadrature for the first

two levels.

Table 4.9: Nodes and weights of Gauss Hermite quadrature

l nl xi,l ωi,l

1 1 0
√
π

2 3
√

6
2

√
π

6
0 2

3

√
π

−
√

6
2

√
π

6

Case l = 1 :

Using the definition 4.7, we can write:

U2,1f =
∑
|k|162

∆2,kf where ∆2,kf = (∆1,k1 ⊗∆1,k2)f k ∈ N2

(4.8)

The admissible set of k is S = {(0, 0)(0, 1)(1, 0)(0, 2)(2, 0)(1, 1)}. Since ∆0f = 0, we keep

only the pairs having non null elements. In this way, the set S is reduced to S ′ = {(1, 1)}.
The equation 4.8 becomes:

U2,1f = ∆2,(1,1)f = (∆1,1 ⊗∆1,1)f (4.9)

Since ∆1,1f = U1,1f − U1,0f = U1,1f = ω1,1f(x1,1), the equation 4.9 can be written as

follow:

U2,1f = ω1,1f(x1,1)⊗ ω1,1f(x1,1) = ω1,1ω1,1f(x1,1)⊗ f(x1,1)

Using the table 4.9, we obtain:

U2,1f = πf(0, 0)

Case l = 2 :

In this case, the equation 4.8 becomes:

U2,2f =
∑
|k|163

∆2,kf (4.10)
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The new set of admissible k is S = {(0, 0)(0, 1)(1, 0)(0, 2)(2, 0)(1, 1)(1, 2)(2, 1)(0, 3)(3, 0)}.
For the sake of the same argument, i.e. excluding elements having at least one component

is zero, the new set is S ′ = {(1, 1)(1, 2)(2, 1)} and the equation 4.10 becomes:

U2,2f = ∆2,(1,1)f + ∆2,(1,2)f + ∆2,(2,1)f (4.11)

Since, we already computed the term ∆2,(1,1)f , we will calculate only the terms ∆2,(1,2)f

and ∆2,(2,1)f . To do that, we recall that we have:

∆2,(1,2)f = (∆1,1 ⊗∆1,2)f

∆2,(2,1)f = (∆1,2 ⊗∆1,1)f
(4.12)

The term ∆1,1 has been computed in the first case, so we will calculate only the term

∆1,2:

∆1,2 = (U1,2 − U1,1)f

=
3∑
i=1

ωi,2f(xi,2)− ω1,1f(x1,1)

Equations 4.12 can be written now as follow:

∆2,(1,2)f = ω1,1f(x1,1)⊗ (ω1,2f(x1,2) + ω2,2f(x2,2) + ω3,2f(x3,2)− ω1,1f(x1,1)

∆2,(2,1)f = (ω1,2f(x1,2) + ω2,2f(x2,2) + ω3,2f(x3,2)− ω1,1f(x1,1)⊗ ω1,1f(x1,1)

The final approximation of the integral can be written now:

U2,2f = −ω1,1ω1,1f(x1,1, x1,1) + ω1,1ω1,2f(x1,1, x1,2) + ω1,1ω2,2f(x1,1, x2,2) + ω1,1ω3,2f(x1,1, x3,2)

+ω1,2ω1,1f(x1,2, x1,1) + ω2,2ω1,1f(x2,2, x1,1) + ω3,2ω1,1f(x3,2, x1,1)

If we use Gauss Hermite quadrature, the last equation becomes:

U2,2f = −π
3
f(0, 0) +

π

6
(f(0,

√
6

2
) + f(0,−

√
6

2
) + f(

√
6

2
, 0) + f(−

√
6

2
, 0))
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Appendix III: Numerical tests using sparse grid method

In this appendix, we will performs some numerical tests for integral computation using

the sparse grid method. To begin with, let’s define the integrals that we aim to calculate.

Definition of the integrals:

I1 =

∫ π

0

∫ π

0

∫ π

0

cos(x(y + z))dxdydz

I2 =

∫ π

−π

∫ π

−π

∫ π

−π
cos(xyz)dxdydz

I3 =

∫ 2

1

∫ 2

1

∫ 2

1

∫ 2

1

(x− y

z
+ w2)dxdydzdw

I4 =

∫ 2

1

∫ 2

1

∫ 2

1

∫ 2

1

(x− y

z
+ w2)exp(a)dxdydzdwda

I5 =

∫ 3

1

∫ 3

1

∫ 3

1

∫ 3

1

∫ 3

1

√
x

1+y
exp(a+ z

w
)

t
dxdydzdwdadt

Id =

∫
Rd

exp(−
d∑
i=1

x2
i )dx

The exact values of the previous integrals are:

I1 =
−2π2 (Si (π2)− Si (2π2)) + 1− 2 cos (π2) + cos (2π2)

π

I2 = 8π3
2F3

(
1

2
,
1

2
;
3

2
,
3

2
,
3

2
;−π

6

4

)

I3 =
1

6
(23− 9 log(2))
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I4 = −1

6
(e− 1)e(log(512)− 23)

I5 = −2

3
(−2+

√
2)(−1+3

√
3)e(−1+e2)(−4(3 3

√
e−5e+e3)+Ei(1/3)−10Ei(1)+9Ei(3)) log(3)

Id =
√
π
d

where:

• Si(x) is the sine integral.

• Ei(x) is the exponential integral.

• pFq is the generalized hypergeometric function.

Integral Approximated

value

Sparse grid Level

I1 0.2913 0.2913 14

I2 50.4128 50.4128 37

I3 2.79361 2.79361 5

I4 13.0483 13.0483 6

I5 862.0514 862.0514 11

Id=2 3.1416 3.1416 3

Id=5 17.4934 17.4934 6

Id=8 97.4091 97.4091 9

Id=10 306.0197 306.0197 11
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