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Abstract

Model or/and parametric uncertainty, in the context of derivative pricing, results in mis-
pricing of contingent claims due to uncertainty on the choice of the pricing models or/and
the values of parameters within these models. In this thesis, we introduce a quantitative
framework for investigating the impact of parametric uncertainty on option pricing under
Black-Scholes framework. We start with one dimensional case by quantifying the impact of
the volatility parameter on the price of European put. From historical data, we �t the sample
density of the volatility by a parametric distribution. We then use Monte Carlo Sampling
(MCS) and construct Polynomial Chaos (PC) approximation to compute statistical infor-
mation (i.e, mean quantities, α level con�dence bounds (α bounds), and sample densities)
of option's price. We show that both methods give the same results but PC approximation
method performs signi�cantly better. In the second part of our project, we extend the work
to multidimensional case by quantifying the impact of the covariance matrix on the price
of European basket option. After modeling the randomness in the covariance matrix with
a Wishart distribution, we developed three ways to compute mean quantities and sample
densities of basket put price: a nested MC simulation and two methods, based on Monte
Carlo (MC) and Sparse Grid Quadrature (SGQ) techniques, that use an approximation of
basket option price. We show that the three methods give the same results, those using ap-
proximation of basket option price are more e�cient and the performance of SGQ decreases
for high dimensional problems.

Keywords: parametric uncertainty, option pricing, Monte Carlo Sampling, Polynomial
Chaos, Sparse Grid Quadrature.
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Chapter 1

Introduction

1.1 Motivation

Computational �nance has emerged in the last years as a discipline able to simulate the

behavior of complex �nancial systems described by sophisticated mathematical models. All

this is made possible by both the exponential growth of computer power and new mathe-

matical models that we have witnessed in the last decades. However, the robustness of any

�nancial model depends in part on the accuracy and reliability of its output. Yet, because all

models are imperfect abstractions of reality, and because precise input data are rarely if ever

available, all output values are subject to imprecision. Model or/and parametric uncertainty

results in mispricing of contingent claims due to uncertainty on the choice of the pricing

models or/and the values of parameters within these models.

In fact, mathematical models in �nancial industry are either parametric or nonparametric.

Parametric models are the dominating approach, as these are easier to analyze and to �t to

data. A limitation and simultaneously the strength of these models is their limited �exibility,

resulting in low variance and some bias; however, nonparametric models are �exible and less

biased but often poor predictors since they need more data to produce a stable �t.

Popular parametric option pricing models include the Black-Scholes model [1], the Merton

jump di�usion [2] model, the Heston stochastic volatility model [3] etc. They are calibrated

to data by estimating the parameters either by minimizing some loss function [4] or through

nonlinear Kalman �lters [5]. It is easily argued that inaccurate calibration methods can

cause problems. The complexity of real-world calibration is due to the several subjective

choices needed to be made. In fact, two things are needed, an estimator and a set of data.

It is highly unlikely, that all investors are using identical estimates as they take di�erent

estimators and data sets into consideration, thereby causing the existence of uncertainty in
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models parameters.

In this thesis, we develop a quantitative framework for studying the impact of parameters'

uncertainty on option pricing. We focus on both European single asset and basket options

under Black-Scholes framework.

1.2 Project Framework

1.2.1 Objectives

The aim of this project is to investigate the e�ect of parameters uncertainty on the Black-

Scholes price of both European single asset and basket options.

In the case of single asset option, we assume that we have uncertainty only in the underlying

asset's volatility and apply probabilistic uncertainty methods which are: Monte Carlo (MC)

and Polynomial Chaos (PC) approximation to the Black-Scholes model. On one hand, our

goal is to compare the statistical information of the option price (i.e, the mean quantities, α

bounds, and the sample density) obtained by both of these methods. On the other hand, we

want to compare the e�ciency of the crude MC versus the surrogate PC/MC implementation.

In the case of multi-asset option, we face two challenges:

- As there is no close formula of arithmetic basket option's price under Black-Scholes frame-

work, the �rst challenge is �nding the best method to approximate it. Therefore, we

analyze the performance of di�erent approximations in order to select the best one.

- The second challenge is quantifying the e�ect of uncertainty in the covariance matrix of

assets' returns on the basket option's price via computing its mean and sample density.

To overcome this challenge, we develop three methods based on MC and Sparse Grid

Quadrature (SGQ).

1.2.2 Related Work

UQ was �rst introduced into option pricing by the use of deterministic methods which are

mainly sensitivity derivatives and Worst case analysis.

Sensitivity derivatives have gained the highest popularity in the derivatives community. The

so-called Greeks of an option are nothing but various partial derivatives of the option price

Chiheb BEN HAMMOUDA 6 Graduation Project Report
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with respect to a parameter or variable of interest. Since di�erentiation is a local operation,

sensitivity derivatives give the localized dependence of a model on a parameter. However,

they provide little to no information about the overall uncertainty of the model's output in

relation to a particular parameter's uncertainty.

Giving that sensitivity analysis makes no prediction concerning the model's output value,

The so-called Worst Case analysis was introduced to provide more information. This method

was introduced into option pricing in the form of the Uncertain Volatility model by Avel-

laneda et al. [6] and Lyons [7] (both in 1995).

Worst case analysis assumes that the input parameter lies in some interval, and then gives

corresponding bounds on the model's output. The basic idea of this approach: Given a

parameter input, say σ, form an interval in which σ is assumed to lie, i.e. σmin < σ < σmax,

where σmin and σmax represent minimal and maximal values σ can take. The option price is

then both maximized and minimized subject to this constraint to obtain the prices, namely

Vmin(S, t) = min
σmin≤σ≤σmax

(V (S, t;σ)) (1.1)

Vmax(S, t) = max
σmin≤σ≤σmax

(V (S, t;σ)), (1.2)

where S is the underling's current price, σ is the volatility, and V (S, t;σ) denotes the option

price as a function of S and t, given σ. The values of Vmin and Vmax give the worst case

bounds for the option price, given that σ lies in [σmin, σmax].

The Uncertain Volatility model requires solving for the two values Vmin(S, t) and Vmax(S, t)

de�ned by Equations (1.1) and (1.2) respectively. The bounds Vmin and Vmax are found in [8]

by solving a nonlinear version of the Black-Scholes PDE.

One major critic of deterministic methods is that they do not ask how the option prices

change, given the fact that the parameters can be distributed according to some probability

density function. This issue was solved by developing probabilistic uncertainty methods.

Probabilistic Uncertainty analysis was introduced to the option pricing problem by Pulch

and van Emmerich [8]. The authors solved for the mean and standard deviation of the

price of European and Asian options using both MC and PC methods assuming a uniform

distribution for the parametric uncertainty. However, they did not consider other distribu-

tions that best �t uncertain parameters or consider a higher dimensional case such as basket

options.

Chiheb BEN HAMMOUDA 7 Graduation Project Report
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1.2.3 Main Contributions Of This Project

The main contributions of this project to uncertainty quanti�cation (UQ) and option pricing

are the following:

• Developing a one dimensional PC approximation corresponding to the parametric distri-

bution that best �ts the historical volatility data sample.

• Comparing the e�ciency of MC versus surrogate PC/MC method for one dimensional

case.

• Investigating the e�ect of uncertainty in the covariance matrix of assets' returns on the

price of European Basket put option using MC and SGQ techniques.

1.3 Outline

This thesis is organized as follows. In Chapter 2, we recall the basics of pricing theory,

develop the UQ framework , and illustrate the construction of SGQ with a brief literature

review.

Then, Chapter 3 will be dedicated to investigating the e�ect of volatility's uncertainty on

European single asset put option's price. We develop a PC approximation method to com-

pute the mean quantities, α bounds and the sample density of option price. We conclude

this chapter with comparing the performance of crude MC and surrogate PC/MC methods.

In Chapter 4, the work will be extended to multidimensional cases where we investigate

the impact of uncertainty in the covariance matrix of assets' returns on the basket option's

price. After parameterizing the randomness in the covariance matrix and selecting the best

approximation for basket option price, we develop three approaches based on MC and SGQ

to compute the mean and sample density of basket put's price.

Concluding remarks are �nally drawn at the end of this thesis. We reiterate the main results

of the previous chapters and illustrate an outlook on possible extensions of our work.

Chiheb BEN HAMMOUDA 8 Graduation Project Report



Chapter 2

Basic Notions and Literature Review

Introduction

Before getting into the details of our project, we should introduce the basic concepts related

to pricing theory, UQ and the methods that we are going to implement in the course of

our work. In the �rst section, we are going to develop the basic framework used to price

European single asset and basket options and we present the main methods developed in the

literature for pricing. The second chapter will be dedicated to UQ framework. We focus on

probabilistic methods that we are going to use in our project which are precisely MC and

PC methods. In the �nal section, we are going to illustrate the basics of sparse grids (SG)

construction and SGQ formulas.

2.1 Pricing Theory

2.1.1 Financial Derivatives

Financial derivatives are securities whose value depends on the price of one or more other

underlying assets, for example: stocks, stock indices, bonds, exchange rates or commodities.

Financial derivatives are either traded at special derivatives exchanges in a similar way to

the underlying assets or directly over-the-counter between �nancial institutions.

The main topic of this work is investigating the impact of the input parameters uncertainty

on the fair values of such �nancial derivatives. This fair value does not have to be equal to

the market value of the derivative which results from supply and demand and thus the sub-

jective notions of the value of the derivative from buyers and sellers. Nevertheless, the fair

value is an important notion for all market participants. Historically, mathematically well-

founded fair prices which were derived by Black-Scholes and Merton [1] eventually enabled

9
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the systematic trade of �nancial derivatives after the introduction of derivative exchange at

the Chicago Board of Trade in 1973. Numerical methods, i.e. approximation algorithms,

play a crucial rule for the valuation of �nancial derivatives since in almost all cases of deriva-

tives and corresponding model assumptions no closed-form solution for their fair value can

be derived.

There are many types of �nancial derivatives which are currently traded in the markets or

which are used for the assessment and hedging of risks. The variety of these derivatives has

been growing constantly in the last years. An overview is given in [4, 9] but here we just

focus on European single asset and basket options.

2.1.1.1 European Options

The simplest type of options are European options. Nevertheless, they are of great practical

(and theoretical) importance. As a European Option is a standard option we should start

with de�ning this family of options.

De�nition 2.1.1. ( Standard Option) A standard (vanilla) option bears the right, but not

the obligation, to buy or sell a certain number of the underlying securities for a prescribed

price within a certain time period. Options which allow the holder to buy the underlying

securities are called call options, while options which include the right to sell them are called

put options. The prescribed price K is often called strike or exercise price and the time in

which the option can be exercised is called exercise time or exercise period.

De�nition 2.1.2. (European Option) A European option is a standard option where the

exercise period consists of a single point in time in the future, the exercise time T > 0.

De�nition 2.1.3. (Payo� of Standard Options) The value of a European call option at

the exercise time T is given by the payo�

V (S, T ) := (S −K)+ := max{S-K, 0} (2.1)

The value of a European put option at the exercise time is correspondingly

V (S, T ) := (K − S)+ := max{K-S, 0} (2.2)

When computing option prices one can, at least for European options, con�ne oneself either

to call or to put options since the so-called put-call parity holds.

S(t) + VPut(S, t) = VCall(S, t) +Ke−r(T−t). (2.3)

Chiheb BEN HAMMOUDA 10 Graduation Project Report
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Here, r is the riskless interest rate, i.e. the interest a riskless investment generates, which is

assumed to be constant over time.

2.1.1.2 Basket Options

A basket option is a multi-asset option which means that it is written on two or more

underlyings.

We assume that there are n assets involved in total. The price of the i − th asset varying

with time t is denoted by Si(t) , 1 ≤ i ≤ n. All asset prices at the end of the exercise time

t = T are collected in the vector ST = (S1(T ), ..., Sn(T )).

De�nition 2.1.4. (Basket Option payo�) For an arithmetic average basket call option,

the payo� reads

V (S, T ) =

(
1

n

n∑
i=1

Si −K

)+

, (2.4)

while for a geometric average, the payo� is given by

V (S, T ) =

( n∏
i=1

Si

)1/n

−K)

+

. (2.5)

For basket put options, the roles of the average and the strike are reversed.

Weighted averages are also often used, especially in the arithmetic average. Thereby, in the

summation, each asset price is multiplied with a weight ωi, 1 ≤ i ≤ n with
∑n

i=1 ωi = 1

indicating the importance of the asset in the basket.

2.1.2 Stochastic Market Models

2.1.2.1 Introduction

In the following, we will take a look at often used models for the future development of single

as well as multiple interacting asset prices, in particular so-called Black-Scholes models. In

the univariate case, we will consider two methods for the determination of the most important

parameter in this model, the volatility. First, we have to secure a few important market

assumptions.

2.1.2.2 Market Assumptions

The following assumptions on the market are usually made:

• There are no transaction costs or taxes.

• The interest rates for loaning and lending are equal and constant for all parties.

Chiheb BEN HAMMOUDA 11 Graduation Project Report
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• All parties have access to all information.

• Securities and credits are available at any time and in any quantity.

• Short sales are permitted.

• The individual trade does not in�uence the price.

• There are no arbitrage opportunities.

The �rst few assumptions are made only for simpli�cation purposes and can later be sus-

pended or suitably modeled. Especially the last assumption of absence of arbitrage is of

central importance for the fair valuation of �nancial derivatives, though.

2.1.2.3 Black-Scholes Model

One of the most basic stochastic models for stocks was developed by Bachelier about 1900

[10]. This model is still used today also for other types of securities. It is the foundation

of the pioneering works of Black-Scholes and Merton [1] on option pricing. In the Black-

Scholes model, the future development of the underlying is modeled by means of a geometric

Brownian motion and follows a linear stochastic di�erential equation (SDE).

De�nition 2.1.5. (Black-Scholes Model) The Black-Scholes model for a single under-

lying asset is given by the SDE

dS(t) = µS(t)dt+ σS(t)dW (t) (2.6)

where µ represents the constant drift, σ the constant volatility and W (t) a one-dimensional

Wiener process (standard Brownian motion).

A Wiener process is a Markov process with properties W (0) = 0 and W (t) ∼ N (0, t) for

t > 0. Thereby, N (0, t) is the Gaussian normal distribution with mean 0 and variance t.

Above notation is just an abbreviated form for the Itô integral equation

S(t) = S(0) +

∫ t

0

µS(u)du+

∫ t

0

σS(u)dW (u) (2.7)

For this integral equation there exists a closed-form solution as

S(t) = S(0)e(µ−σ
2

2
)t+σW (t), (2.8)

which can be shown via Itô's lemma.

For option pricing, the stochastic process has to be transformed into its risk-neutral form.

In the Black-Scholes model, only the drift µ has to be replaced by the riskless interest rate
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r. This way, the explicit solution becomes

S(t) = S(0)e(r−σ
2

2
)t+σW (t). (2.9)

Dividing by S(0) and taking the logarithm of both sides results in

ln(S(t)/S(0) = (r − σ2

2
)t+ σW (t). (2.10)

This way, one can see that the value increment S(t)/S(0) is normally distributed with mean

0 and variance t and thus S(t) is log-normally distributed.

2.1.2.4 Further Single-Asset Models

The Black-Scholes model is by no means the only stochastic model which is used to describe

the future development of assets (see [11]). One point of criticism is that the Black-Scholes

model does not properly re�ect the dependence of the option price on the volatility. This

lead to the idea that the volatility should follow its own stochastic process.

De�nition 2.1.6. (Stochastic Volatility Model) In the stochastic volatility model the

asset price dynamics are given by the system of SDEs

dS(t) = µS(t)dt+ σ(t)S(t)dW (t). (2.11)

dσ(t) = aσ(t)dt+ bσ(t)d
∼
W (t). (2.12)

with some constants a, b and with W (t) and
∼
W (t) being two Wiener process with correlation

ρ, that is E[W (t)W̃ (t)] = ρt.

Stochastic volatility models have the disadvantage that three more parameters (a, b and ρ)

have to be estimated from market data. Also, they are more di�cult to simulate than the

Black-Scholes model since no closed-form solution of the system is known.

Another critical point of the Black-Scholes model is that it underestimates extreme up and

downward movements of many assets, such as stocks. This problem can be removed by

using more heavy-tailed distributions for the random increments. Popular examples are

jump-di�usion models where extreme events are modeled by jumps of the underlying. To

this end, additional jump term is added to the Black-Scholes model.

De�nition 2.1.7. (Jump-Di�usion Model) In a jump-di�usion model, the asset price

follows the SDE

dS = µSdt+ σSdW + ηSdN, (2.13)
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where N is a Poisson process with intensity λ, i.e.

dN =

{
0 with probability 1− λdt
1 with probability λdt

and η is an impulse function which generates a jump from S to S(1 + η).

Many forms of η such as normal, singular or hypersingular distributions have been proposed

in the literature. Jump-di�usion models, however, have as disadvantage that they result in

an incomplete which makes option pricing by martingale methods much more di�cult.

2.1.2.5 Parameter Estimation

In the Black-Scholes model, two parameters occur, the drift µ and the volatility σ which

have to be determined from market data. As we have seen, the drift does not occur in the

risk-neutral form of the stochastic di�erential equation, the volatility plays a very important

role, however. We will now consider two methods for volatility estimation.

Historical volatility One possibility for the determination of the volatility consists in

the observation of past prices of the underlying. This historical volatility corresponds to the

variance of the logarithmic prices over past times. Let tk, 0 ≤ k ≤ n, be n + 1 points in

time and S(tk) the prices of the underlying at these times. Since the prices are log-normally

distributed in the Black-Scholes model, the historical volatility can be computed by

σ2 =
1

n− 1

n∑
j=1

(ln(S(tj)/S(tj−1))− S̄)2, (2.14)

where

S̄ =
1

n− 1

n∑
j=1

ln(S(tj)/S(tj−1)) (2.15)

Implied volatility Alternatively, the volatility can be computed from the market price of

other options on the same underlying. This method is often used since in the Black-Scholes

model actually the future and not the past volatility has to be used. The volatility implied

by the marked is for trading purposes even more important than the option price itself. If an

algorithm for approximation of option prices with varying volatility and its Vega (Λ = ∂V
∂σ
)

is known, the implied volatility can be computed by iterative zero �nding, e.g. using the

Newton-Raphson method.

σj+1 = σj −
V (σj)− V

Λ(σj)
, (2.16)
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starting with an estimated volatility of σ0. Here, V (σj) is the option price for the iterate the

corresponding Vega and V the market price of the option.

2.1.2.6 Multi-Asset Models

Now, we consider some generalizations of the Black-Scholes model for several interacting

assets, see [12�14]. To this end, again systems of stochastic di�erential equations are used.

Here, we discern between two cases. In the so-called full model, the number of stochastic

processes equals the number of assets while in the so-called reduced model, the number of

stochastic processes is smaller. In both cases, the resulting markets are complete, only if

the number of stochastic processes is larger than the number of assets, the market would

become incomplete [11].

Black-Scholes Model

We start with the full Black-Scholes model where the number of stochastic processes equals

the number of assets n.

De�nition 2.1.8. (Full Black-Scholes Model) In the full multivariate Black-Scholes

model, the asset price dynamics of n assets is given by the system of SDEs

dSi(t) = Si(t)

(
µidt+

n∑
j=1

ρijdWj(t)

)
(2.17)

for i = 1, ..., n, where µi denotes the drift of the i − th stock, (ρij)1≤i≤n,1≤j≤n is the n × n
correlation matrix of the stocks' prices movements and Wj(t), 1 ≤ j ≤ n , Brownian motions.

The matrix ρρT is assumed to be strictly positive de�nite. The explicit solution of the system

of SDEs (2.17) is given by

Si(T ) = Si(X) = Si(0)exp

(
µiT − ρ̄i +

√
T

n∑
j=1

ρijXj

)
(2.18)

for i = 1, .....n with

ρ̄i :=
1

2

n∑
j=1

ρ2
ijT (2.19)

and X = (X1, ...., Xn) being a N (0, I)-normally distributed random vector.

The full Black-Scholes model is typically used if the number of assets is small. The entries

of the correlation matrix can be estimated e�ciently based on historical data. To this end,

the covariance of the logarithmic prices is estimated.
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Reduced Black-Scholes Model For a larger number of assets, however, the parameter

estimation problem can become more and more ill-conditioned resulting in eigenvalues of ρρT

which are close to zero. In this case, so-called reduced Black-Scholes models are typically

used. There, it is assumed that the asset price movements are driven by d < n stochastic

processes.

2.1.3 Pricing Approaches

2.1.3.1 Introduction

The prices of �nancial derivatives depend on the expected future development of the under-

lying assets. This development is presumed to be given by a stochastic di�erential equation

or a system of equations some of which were illustrated in the previous chapter. Under these

models and market assumptions, formulas for the fair prices of �nancial derivatives can be

mathematically derived which is the subject of this chapter.

This fair price is usually given as an expectation or the solution of a partial di�erential

equation. The connection between these representations shows the Feynman-Kac theorem

(see [15]). In both cases, the price of the derivative can be computed after suitable discretiza-

tion (in space and time) and solution of the resulting discrete problem (see Figure2.1). In

the �rst case, an integration problem has to be computed, in the second case a large linear

system has to be solved. For a fast and accurate computation of derivative prices, special

numerical methods have to be used in these discretization and solution steps.

In the following, we do not follow the PDE approach but consider only the martingale

approach that we will use in the course of this work and which corresponds to the left

branch in the tree of Figure 2.1.

2.1.3.2 Pricing Principles

The following three main principles from the mathematical theory of derivatives pricing are

important here, see [16]

1. If a derivative security can be perfectly replicated( hedged) through trading in other

assets, then the price of the derivative security is the cost of the replicating trading

strategy.

2. Discounted asset prices are martingales under a probability measure associated with

the choice of numeraire. Prices are expectations of discounted payo�s under such a

martingale measure.
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3. In a complete market, any payo�(satisfying modest regularity conditions) can be syn-

thesized through a trading strategy, and the martingale measure associated with a

numeraire is unique. In an incomplete market there are derivative securities that can-

not be perfectly hedged; the price of such a derivative is not completely determined by

the prices of other assets.

The �rst principle tells us what the price of a derivative security ought to be but does not

show us how this price can be evaluated. The second principle tells us how to represent prices

as expectations. The third principle states under what conditions the price of a derivative

security is determined by the prices of other assets so that the �rst and second principles

are applied.

Figure 2.1: Pricing approach

2.1.3.3 Martingale Approach

The martingale approach is one of the main principles for option pricing. It says that the

fair price of an option is the discounted expectation of the payo� under the risk neutral

probability distribution of the underlying economic factors.
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Standard Options

The martingale representation of fair �nancial derivative prices has been found much later

than the pioneering works of Black-Scholes and Merton which are based on the PDE repre-

sentation.

Theorem 2.1.1. (Fair Value of European Options) The fair value of a European call

option under the Black-Scholes model is given by

V (S, 0) = e−rT
∫ ∞
−∞

1√
2π
e−

1
2
x2
(
S(0)e(r− 1

2
σ2)T+σ

√
Tx −K

)+

dx. (2.20)

For a European put option, the di�erence is simply reversed.

Proof 2.1.2. see [12].

Multi-Asset Options

The multi-asset options we have considered are of European type in the sense that they

can be exercised only at the exercise time T . The full and reduced multivariate Black-

Scholes models induce a complete market which gives the existence of a unique equivalent

martingale measure, see [13]. Under this measure, all drifts µi in (2.18) are replaced by the

riskless interest rate r for each asset. This way, we have the following representation for the

fair value of multi-asset options.

Theorem 2.1.3. (Fair Value of Multi-Asset Options) The fair value of a (European

style) multi-asset option is under the full or the reduced multivariate Black-Scholes model

given by

V (S, 0) = e−rT
∫
Rd
φ(X)V (S(X), T )dX (2.21)

where φ(X) := φ0,I(X) is the multivariate normal distribution with mean 0 and covariance

matrix I.

Proof 2.1.4. We start with the martingale representation

V (S, 0) = e−rTE∗[V (S(X), T )] (2.22)

where E∗ is the expectation under the equivalent martingale measure. Plugging in the density

function φ of the underlying random vector X, we get the assertion.

Note that here, d ≤ n, which incorporates both the full and the reduced Black-Scholes models.
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2.1.4 Valuation Formula for European Single Asset Options

The valuation formula of European options under the Black-Scholes model assumptions is

known as Black-Scholes formula. Due to its simplicity, the Black-Scholes formula is of great

practical importance for the trading of options.

Theorem 2.1.5. (Black-Scholes Formula) In the Black-Scholes model, the fair price of

a European call option is given by

V (S, 0) = SΦ(d1)−Ke−rTΦ(d2), (2.23)

and of a European put option by

V (S, 0) = Ke−rTΦ(−d2)− SΦ(−d1), (2.24)

where

d1 =
ln(S/K) + (r + σ2

2
)(T )

σ
√
T

,

d2 =
ln(S/K) + (r − σ2

2
)(T )

σ
√
T

and Φ denotes the cumulative distribution function of the standard normal distribution.

Proof 2.1.6. See [12]

2.1.5 Valuation Formulas for Basket Options

2.1.5.1 Introduction

As a basket option is an option whose payo� depends on the average of some particular

assets, we de�ne a basket of stocks by

A(T ) =
n∑
i=1

ωiSi(T ), (2.25)

where A(T ) is the weighted arithmetic average of n underlying stocks. Then, the payo� of

a Call(θ = 1) resp. Put(θ = −1) reads as

PBasket(A(T ), K, θ) = [θ(A(T )−K)]+ (2.26)
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The problem of pricing basket options in the Black-Scholes model is the following: The

stock prices are modeled by geometric Brownian motions and are therefore log-normally

distributed. As the sum of log-normally distributed random variables is not log normal, it

is not possible to derive an(exact) closed-form representation of the basket call and put prices.

Due to the fact that we are dealing with a multidimensional process, only Monte Carlo and

over multidimensional integration methods are suitable numerical methods to determine the

value of these options. As these methods can be very time consuming many alternative

valuation methods were developed and which are based on analytical approximations in

di�erent senses. Among these approximations we mention:

• Levy (1992) uses a log-normal distribution with matching moments,

• Gentle(1993) approximates the arithmethic average by a geometric one,

• Milevsky & Posner (1998) applies the reciprocal gamma distribution,

• Beisser (1999) performs some conditional expectation techniques,and

• Ju (2002) uses Taylor expansion.

In [17] we �nd an analysis of the performance of the �rst four methods which concludes after

numerical tests that the approximations of Levy and Beisser are overall the best performing

methods. In our work, we will check the performance of Ju's approximation to those of Levy

and Beisser. The best method will be then used to study the e�ect of uncertainty in high

dimensional case. Therefore, we take a look here at these approximations.

2.1.5.2 Ju's Taylor Expansion

Ju's approximation [18] is based on Taylor expansion of the ratio of the characteristic func-

tion of the arithmetic average to that of the approximating log-normal random variable

around zero volatility.

Let consider the following standard n-asset under the risk-neutral measure

Si(t) = Si(0)e(gi−σ2
i /2)t+σiWi(t), i = 1, 2, ....., n (2.27)

where gi = r− δi, r is the riskless interest rate, δi the dividend yield, σi the volatility, Wi(t)

a standard Wiener process. Let ρij denote the correlation coe�cients between Wi(t) and

Wj(t).

To apply the Taylor expansion all the individual volatilities are scaled by the same parameter

z, so we have

Si(z, t) = Si(0)e(gi−z2σ2
i /2)t+zσiWi(t), i = 1, 2, ....., n (2.28)
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and

A(z) =
n∑
i=1

ωiSi(z, T ) (2.29)

Let Y (z) be a normally distributed random variable with mean m(z) and variance v(z) such

that the �rst two moments of exp(Y (z)) match those of A(z) . So we have

m(z) = 2 logU1 − 0.5 logU2(z2) (2.30)

v(z) = logU2(z2)− 2 logU1, (2.31)

where U1 and U2 are respectively the �rst and second moment of A(z) given by(2.32)

and(2.33)

U1 =
n∑
i=1

S̄i = A(0) (2.32)

U2(z2) =
n∑

ij=1

S̄iS̄je
z2ρ̄ij (2.33)

with

S̄i = ωiSi(0)egiT and ρ̄ij = ρijσiσjT

If we de�ne X(z) = ln(A(z)), then

E[eitX(z)] = E[eitY (z)]
E[eitX(z)]

E[eitY (z)]
= E[eitY (z)]f(z), (2.34)

where

E[eitY (z)] = eitm(z)−t2v(z)/2 (2.35)

is the characteristic function of the normal random variable and

f(z) =
E[eitX(z)]

E[eitY (z)]
= E[eitX(z)]e−itm(z)+t2v(z)/2 (2.36)

is the ratio of the characteristic function of X(z) to that of Y (z).

Ju performs a Taylor expansion of the two factors of f(z) up to z6, leading to

f(z) ≈ 1− itd1(z)− t2d2(z) + it3d3(z) + t4d4(z) (2.37)

where di(z) are polynomials of z and terms of higher order then z6 are ignored. Finally

E[eitX(1)] is approximated by

E[eitX(1)] ≈ eitm(1)−t2v(1)/2(1− itd1(1)− t2d2(1) + it3d3(1) + t4d4(1)) (2.38)
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For this approximation, an approximation of the density h(x) of X(1) is derived as

h(x) =
1

2π

∫ ∞
−∞

e−itxeitm(1)−t2v(1)/2(1− itd1(1)− t2d2(1) + it3d3(1) + t4d4(1))dt (2.39)

= p(x) + (d1(1)
d

dx
+ d2(1)

d2

dx2
+ d3(1)

d3

dx3
+ d4(1)

d4

dx4
)p(x) (2.40)

where p(x) is the normal density with mean m(1) and variance v(1). The approximate price

of a basket call is then given by,

VBasket Call = e−rTE[eX(1) −K]+ (2.41)

= [U1e
−rTΦ(y1)−Ke−rTΦ(y2)] + [e−rTK(z1p(y) + z2

dp(y)

dy
+ z3

d2p(y)

dy2
], (2.42)

where

y = ln(K) , y1 =
m(1)− y√

v(1)
+
√
v(1) , y2 = y1 −

√
v(1),

and

z1 = d2(1)− d3(1) + d4(1) , z2 = d3(1)− d4(1) , z3 = d4(1).

2.1.5.3 Levy's Approximation

The basic idea of Levy's approximatio [19] is to approximate the distribution of the basket

by a log-normal distribution with mean M̄ and variance V̄ 2. These two parameters are

determined in such a way that they match the true moments of the arithmetic average

A(T ) =
∑n

i=1 ωiSi(T ), i.e.

E(A(T )) = E(eX) and V ar(A(T )) = V ar(eX)

where X is a normally distributed random variable with mean M̄ and variance V̄ 2 . The

basket option price can now be evaluated as

VBasket Call(T ) = e−rT
(
eM̄+ 1

2
V̄ 2

Φ(d1)−KΦ(d2)
)

(2.43)

where Φ is the distribution function of a standard normal random variable and

d1 =
M̄ − lnK + V̄ 2

V̄ 2
,

d2 = d1 − V̄

.
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2.1.5.4 Beisser's Approximation

The main idea behind the method of Beisser is the conditional expectation technique in-

troduced by Rogers & Shi (1995) [20] for the pricing of Asian Options. More precisely, to

condition the payo� 's expectation with a normal distributed random variable Z using the

tower law, then estimate the result by applying Jensen's inequality and derive a closed-form

solution for this estimate. In a nutshell this reads as

E
(
E [A(T )−K]+

)
= E

(
E
(
[A(T )−K]+ | Z

))
(2.44)

≥ E
(
E
(
[A(T )−K | Z]+

))
(2.45)

= E

([
n∑
i=1

ωi E[Si(T ) | Z]−K

]+)
(2.46)

where

Z :=
σz√
T
W (T ) =

n∑
i=1

ωiSi(0)σiWi(T ) (2.47)

with σZ appropriately chosen. Since all conditional expectations E[Si(T )|Z] are log-normally

distributed with respect to one Brownian motion W(T). There exists an x∗, such that

n∑
i=1

ωi E [Si(T ) | W (T ) = x∗] = K. (2.48)

By de�ning

K̃i := E [Si(T ) | W (T ) = x∗]

the event
∑n

i=1 ωi E [Si(T ) | Z] ≥ K is equivalent to E [Si(T ) | Z] ≥ K̃i for all i = 1.....n.

Using this equivalence we conclude that

E

([
n∑
i=1

ωi E[Si(T ) | Z]−K

]+)
=

n∑
i=1

ωi E

([
E [Si(T ) | Z]− K̃i

]+
)

(2.49)

=
n∑
i=1

ωi

[
F̃ T
i Φ(d1i)− K̃iΦ(d2i)

]
(2.50)

where F̃i, K̃i adjusted forwards and strikes and d1i, d2i are the usual terms with modi�ed

parameters( see [20]).
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2.2 Uncertainty Quanti�cation (UQ)

2.2.1 Introduction

The importance of understanding uncertainty has been realized by many for a long time in

disciplines such as civil engineering, hydrology, control,mechanics etc. Consequently many

methods have been devised to tackle this issue. Because of the "uncertain" nature of the

uncertainty, the most dominant approach is to treat data uncertainty as random variables

or random processes and recast the original deterministic systems as stochastic systems.

As we mentioned in 1.2.2, UQ in �nance began with the use of deterministic methods which

are mainly sensitivity analysis and worst case methods but recently probabilistic methods

have gained popularity over deterministic methods in many �elds. In fact, probabilistic

methods provide additional information which is the distribution of the model 's output.

The cost is that one must specify a distribution for the input parameter. Given the distri-

bution, one may then compute statistics, e.g. mean and standard deviation, or α bounds.

Probabilistic uncertainty analysis allows one to model the uncertainty from the information

available. Once one speci�es a distribution for the input, one tacitly indicates how much

information is at hand. If very little information is available, one might model the input

by a uniform distribution. On the other extreme, if the input is known exactly, the situa-

tion corresponds to a point mass, or the Dirac-Delta distribution. More likely though, the

information available is somewhere in between, in which case a normal density might be used.

In this section, we review the probabilistic methods for uncertainty analysis that we are

going to use in the course of our project which are MC and PC methods.

2.2.2 Monte Carlo Technique

The method of Monte-Carlo simulation is a numerical technique used to solve mathemati-

cal problems by simulating random variables. There is no absolute consensus on a precise

de�nition of a MC technique, but the most common description is that the methods of this

type are characterized by the generation of random samples to solve problems centered on

probabilistic calculations. In �nance, MC simulation [16] is often used to approximate a

complex expectation. For example, to approximate E[f(Y )] where Y is a random variable

we follow algorithm1.
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Algorithm 1 Monte Carlo Simulation

Step 1 Simulate a great number N of independent random variables {Yn}1≤n≤N
having the same distribution as Y

Step 2 For each n = 1, ....., N calculate f(Yn)

Step 3 Calculate 1
N

N∑
n=1

f(Yn) as an approximation to E[f(Y )]

The convergence is ensured by the following classic theorems:

Theorem 2.2.1. (Law of Large Numbers) Let (Yn)n≥1 be a sequence of integrable in-

dependent random variables, all having the same distribution as a variable Y . We have

then:

1

N

N∑
n=1

Yn −→
N→+∞

E[Y ] a.s. (2.51)

Theorem 2.2.2. (Central Limit Theorem) Let (Yn)n≥1 be a sequence of integrable in-

dependent random variables, all having the same distribution as a variable Y . We de�ne the

empirical mean and variance by

∧
mN :=

1

N

N∑
n=1

Yn,

∧
σN =

√√√√ 1

N − 1

N∑
n=1

(Yn −
∧
mN)2.

We have then :

√
N

( ∧
mN − E[Y ]

∧
σN

)
in law−→
N→+∞

N (0, 1) (2.52)

The second theorem allows us to build a con�dence interval for E[Y ]. In fact, when N is

large enough, we can write for a positive real c:

P

(
|
∧
mN − E[Y ]

∧
σN

|< c

)
= 1− αc,

where αc = P (| X |> c) with X having a normal distribution is the signi�cance level (we
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put in general αc = 5%). We have then:

P

(
E[Y ] ∈

[
∧
mN − c

∧
σN√
N
,
∧
mN + c

∧
σN√
N

])
= 1− αc. (2.53)

[
∧
mN − c

∧
σN√
N
,
∧
mN + c

∧
σN√
N

]
is the con�dence interval associated with the signi�cance level αc.

MC method is easy to implement, but needs a huge number of scenarios to give a good

accuracy. It is a method known to be very heavy in calculations, taking in general much

CPU-time to converge. To improve the convergence, we can increase the number of samples,

which is not a clever solution because the method will take then much more time to give

a result, or try to decrease the variance
∧
σ

2

N . The second solution is known as Variance

Reduction Techniques. Although variance reduction methods are not so complicated, their

application to �nancial simulation problems is not trivial. In fact to design a successful

variance reduction method, one has to understand the characteristics of the problem of

interest (see [16]). In our work, we are going to use The Control Variate(CV) technique

as a variance reduction method. Therefore, we are going to give in the next section basic

information about this technique.

2.2.3 Control Variate (CV) Technique

CV method is the most e�ective and broadly applicable technique for variance reduction of

simulation estimates. [16] de�nes the method as a way of exploiting the information about

the errors in estimates of known quantities to reduce the error in an estimate of an unknown

quantity. To describe the method, let's suppose that we wish to estimate µ = E[X], where X

is the output of a simulation experiment. Suppose that Y is also an output of the simulation

or that we can easily output it if we wish. Finally, we assume that we know E[Y ]. Then we

can construct many unbiased estimators of µ.

• ∧µ = X, our usual estimator.

• ∧µc = X − c(Y − E[Y ]) , where c is some real number.

Here Y is called a control variate for X . It is clear that E[
∧
µc] = µ. The question is whether

or not
∧
µc has a lower variance than µ . To answer this question, we compute Var(

∧
µc) and

get:

Var(
∧
µc) = Var(X) + c2 Var(Y )− 2cCov(X, Y ). (2.54)

Since we are free to choose c, we should choose it to minimize Var(
∧
µc). Simple calculus then

implies that the optimal value of c is given by

c∗ =
Cov(X, Y )

Var(Y )
. (2.55)

Chiheb BEN HAMMOUDA 26 Graduation Project Report



Tunisia Polytechnic School King Abdullah University of Science and Technology

Substituting for c∗ into the variance formula above we see that

Var(
∧
µc∗) = Var(X)− Cov(X, Y )2

Var(Y )
(2.56)

= Var(X)− Var(X) Var(Y )ρ2
XY

Var(Y )
(2.57)

= Var(X)(1− ρ2
XY ), (2.58)

where ρXY denotes the correlation between X and Y . The above formula shows that the CV

method is successful only if the selected CV is highly correlated with the original simulation

output.

2.2.4 Polynomial Chaos (PC) Method

2.2.4.1 Introduction

The basic idea of Polynomial Chaos is to compose orthogonal polynomials with independent

random variables. The bene�t is that it reduces the problem of constructing a basis on a

probability space to the problem of constructing orthogonal polynomials with respect to a

given weight function. The original polynomial chaos [21, 22] employs the Hermite polyno-

mials in the random space as the trial basis to expand the stochastic processes. Cameron

and Martin proved that such expansion converges to any second-order processes in the L2

sense [23].

Ghanem provided a survey of the subject in 1991 [24] and restricted his attention to Hermite

polynomials composed with Gaussian random variables as his basis. Xiu and Karniadakis [25]

introduced generalized PC, which generalized the method to include other polynomials and

random variable families. In 2010, Xiu [26] published a text detailing the use of PC in

stochastic spectral methods.

The chaos expansion is essentially a representation of a function f ∈ L2 (Ω) where Ω is the

properly de�ned probability space. We denote by {Φk}∞0 a family of polynomials that are

orthogonal with respect to the density of the random variable and which form an orthogonal

basis in L2(Rn).

In this section, we develop the basics of PC. We recall the main mathematical notions needed

to understand the present report. For more details see [27].
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2.2.4.2 Basic Notions and Notations

A general polynomial of degree n takes the form

Qn(x) = anx
n + an−1x

n−1 + ........+ a1x+ a0, an 6= 0 (2.59)

where an is the leading coe�cient of the polynomial.

A system of polynomials {Qn(x), n ∈ N} is an orthogonal system of polynomials with respect

to some real positive measure α if the following orthogonality relations hold:∫
S

Qn(x)Qm(x)dα(x) = γnδmn,m, n ∈ N, (2.60)

where S is the support of the measure α, and γn are positive constants.

The measure α usually has a density ω(x) or is a discrete measure with weight ωi at the

points xi. The relation (2.60) then becomes∫
S

Qn(x)Qm(x)ω(x)dx = γnδmn, m, n ∈ N (2.61)

in the former case and ∑
i

Qn(xi)Qm(xi)ωi = γnδmn, m, n ∈ N (2.62)

in the latter case.

If we de�ne a weighted inner product then in the continuous cases it takes the form

< u, v >dα=

∫
S

u(x)v(x)dα(x) (2.63)

then the orthogonality relations can be written as

< Qn, Qm >ω= γnδmn, m, n ∈ N (2.64)

where

γn =< Qn, Qn >ω=‖ Qn ‖2
ω, n ∈ N (2.65)

2.2.4.3 Polynomial Basis

PC expansion uses the Wiener-Askey scheme [25] in which Hermite, Legendre, Laguerre,

Jacobi, and generalized Laguerre orthogonal polynomials are used for modeling the e�ect of

uncertain variables described by normal, uniform, exponential, beta, and gamma probability
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distributions, respectively (orthogonal polynomial selections also exist for discrete distribu-

tions, but are not explored here). These orthogonal polynomial selections are optimal for

these distributions since the inner product weighting function and its corresponding support

range correspond to the probability density functions for these continuous distributions. In

theory, exponential convergence rates can be obtained with the optimal basis (see [25,28,29]).

Table 2.1 shows the set of polynomials which provide an optimal basis for di�erent continuous

probability distribution types. It is derived from the family of hypergeometric orthogonal

polynomials known as the Askey scheme [29], for which the Hermite polynomials originally

employed by Wiener [21] are a subset. The optimality of these basis selections derives from

their orthogonality with respect to weighting functions that correspond to the probability

density functions (PDFs) of the continuous distributions when placed in a standard form.

The density and weighting functions di�er by a constant factor due to the requirement that

the integral of the PDF over the support range is one.

Distribution Density function Polynomial Weight function Support range

Normal 1√
2π
e
−x2
2 Hermite en(x) e

−x2
2 [−∞,+∞ ]

Uniform 1
2

Legendre Pn(x ) 1 [-1, 1]

Beta (1−x)α(1+x)β

2α+β+1B(α+1,β+1)
Jacobi Pn(α, β)(x) (1− x)α(1 + x)β [-1 ,1]

Exponential e−x Laguerre Ln(x) e−x [0,+∞]
Gamma xαe−x

Γ(α+1)
Generalized LaguerreLαn(x)) xαe−x [0,+∞ ]

Table 2.1: Linkage between standard forms of continuous probability distributions and Askey
scheme of continuous hyper-geometric polynomials.

Where B(a,b) is the Beta function de�ned as B(a, b) = Γ(a)Γ(b)
Γ(a+b)

.

Since each type of polynomials form a complete basis in the Hilbert space determined by

their corresponding support, we have the convergence to any L2 functional in the L2 sense

in the corresponding Hilbert functional space as a generalized result of the Cameron-Martin

theorem [28, 29]. Each type of orthogonal polynomials has weighting functions of the same

form as the probability function of its associated random variables ξ, as shown in table 2.1.
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2.2.4.4 Generalized Polynomial Chaos Expansion

A general second-order random process X(ω) can be represented in the form

X(ω) = c0Ψ0

+
(∑∞

i1=1 ci1Ψ1(ξi1(θ))
)

+
(∑∞

i1=1

∑i1
i2=1 ci1i2Ψ2(ξi1(θ), ξi2(θ))

)
+

(∑∞
i1=1

∑i1
i2=1

∑i2
i3=1 ci1i2i3Ψ3(ξi1(θ), ξi2(θ), ξi3(θ))

)
+ · · ·

(2.66)

where Ψn(ξi1, ξi2, ....., ξin) denotes the generalized polynomial chaos of order n in terms of the

multidimensional random variables (ξi1, ξi2, ..., ξin,....). Note that this is an in�nite summation

in the in�nite dimensional space of ξ. The expansion bases{Ψn } are multidimensional

hypergeometric polynomials de�ned as tensor-products of the corresponding one dimensional

polynomials bases {φk}∞0 . Let χ be the space of index sequences (α1, α2, ....., αn.....) ∈ NN
0

and n :=
∑

k αk. Then,

Ψn(ξ1, ξ2, ..., ξn) =
n∏
k=1

φαk(ξk). (2.67)

This representation is convergent in the mean-square sense:

lim
p→∞

E

c0Ψ0 + ......+
∞∑
i1=1

....

ip−1∑
ip=1

ci1 ...cipΨp(ξi1 , ...., ξip)−X

2 = 0. (2.68)

By construction, chaos polynomials whose orders are greater than p = 0 have vanishing

expectation:

E [Ψp>0] = 0. (2.69)

Classically, in order to facilitate the manipulation of the PC expansion, we rely on an univocal

relation between Ψ() and new functional Φ(). It results in a more compact expression of the

random variable expansion:

X(ω) =
∞∑
j=0

ajΦj(ξ(ω)) (2.70)

where there is a one-to-one correspondence between the coe�cients and basis functions in

(2.66) and (2.70).
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The family {Φn} is an orthogonal basis in L2(Ω) with orthogonality relation

< ΦiΦj >=< Φ2
i > δij (2.71)

where δij is the Kronecker delta and < ., . > denotes the ensemble average which is the inner

product in the Hilbert space of the variables ξ,

< f(ξ)g(ξ) >=

∫
f(ξ)g(ξ)W (ξ)dξ (2.72)

or

< f(ξ)g(ξ) >=
∑
ξ

f(ξ)g(ξ)W (ξ) (2.73)

in the discrete case. Here W (ξ) is the weighting function corresponding to PC basis {Φi}.
The coe�cients aj are given by

aj =
< X,Φj(ξ) >

< Φj(ξ),Φj(ξ) >
(2.74)

=

∫
Ω
XΦj(ξ)dP∫

Ω
Φ2
j(ξ)dP

(2.75)

where each inner product involves a multidimensional integral over the support range of the

weighting function. In particular, Ω = Ω1⊗...⊗Ωn with possibly unbounded intervals Ωj ⊂ R.

In practice, one truncates the in�nite expansion at a �nite number of random variables and

a �nite expansion order

X(ω) ≈
P∑
j=0

ajΦj(ξ(ω)). (2.76)

The total number of terms Nt in an expansion of total order p involving n random variables

is given by

Nt = 1 + P = 1 +

p∑
s

1

s!

s−1∏
r=0

(n+ r) =
(n+ p)!

n!p!
(2.77)

2.2.4.5 Stochastic Sensitivity Analysis

Stochastic expansion methods have a number of convenient analytic features that make them

attractive for use within higher level analyses, such as local and global sensitivity analysis

and design under uncertainty algorithms. First, moments of the response expansion are

available analytically. In addition, the response expansions are readily di�erentiated with

respect to the underlying expansion variables, and response moment expressions are readily

di�erentiated with respect to auxiliary non probabilistic variables.
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If we have equation (2.76) as approximation of X then the mean and variance of the poly-

nomial chaos expansion are available in simple closed form:

E[X] ≈
P∑
j=0

aj E[Φj(ξ)] = a0, (2.78)

and

Var[X] ≈ E[(
P∑
j=1

ajΦj(ξ))
2] (2.79)

=
P∑
j=1

P∑
k=1

ajak < Φj(ξ),Φk(ξ) > (2.80)

=
P∑
k=1

(ak)
2

∫
Ω

(Φk(ξ))
2dP (2.81)

These moments are exact moments of the expansion, which converge to moments of the true

response function. Higher moments are also available analytically and could be employed

in moment �tting approaches (i.e., Pearson and Johnson models) in order to approximate a

response PDF.

2.3 Sparse Grid Quadrature

2.3.1 Introduction

When dealing with multidimensional integrals in the case of basket options, SGQ can be a

convenient technique as it o�ers an e�cient numerical treatment of multivariate problems.

This method goes (at least) back to the Russian mathematician Smolyak. It has been ap-

plied to numerical integration by several authors using the rectangle rule [30], the trapezoidal

rule [31], the Clenshaw-Curtis rule [32] and the Patterson rule [33] as a one dimensional basis.

In contrast to the product approach, the convergence rate of Monte Carlo and Quasi-Monte

Carlo methods does not depend on the smoothness of the problem. Thus, in general,

smoother integrands are not computed more e�ciently than non-smooth ones. SGQ method

makes use of the integrand's smoothness.

In this approach, multivariate quadrature formulas are constructed by a combination of

tensor products of univariate formulas. Of all possible combinations of one-dimensional
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quadrature formulas only those are taken whose corresponding indices are contained in the

unit simplex. This way, the complexity becomes

ε(N) = O
(
N−s (lnN)(d−1)(s+1)

)
. (2.82)

where N is the number of nodes used in SGQ method and s is the smoothness' order of the

integrand.

We will now brie�y illustrate the basics of SG construction and SGQ formulas. More infor-

mation on this subject can be found in [33].

2.3.2 Construction

SG can be de�ned for general tensor product domains Ωd ⊆ Rd. We consider the case

Ω = [0, 1], but most results can be generalized in a straightforward way to other domains.

At the end of this section we will give remarks on the case Ω = R.

For a univariate function f : [0, 1]→ R and a sequence of non-decreasing integers mk, k ∈ N,
let

Umkf :=

mk∑
i=1

wi,kf(xi,k) (2.83)

denote a sequence of univariate quadrature rules with mk points xi,k and weights wi,k, which

converges pointwise to If for k → ∞. We assume m1 = 1 and Um1f = f(1/2) and de�ne

the di�erence quadrature formulae

∆k = Umk − Umk−1
for k ≥ 1 with Um0 := 0. (2.84)

Now let f : [0, 1]d → R be a multivariate function. Then, the d-dimensional integral If can

be represented by the in�nite telescoping sum

If =
∑
k∈Nd

∆kf (2.85)

which collects the products of each possible combination of the univariate di�erence formulae.

Here, k ∈ Nd denotes a multi-index with kj > 0 and

∆kf := (∆k1 ⊗ ....⊗∆kd)f

:=

nk1∑
i1=1

.....

nkd∑
id=1

ωk1i1 .....ωkdidf(xl1i1 , ....., xldid)

For a given level l ∈ N , the SG method, often also denoted as Smolyak method, see[1], is

Chiheb BEN HAMMOUDA 33 Graduation Project Report



Tunisia Polytechnic School King Abdullah University of Science and Technology

de�ned by

SGlf =
∑

|k|1≤l+d−1

∆kf (2.86)

=
l+d−1∑
j=d

∑
|k|1=j

∆kf (2.87)

where | k |1:=
∑d

j=1 kj.

From the set of all possible indices k ∈ Nd thus only those are considered whose | |1 -norm

is smaller than a constant. That 's why it is better than the product approach where the

norm | . |∞= max{k1, ....., kd} is used for the selection of indices.

Comment 2.3.1. SGQ method can be directly applied to the numerical computation of

integrals on Rd with Gaussian weight. To this end, only the sequence of univariate quadrature

rules Umk must be replaced by quadrature formulas for functions f : R → R on unbounded

domains, such as Gauss-Hermite or Genz-Keister rules.
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Chapter 3

UQ In Option Pricing: One Dimensional

Case

3.1 Introduction

In one dimensional case, the Black-Scholes option pricing model has two parameters, the

volatility σ and risk free rate r, which must be speci�ed. Uncertainty in either leads to

uncertainty in the option price. In this chapter we are going to investigate the impact of

volatility's uncertainty on European single asset option price under Black-Scholes framework.

All numerical tests are performed with Matlab.

After parameterizing the randomness in the volatility, we present in the third section the

implementation details of the probabilistic methods (MC and PC Approximation) that we

use to compute the mean quantities, α bounds and the sample density of the put option

price. Before concluding this chapter, we show the main obtained results and we compare

the e�ciency of crude MC versus surrogate PC/MC method.

3.2 Data Description and Uncertainty Parametrization

The data that we use in this chapter are S&P 500 index prices and its historical volatility.

The index data source is (�nance.yahoo.com) and the historical volatility was computed

using a 30 day moving window (see �gures 3.1a and 3.1b).

As it is shown by �gure 3.1b there is uncertainty in the value of σ. The average of σ is

σ = 19%, its standard deviation is stdev(σ) = 11% and σ ∈ [σmin = 6%, σmax = 78%].

Since we are using probabilistic methods for studying the relation between the uncertainty in

σ and the option price, the �rst step is to parametrize this uncertainty which means �nding
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Figure 3.1: S&P 500 Index and historical volatility from 2000 to 2010

a distribution to represent it.

In order to �nd which is the best parametric probability distribution that �ts to our sample

of historical volatility data we tested many distributions. Our tests showed that the log-

normal distribution with parameters (−1.8, 0.5377) best �ts the sample of data (see �gure

3.2).
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Figure 3.2: Historical volatility density

We recall that the probability density function of a log-normal distribution with parameters

µ and σ is:

fX(x, µ, σ) =
1

xσ
√

2π
e−

(log x−µ)2

2∗σ2 (3.1)
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3.3 Implementation Details

3.3.1 MC Implementation

The input uncertainty which is in our case the volatility σ is modeled by the distribution with

density fσ . Then, we generate N numbers {σi}Ni=1 and for each σi, V (S, t;σi) is computed

to obtain {Vi(S, t)}Ni=1, where Vi(S, t) = V (S, t;σi). In general, one would solve Equation

(3.2) for each i.
∂Vi
∂t

= −1

2
S2σ2

i

∂2Vi
∂S2

− rS ∂Vi
∂S

+ rVi. (3.2)

For the Vanilla put, we may use the analytical solution (3.3) to compute {Vi(S, t)}Ni=1.

V (S, 0;σ) = Ke−rTΦ(−d2)− Φ(−d1)S, (3.3)

where

d1 =
ln(S/K) + (r + σ2

2
)T

σ
√
T

d2 =
ln(S/K) + (r − σ2

2
)T

σ
√
T

and Φ denotes the cumulative distribution function of the standard normal distribution.

The sample distribution of the set {Vi(S, t)}Ni=1 is taken as a proxy for the true distribution

of V (S, t;σ). From the set {Vi(S, t)}Ni=1, we compute the sample density of V (S, t;σ) using

the kernel density method (see [34]) , mean quantities and α bounds of V (S, t;σ).

Comment 3.3.1. An α bound for a random variable ξ is the value ξ+
α such that Prob(ξ ≥

ξ+
α ) = α, i.e. an upper bound. We extend the de�nition to a lower bound and use the notation

−α bound to denote the value ξ−α such that Prob(ξ ≤ ξ−α ) = α.

3.3.2 PC Implementation

3.3.2.1 PC Basis

As the parametric density fσ of the volatility is a log-normal distribution then the polynomial

family that is orthogonal with respect to the volatility's density is the Hermite Polynomial

(see [26]). In fact, let Y = eX , where X ∼ N (µ, σ2) and Z ∼ N (0, 1) be the standard

Gaussian random variable. Then X = µ+ σZ and Y = f(Z) = eµeσZ .
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By following (2.76), we obtain

YN(Z) = eµ+σ2/2

N∑
k=0

σk

k!
Hk(Z) (3.4)

where YN(Z) is the generalized polynomial chaos (gPC) approximation of Y with order N

and Hk(x) is the hermite polynomial with order k.

Hermite polynomials satisfy

Hn+1(x) = xHn(x)− nHn−1(x), n > 0, (3.5)

and ∫ ∞
−∞

Hn(x)Hm(x)w(x)dx = n! δnm, n > 0, (3.6)

where

w(x) =
1√
2π

e−x
2/2

Note that the de�nition of Hn(x) here is slightly di�erent from the classical one used in the

literature. Classical Hermite polynomials H̃n(x) are often de�ned by

H̃n+1(x) = 2xH̃n(x)− 2nH̃n−1(x), n > 0, (3.7)

and ∫ ∞
−∞

H̃n(x)H̃m(x)w(x)dx = 2nn! δnm, n > 0, (3.8)

where w(x) = 1√
π
e−x

2/2. The two expressions are o� by a scaling factor.

3.3.2.2 PC Approximation

PC represents the random variable V (S, t;σ(ω)) as a PC series. Once we have the series

representation, the mean and standard deviation may be computed directly from the series

coe�cients as shown in (2.78) and (2.79).

We will use a stochastic collocation method [26, 27] to obtain the PC approximation. We

begin by considering the price of the put V (S, t;σ) or as we parametrized σ with log-normal

density we can de�ne a function g such that σ = g(ξ) where ξ ∼ N (0, 1). In this case, we

can use the hermite polynomials for the PC approximation of V (S, t;σ) with σ replaced by

g(ξ), ξ is a standard normal random variable whose density is denoted by fξ.

Let φk(x) denote the kth degree hermite polynomial, so that φk(ξ) is the kth PC basis

function. The �rst step in the stochastic collocation method is to expand the solution V as
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a PC series.

V (S, t; g(ξ)) ≈
p∑

k=0

αk(S, t)φk(ξ) (3.9)

where p denotes the maximum polynomial degree of the series approximation.

Then the solution V is projected onto the kth basis element to obtain the coe�cient αk(S, t)

αk(S, t) =

∫
Ω

V (S, t; g(ξ))φk(ξ)dPξ. (3.10)

We write the integral in terms of the density fξ which is the standard normal distribution

αk(S, t) =

∫
R
V (S, t; g(x))φk(x)fξ(x)dx (3.11)

which can be approximated by a Jth order Gauss-Hermite quadrature rule, i.e.

αk(S, t) ≈
J∑
j=1

V (S, t; g(xj))φk(xj)wj, (3.12)

where {xj}Jj=1 and {wj}Jj=1 are respectively the roots and weights of a Hermite polynomial

of order J .

In our case, we can compute V (S, t; g(xj)) using the analytic solution for the European put.

However, in general, we should solve a variant of Black-Scholes PDE with replacing σ with

g(xj). Once the coe�cients αk(S, t) are computed, we may then form the series Equation

(3.9).

To compute the distribution of V by PC approximation, we again use MC to generate a set

{σi}Ni=1, where each σi is drawn from log-normal distribution, and for each i the associated Vi
is computed. The di�erence here from Section 3.3.1 is that each V (S, t;σi) is computed using

Equation (3.9). Thus, regardless of which option one is analyzing, the cost of computing

each sample point in the MC simulation is small (the evaluation of a sum).

The computation of the PC series has two contributions to the error. The �rst is determined

by p and the rate of decay of the coe�cients. The second is determined by J and the

order of the Gauss quadrature rule used to approximate the orthogonal projection. We can

quantify those errors by examining the spectrum of the approximation. Figure 3.3 shows

the convergence of the coe�cients for two values of J . We see that by p = 10 , the spectral

coe�cients αk(S, t) are in the order of 10−5. From �gure 3.3 we estimate that p = 10 and

J = 30 are su�cient for an error in the computed result of Equation (3.9) of 10−5.

Chiheb BEN HAMMOUDA 39 Graduation Project Report



Tunisia Polytechnic School King Abdullah University of Science and Technology

1 2 3 4 5 6 7 8 9 10 11
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

PC degree k

lo
g

1
0
  

(α
k
)

 

 

log
10

(α
k
) for  J=30

log
10

(α
k
) for  J=100

Figure 3.3: Convergence of PC coe�cients

3.4 Numerical Results

The sample densities V (S, t;σ) for S = 800, 1000, 1200 are given by Figures 3.4 and 3.5.

Figure 3.4 shows that the distribution of V (S, t;σ) is highly skewed for either deep in or out

of the money options.

For near the money options, V (S, t;σ) has a distribution that is similar (in shape) to the

sample distribution of σ. The skewness is a consequence of the fact that the price of a put

option, as a function σ, is an increasing function overall but becomes �at as σ approaches

zero. This insensitivity to σ becomes more severe the further the S is from the strike. Thus,

for deep in or out of the money puts, small values of σ all produce similar option prices and

cause the density to place a large amount of mass near the minimum option value for the

given S.

The comparison between the densities obtained by MC and PC methods shows that for

N = 100000, p = 10, and J = 30 same results are produced .

Figures 3.6 and 3.7 show how the mean, the standard deviation and 1% bounds of V (S, t;σ)

vary in general with S for t = 0 and N = 100000 . The probabilistic bounds of V (S, t;σ)

are computed using the kernel density method. We conclude from these �gures that the two

methods (MC and PC) produce the same results. This is con�rmed by Table 3.1 which gives

the mean and standard deviation by MC and PC methods for S = 800, 1000, 1200 ( i.e for

an in-the-money option, an at-the-money option, and an out-of-the money option). This

table shows that the di�erence between these methods' outputs is of about 10−3.
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(a) Density of V(800) by MC and PC methods
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Figure 3.4: Density of V(1200) and V(800) by MC and PC methods
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Figure 3.5: Density of V(1000) by MC and PC methods

S 800 1000 1200
Mean of V(S,0,σ)(MC) 172.1635 53.0375 17.6456
Mean of V(S,0,σ)(PC) 172.1638 53.0373 17.6454

Stdev of V(S,0,σ)(MC) 28.0329 41.0428 28.7341
Stdev of V(S,0,σ)(PC) 28.0328 41.0421 28.7343

Table 3.1: Statistics of V(S,t,σ) computed with MC and PC methods
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Figure 3.6: The mean and standard deviation of V(S, 0; σ) with σ random
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Figure 3.7: Comparison of +1% bounds of option price V using PC and MC methods

3.5 Performance of Crude MC Versus Surrogate PC/MC

Approximation

We now compare the e�ciency of a crude MC implementation of probabilistic uncertainty

and the surrogate PC/MC approximation. In both implementations, we must obtain the

set of {Vi(S, t)}Ni=1. When using crude MC, we computed the values of Vi(S, t) directly, and

thus N applications of the option price solver are required. In the surrogate implementation,

V (S, t;σ) is approximated by a PC series. To get the PC approximation, one needs to solve

the option price J times. The Vi's are then computed using the PC series approximation.

The important point is that J � N . For the results presented, recall that N was 100000
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and J was 30.

The computation time of a MC implementation is

CMC = N.Tsolver

and the time for the surrogate implementation is

Csur = J.Tsolver +N.TPCsum

where Tsolver denotes the computation time of the option solver used and TPCsum denotes

the time required to evaluate the PC series. Taking the ratio of the two, one obtains

Csur
CMC

=
J.Tsolver +N.TPCsum

N.Tsolver
=
J

N
+
TPCsum
Tsolver

(3.13)

Equation(3.13) has two terms. The �rst, J
N
, is implementation independent and represents

the maximal e�ciency of the surrogate method. For J = 30 and N = 100000 , J
N

= 0.0003

so that the surrogate method would be 3333 times faster than the crude MC for these pa-

rameters. The second term TPCsum
Tsolver

, however, depends on the option solver one uses. The

larger Tsolver is, the greater the bene�t of using the surrogate method.

Table 3.2 gives an idea about the e�ciency of MC versus PC in our case. The bene�t of

the surrogate method is marginal for the European option because of the availability of an

inexpensive exact solution. However, if one analyses an option whose solution (analytic or

numerical) requires non-trivial computation time, the bene�t of the surrogate method can

be signi�cant.

Method Time for computing Mean of V(S) Time for computing Stdev of V(S)
MC with N = 100000 0.0571 0.0396
PC with p = 10, J = 30 0.0011 0.0069

Table 3.2: E�ciency of MC versus PC

3.6 Conclusion

In this chapter, we investigated the impact of volatility's uncertainty on the price of European

put under Black-Scholes framework. We modeled the volatility from historical data and its

density was �tted by the best parametric distribution which was in our case the log-normal
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distribution. We used the probabilistic approach and implemented MC and PC methods

that used this distribution to compute mean quantities, α bounds and sample densities

of the put's price. Both methods gave same results but the surrogate PC/MC method was

signi�cantly faster. For the polynomial orders and the number of samples needed in our case,

PC method was up to 3300 times faster depending on the solver's speed. Unlike deterministic

methods basically Worst case analysis, probabilistic methods that we implemented here can

be applied with slight modi�cation to any kind of option or pricing model. We also mention

that our work can be improved if we consider the calibrated sample density of the volatility.

In this case, the orthogonal polynomials must be constructed numerically.
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Chapter 4

UQ In Option Pricing: Multidimensional

Case

4.1 Introduction

The Black-Scholes option pricing model in high dimensional case has two sources of uncer-

tainty, the covariance matrix Σ and risk free rate r, which must be speci�ed. Uncertainty

in either leads to uncertainty in the option price. We consider that Σ is the main source of

uncertainty given the relatively short time span of the option. In this case, our aim is to

investigate the e�ect of uncertainty in the covariance matrix Σ on option pricing by com-

puting the mean of the basket option price as well as estimating its sample density.

After analyzing di�erent approximation methods of arithmetic basket option price and se-

lecting the best one, we develop three ways in order to compute the mean of basket option

price:

• Nested MC Simulation.

• MC + Approximation (MC/Approx).

• SGQ +Approximation.

We start this chapter with parameterizing the uncertainty in the covariance matrix Σ and

analyzing pricing approximations for basket options in order to select the best one. In the

fourth section, we are going to explain the implementation of di�erent methods used for the

computation of basket option price mean. Before concluding, we are going to present the

obtained results which includes the mean and the sample density of basket put price joined

with a comparison of implemented methods' performance. All numerical tests are performed

with Matlab.

45
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4.2 Uncertainty Parametrization

To model the randomness in the covariance matrix of asset's returns, we use the Wishart

distribution. In fact, the Wishart distribution is often used to model random covariance

matrices(see [35�37]).

A Wishart random matrix with parameters n and H can be seen as a sum of outer products

of n independent multivariate normal random vectors having mean 0 and covariance matrix
1
n
H . It is characterized as follows:

De�nition 4.2.1. Let W be a K ×K absolutely continuous random matrix. Let its support

be the set of all symmetric and positive de�nite real matrices:

Rw = {w ∈ RK×K : w is symmetric and positive definite}

Let H be a symmetric and positive de�nite matrix and n > K − 1. We say that W has a

Wishart distribution with parameters n and H if its joint probability density function is:

fW (w) = c[det(w)]n/2−(K+1)/2exp(−n
2
tr(H−1w)) (4.1)

where

c =
nn/2

2nK/2[det(H)]n/2πK(K−1)/4
∏K

j=1 Γ(n/2 + (1− j)/2)

and Γ is the Gamma function.

The parameter n needs not be an integer, but, when n is not an integer, W can no longer

be interpreted as a sum of outer products of multivariate normal random vectors.

The following proposition provides the link between the multivariate normal distribution

and the Wishart distribution:

Proposition 4.2.1. Let X1, ..., Xn be n independent K × 1 random vectors all having a

multivariate normal distribution with mean 0 and covariance matrix 1
n
H. Let K = n. De�ne:

W =
n∑
i=1

XiX
T
i

Then W has a Wishart distribution with parameters n and H.

The expected value of a Wishart random matrix W with parameters n and H is:

E[W ] = H

.
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4.3 Comparison of Approximation Methods For Basket

Option Pricing

This section analyses the performance of the particular pricing approximation methods men-

tioned in 2.1.5 which are ( Ju, Levy and Beisser approximations). We will do this by changing

all relevant parameters individually, while the remaining ones are kept �xed to our standard

scenario.

That means in detail that four sets of tests are performed. They involve changing the

correlations ρij, strike K, initial stock prices S0
i and the volatilities σi respectively.

As a standard scenario we use a basket call composed by 4 stocks and having �ve years as

maturity. The discount factor is equal to one. Let i and j denote the indices of the stocks.

The default parameters are:

T = 5 ; r = 0 ; ρij = 0.5(i 6= j) ; K = 100 ; Si(0) = 100 ; σi = 0.4 ; ωi =
1

4

In the following, we are going to compare the results of di�erent approximations to Monte

Carlo with Control Variate technique.

The deviation to Monte Carlo denoted by 'Dev' is used as a performance index for the

di�erent methods and calculated as

Dev =

√√√√ 1

n

n∑
i=1

(MCi − Vi)2, (4.2)

where MCi is the basket option price calculated by Monte Carlo method and Vi is the price

calculated using one of pricing approximations ( Ju, Levy or Beisser approximations).

4.3.1 Varying The Correlations

Figure 4.1 and table 8 in appendix A show the e�ect of simultaneously changing all cor-

relations from ρ = ρij = 0, 1 to 0.95. All methods perform reasonably well, especially for

ρ ≥ 0.8, all methods give the same price except Beisser approximation.

We can explain the good performance of Ju and Levy for high correlations as follows: these

methods provide exactly the Black-Scholes prices for the special case that the number of

stocks is one. For high correlations the distribution of the basket is approximately the sum

of the same( for ρ = 1 exactly the same) log-normal distributions, which is indeed again

log-normal.
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In total the prices calculated by Ju's approach is the closest to the Monte Carlo prices.
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Figure 4.1: Varying correlation

4.3.2 Varying The Strike

With all other parameters set to the default values, the strike K is varied from 50 to 150.

Figure 4.2 and table 9 in appendix A show the results. Again, overall Ju's approximation

performs best. The relative and absolute di�erences of all methods are generally increasing

when K is growing, since the approximation of the real distributions in the tails is getting

worse and the absolute prices are decreasing.

4.3.3 Varying Stock Prices

The prices of all stocks are now set to the same value S0 which is varied between 50 and 150

in this set of tests. Figure 4.3 and table 10 in appendix A show that Ju's method is the best

approximation compared to Monte Carlo .
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Figure 4.2: Varying strike
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Figure 4.3: Varying stock price

4.3.4 Varying The Volatilities

We start with the symmetrical situation at each step, σi is set to the same value σ, which

is varied between 5% and 100%. Figure 4.4 and table 11 in appendix A show the results of
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the test. The prices calculated by the di�erent methods are more or less equal for "small"

values of the volatility. They start to diverge at σ ≈ 60% . And again Ju's approximation

is the best.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

10

20

30

40

50

60

70

Volatilty

B
a

s
k

e
t 

c
a

ll
 p

ri
c

e

 

 

price by MC

price by Levy

price by Ju

price by Beisser

Figure 4.4: Varying volatilty symetrically

Volatility Beisser Ju Levy Monte Carlo CV StdDev
5% 19,45 35,59 55,56 22,65 (0,55)
10% 20,84 36,19 55,52 21,3 (0,38)
15% 22,6 36,93 55,61 22,94 (0,26)
20% 24,69 37,8 55,71 25,24 (0,21)
30% 29,52 39,97 55,98 30,95 (0,16)
40% 34,72 42,66 56,35 36,89 (0,11)
50% 39,96 45,84 56,89 41,72 (0,08)
60% 45,05 49,39 57,68 46,68 (0,04)
70% 49,88 53,21 58,87 51,78 (0,05)
80% 54,39 57,17 60,70 56,61 (0,07)
100% 62,32 64,93 67,24 65,31 (0,09)
Dev 1,92 8,96 22,70

Table 4.1: Varying the volatilities asymmetrically

Ju's approximation is no longer the best when we have asymmetry in the volatilities, precisely

if there are groups of stocks with high and with low volatilities entering the basket. This

is clearly demonstrated by Table 4.1, where we �x σ1 = 100% and vary the remaining
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volatilities symmetrically. We note also the extremely bad performance for Levy's method

for small values of σ. Beisser seems to be the best approximation in case of inhomogeneous

volatilities.

4.3.5 Conclusion

As it was shown by di�erent tests, the Ju's method is the best approximation except for the

case of inhomogeneous volatilities. The reason for this drawback may be that all stocks are

"thrown" together on one distribution. This is quite contrary to Beisser's approximation,

where every single stock keeps a transformed log-normal distribution and the expected value

of every stock is individually evaluated. This is probably the reason why this method is able

to handle the case of inhomogeneous volatilities.

Beisser's approximation underprices slightly in all cases since this method is a lower bound

on the true option price. Beisser's approach is the only method which is reliable in the case

of inhomogeneous volatilities.

Giving these results, in the following, we will use Ju and Beisser methods to investigate the

e�ect of parametric uncertainty in multidimensional case.

4.4 Implementation Details

4.4.1 Introduction

Consider a basket of n assets S1, S2, .....Sd let r denote the risk-free short rate, and suppose

that the risk-neutralized price process Si(t) satis�es

dSi(t) = Si(t)(rdt+ σidWi(t)) (4.3)

where σi is the volatility of the asset i, Wi(t) is a standard Brownian motion, and

E[dWi(t), dWj(t)] = ρijdt. (4.4)

Let V (S1, S2, .....Sd,Σ) denote the price of a basket option of d assets and which depends

on the covariance matrix of these assets Σ. If we suppose that the covariance matrix Σ

follows Wishart distribution denoted by ρ(Σ) and we de�ne Π(Σ) one of the approximation

functions that we selected for the valuation of the basket option price then

E(V (S1, S2, .....Sd,Σ)) =

∫
R
d×(d+1)

2

Π(Σ)ρ(Σ)dΣ. (4.5)
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Based on (4.5) we computed the mean of the basket option price via 3 ways :

• Nested MC Simulation

• MC + Approximation (MC/Approx)

• SGQ +Approximation

In the following we will explain the implementation of each method.

4.4.2 Mean Computation Of Basket Put Price Using Nested MC

Simulation

In this section, we compute the mean of basket put option price using Nested MC Simu-

lation applied to the left side (4.5) which means without using an approximation for the price.

Giving a covariance matrix Σ, we de�ne R a d× d correlation matrix with entries Rij = ρij

and let L be the solution of LLT = R obtained by the Cholesky factorization (see [16] p.73

for an algorithm to compute L).Then we get the following form used for the simulation

Si(T ) = Si(0)exp

((
r − σ2

i /2
)
T + σi

√
T

i∑
j=1

Lijξj

)
, i = 1, ...., d (4.6)

where ξj , j = 1, ....., d are independent standard normal random variates. Note that the i−th
element of the vector Lξ can be written as

∑i
j=1 Lijξj as L is lower triangular. Algorithm 2

shows the implementation details.

One way to reduce the variance of MC methods is to combine it with Control variate tech-

nique. If we consider an option that uses geometric averages as the geometric average of

log-normal variate is itself log-normal. A geometric average call has the payo� function

PG = (K −G)+ where G = exp(
∑d

i=1wi lnSi). The payo�s of the geometric and the arith-

metic average options are very close to each other as the values of Si are close. In fact,

arithmetic and geometric averages yield the same result if all prices are the same. So, it is

a sensible choice to use the payo� of the geometric average option PG as a control variate

(CV) of PA with PA is the arithmetic average call. The simulation estimator for the price

(without the discount factor e−rT ) is YCV = PA − c(PG − µPG), where

µPG := E[PG] = eµs̃+σ
2
s̃/2Φ(−k + σs̃)−KΦ(−k), (4.7)

where Φ denotes the cumulative distribution function (cdf) of the standard normal distribu-

tion,

k =
lnK − µs̃

σs̃
, (4.8)

and µs̃ = E[lnG] , σ2
s̃ = Var(lnG), which are given by equations µs̃ =

∑d
i=1 ωiµ̃i and
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Algorithm 2 MC for mean computation of basket put option price

Inputs Sample size n1 for random covariance matrices, Sample size n2 for asset prices
generation, maturity T , time series length of assets' returns p, number of assets d, weights
of assets ωi, initial asset prices Si(0), Strike price K, covariance matrix R, risk free interest
rate r, Con�dence Coe�cient α.
for m = 1.....n1 do
Generate a random covariance matrix Σ following Wishart distribution with parameters
R and p.
Compute the new volatilities vector σ and correlation matrix ρ from Σ
Compute the Cholesky factor L of ρ.
for i = 1.....n2 do
Generate independent standard normal variates, ξ ∼ N (0, 1), j = 1, ......., d

Set Sj(T )← Sj(0)exp
((
r − σ2

j/2
)
T + σj

√
T
∑j

k=1 Ljkξk

)
, j = 1, ...., d.

Set Yi ← e−rT
(
K −

∑d
j=1wjSj(T )

)+

end for
Compute the sample mean Ym of Yi

end for
Compute the sample mean P̄ and the sample standard deviation s of Ym.
return P̄ and the error bound Φ−1(1−α/2)s/

√
n1,where Φ−1 denotes the quantile of the

standard normal distribution.

σ2
s̃ =

∑d
i=1

∑d
j=1 ωiωjσ̃iσ̃j ρ̃ij where

µ̃i = E[lnSi] = lnSi(0) + (r − σ2
i /2)T (4.9)

σ̃i =
√

Var(lnSi) = σi
√
T (4.10)

ρ̃ij is the correlation between lnSi and lnSj and we have ρ̃ij = ρij. The CV coe�cient c is

considered as an input to our algorithm. Since the optimal c∗ = Cov(PA, PG)/Var(PG) is

very close to one in most cases, we can choose simply c = 1.

The details of MC method using Control variate to compute the mean of basket put option

price are shown by algorithm 3.
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Algorithm 3 MC using Control variate technique for mean computation of basket put
option price

Inputs Sample size n1 for random covariance matrices realizations, Sample size n2 for
asset prices generation, time series length of assets' returns p, maturity T , number of
assets d, weights of assets ωi, initial asset prices Si(0), Strike price K, covariance matrix
R, risk free interest rate r, con�dence Coe�cient α, CV coe�cient c(can be set to 1).
for i = 1.....n1 do
Generate a random covariance matrix Σ following Wishart distribution with parameters
R and p.
Compute the new volatilities vector σ and correlation matrix ρ from Σ
Compute the Cholesky factor L of ρ.
Compute µP by using Equation 4.7
for i = 1.....n2 do
Generate independent standard normal variates, ξ ∼ N (0, 1), j = 1, ......., d

Set Sj(T )← Sj(0)exp
((
r − σ2

j/2
)
T + σj

√
T
∑j

k=1 Ljkξk

)
, j = 1, ...., d.

Set PA ←
(∑d

j=1 ωjSj(T )−K
)+

.

Set PG ←
(
exp

(∑d
j=1 ωj lnSj(T )

)
−K

)+

.

Set Yi ← e−rT (PA − c (PG − µPG)) +
(
e−rTK −

∑d
j=1 ωjSj(0)

)
end for
Compute the sample mean Ym of Yi

end for
Compute the sample mean P̄ and the sample standard deviation s of Ym.
return P̄ and the error bound Φ−1(1−α/2)s/

√
n1,where Φ−1 denotes the quantile of the

standard normal distribution.
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4.4.3 Mean Computation Of Basket Put Price Using MC With Ap-

proximation

In this section, we compute the mean of basket put option price with MC applied to(4.5)

which means after using an approximation method for the price. As it was concluded in 4.3,

we will use both Beisser and Ju approximation methods as they are the best. The details of

our implementation are presented by algorithm 4.

Algorithm 4 Mean computation of basket put option price using MC/Approx

Inputs Sample size n for random covariance matrices realizations, maturity T , time
series length of assets' returns p, number of assets d, weights of assets ωi, initial asset
prices Si(0), Strike price K, covariance matrix R, risk free interest rate r, Con�dence
Coe�cient α.

for i = 1.....n do
Generate a random covariance matrix Σ following Wishart distribution with parameters
R and p.
Compute Yi the approximation of the price with Beisser or Ju method using Σ as an
input parameter.

end for

Compute the sample mean P̄ and the sample standard deviation s of Yi.

return P̄ and the error bound Φ−1(1−α/2)s/
√
n,where Φ−1 denotes the quantile of the

standard normal distribution.

4.4.4 Mean Computation Of Basket Put Price Using Sparse Grid

Quadrature

In this section, we compute the mean of basket put option price with SGQ applied to

equation(4.5) which means after using an approximation method for the price. As it was

explained in 2.3, this method can be a convenient technique for an e�cient numerical treat-

ment of multivariate problems specially in the case of multidimensional integrals.

One constraint that can deteriorates the performance of SGQ is the high dimension of the

problem. In fact, in our case, if we suppose that the covariance matrix Σ is a d × d real

symmetric matrix then the dimension of the problem will be d×(d+1)
2

. So, the �rst step is the

reduction of problem dimension which we are going to deal with in the following section.
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4.4.4.1 Dimension Reduction Procedure

As the covariance matrix Σ is a real symmetric matrix then, there exists an orthogonal

matrix P such that

D = P−1ΣP (4.11)

where P−1 = P tr and D is a diagonal matrix with diagonal entries being the eigenvalues of Σ.

Giving this property, we can reduce the dimension of the problem to d by only perturbing

the eigenvalues of Σ and keeping its eigenvectors �xed ( for more details about eigenvalues

perturbation technique see [38,39])).

Let (λ1, λ2, ....., λd) be the eigenvalues of Σ then equation (4.5) becomes

E(V (S1, S2, .....Sn,Σ)) =

∫
R
d×(d+1)

2

Π(Σ)ρ(Σ)dΣ

=

∫
Rd

Π(λ1, λ2, ....., λd)ρλ1,λ2,.....,λd(λ1, λ2, ....., λd)dλ1dλ2...dλd.

We follow these steps in order to perturb the eigenvalues and reduce the dimension of the

problem:

1. Sampling n random covariance matrices following Wishart distribution with parame-

ters H and p.(H is the Covariance matrix obtained from data and p is the size of time

series data).

2. From these samples we recover n samples for each eigenvalue by diagonalization.

3. Fitting the distribution of each eigenvalue.

Once we have the parameters of eigenvalues distributions, we can apply SGQ.

Comment 4.4.1. The results of �tting eigenvalues densities( see appendices B and C)show

that for all eigenvalues, the normal distribution with di�erent parameters best �ts these den-

sities. Therefore, we are going to use Gauss hermite quadrature as the univariate quadrature

in SG method. We know that this will introduce negative eigenvalues with �nite probability

but for these computations this event happens with very low probability and it is disregarded.

4.4.4.2 Implementation of Sparse Grid Quadrature

The implementation of SGQ is shown by algorithm 7. Note that ∆kf is a d-dimensional

product quadrature rule that can be computed by algorithm 5. To �nd the indices k ∈ Nd

with | k |1= l we use algorithm 8.
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Algorithm 5 Computation of the product quadrature rule

If = 0 , p = 1 and i = (1, ..., 1)
repeat
If = If + wi1,1......wid,df(xi1,1, ....., xid,d)
�nd the next index i = (i1, ...., id) by algorithm 6 /? input: p and i ?/

until i = 0
return Pnf = If

Algorithm 6 Drop algorithm for the iterative enumeration of all product indices i =
(i1, ...., id) ∈ Nd with ij ∈ {1, ....., nj}.
inputs: p ∈ N and i ∈ Nd

repeat
ip = ip + 1
if ip > np then
if p = d then
return 0 /? all indices already enumerated ? /

end if
ip = 1
p = p+ 1

else
p = 1
return i /? the next index to use ? /

end if
until i = 0

Algorithm 7 Implementation of the sparse grid method

If = 0 and m = l + d− 1
for l = d, ....,m do

p = 1 , k = (m, 1, ..., 1) and
∧
k = (m, ...,m)

repeat
compute the the product formula ∆kf by algorithm 5
If = If + ∆kf

�nd the next index k with |k|1 = l by algorithm 8 /? input: p , k and
∧
k ? /

until k = 0
end for
return SGlf = If
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Algorithm 8 Drop algorithm for the iterative enumeration of all indices k ∈ Nd , kj >
0 with | k |1= l

Inputs: p ∈ N and k ,
∧
k ∈ Nd

repeat
kp = kp + 1

if kp >
∧
kp then

if p = d then
return 0 /? all indices already enumerated ? /

end if
kp = 1
p = p+ 1

else
for j = 1, 2, ......, p− 1 do
∧
kj =

∧
kp − kp + 1

end for

kl =
∧
kl

p = 1
return k /? the next index to use ? /

end if
until k = 0

4.5 Numerical Results

4.5.1 Introduction

In this section, we are going to illustrate the main numerical results obtained by applying

the the di�erent methods that we implemented in 4.4. In fact, we examine two di�erent

cases: Basket put option with 4 assets and another with 6 assets.

For both problems, we take our data from the DAX 30 index listings in 2012. Variables with

values common to both problems are:

• Si(0) = K , so that initially the assets are the strike price.

• the strike K = 1.

• the expiry T = 1 year.

• the risk neutral rate r = 0.05.

The parameter n2 used in Nested MC Simulation( see algorithm 2 and 3) for the valuation

of the price is equal to 105 for both of the problems.
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4.5.2 The Case of Four Dimensional Basket Put Option

The data used for the four dimensional basket put is given in table 4.2.

Asset Si ωi σi ρij
DBK 0.25 0.3978 1.000 0.752 0.782 0.659
CBK 0.25 0.5030 0.752 1.000 0.682 0.574
ALV 0.25 0.2407 0.782 0.682 1.000 0.755
MUV2 0.25 0.2173 0.659 0.574 0.755 1.000

Table 4.2: Four dimensional basket put data

We initially look at the results obtained by using SGQ (Table 4.3 and graph 4.5 ). We see

that by level 10 the mean of basket put option price converges to 0.0930 with a di�erence

of about 10−4 with the following level. The number of nodes used in SGQ to reach such

di�erence is 23023.

Level(l) Mean of the Price number of nodes CPU time log10(| SGQl+1 − SGQl |)
2 0.0497 8 0.13 −1.7110
3 0.0691 45 0.56 −1.9303
4 0.0809 165 2.06 −2.2003
5 0.0872 494 6.07 −2.5039
6 0.0903 1278 16.50 −2.8314
7 0.0918 2958 46.00 −3.1769
8 0.0925 6270 84.53 −3.5365
9 0.0927 12375 174.80 −3.9073
10 0.0930 23023 444.22 −4.2873

Table 4.3: Numerical results of Sparse Grid Quadrature : Four Dimensional Basket Put

Method Price Mean Std error CI (95%) CPU time
Nested MC (n1 = 103 ) 0.0932 2.90 e− 003 [0.087 0.098] 0.85 e+ 003
Nested MC (n1 = 104 ) 0.0931 9.36 e− 004 [0.091 0.095] 9.77 e+ 003

Nested MC+CV (n1 = 103 ) 0.0934 3.02 e− 004 [0.092 0.094] 2.68 e+ 003
Nested MC+CV (n1 = 104 ) 0.0931 8.73 e− 005 [0.093 0.093] 2.37 e+ 004

Beisser's Approx+ MC (n = 105 ) 0.0931 1.55 e− 005 [0.093 0.093] 1.30 e+ 003
Ju's Approx + MC (n = 105 ) 0.0931 1.55 e− 005 [0.093 0.093] 1.29 e+ 003

SG (level10, 23023 pts) 0.0930 444.22

Table 4.4: The mean of basket option price by di�erent methods: Case of four assets

Table 4.4 illustrates the performance of di�erent methods used to compute the mean of basket

put price. We see that the di�erent methods converge to the same value with a di�erence
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Figure 4.5: Error of Sparse Grid Quadrature(log10(| SGQl+1 − SGQl |)): Four Dimensional
Basket Put Price

of about 10−4. As we explained before, using nested MC simulation to evaluate the mean of

the basket put price is very time consuming so that using approximation methods with MC

or SGQ is more e�cient for the computation of the basket put price mean.

SGQ was the best performed method in this case. This is can be explained by the fact that

it needs less nodes ( 23023 pts) than MC/Approx(105 pts) to converge to the same value

with a di�erence of about 10−4.
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Figure 4.6: Density of four dimensional basket put price
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Figure 4.6 shows the distribution of the basket put price. This was computed using( MC+Ju

approximation ) and the kernel density estimation. This sample density is close to Gaussian.

In fact, a Gaussian distribution with parameters (0.0931, 0.0048) models the sample of basket

put price reasonably.

4.5.3 The Case of Six Dimensional Basket Put Option

The data used for the six dimensional basket put is given in table 4.5.

Asset Si ωi σi ρij
DBK 1/6 0.3978 1.000 0.752 0.782 0.659 0.584 0.586
CBK 1/6 0.5030 0.752 1.000 0.682 0.574 0.481 0.482
ALV 1/6 0.2407 0.782 0.682 1.000 0.755 0.631 0.646
MUV2 1/6 0.2173 0.659 0.574 0.755 1.000 0.596 0.543
DAI 1/6 0.3002 0.584 0.481 0.631 0.596 1.000 0.832
BMW 1/6 0.3002 0.586 0.482 0.646 0.543 0.832 1.000

Table 4.5: Six dimensional basket put data

From the results shown on table 4.6 and graph 4.7 we see that by level 9 the mean of basket

put option price converges to 0.082 with a di�erence of about 10−3.5 with the following level.

The number of nodes used in SGQ to reach such di�erence is 125879.

Level Mean of the Price number of nodes CPU time log10(| SGQl+1 − SGQl |)
2 0.0280 7 0.62 −1.7442
3 0.0460 88 3.35 −1.8450
4 0.0603 454 16.35 −2.0130
5 0.0700 1820 66.70 −2.2218
6 0.0760 6188 224.57 −2.4815
7 0.0793 18563 740.46 −2.7447
8 0.0811 50375 1.46 e+ 003 −3.0458
9 0.0821 125879 2.14e+ 003 −3.5112

Table 4.6: Numerical results of Sparse Grid Quadrature : Six dimensional basket put option

Table 4.7 illustrates the performance of di�erent methods used to compute the mean of

basket put price in the case of six dimensional Basket put. We see that the di�erent methods

converge to the same value 0.082 with a di�erence of about 10−4. SGQ is no longer the best

performed method in this case. In fact, It needs more nodes (125879 pts) than MC/Approx

(105 pts) to converge.
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Figure 4.7: Error of Sparse Grid Quadrature(log10(| SGQl+1 − SGQl |)): Six Dimensional
Basket Put Price

Method Price Mean Std error CI(95%) CPU time
Nested MC (n1 = 103 ) 0.0826 2.65 e− 003 [0.077 0.087] 758.32
Nested MC (n1 = 104 ) 0.0829 9.16 e− 004 [0.081 0.084] 7.07 e+ 003

Nested MC+CV (n1 = 103 ) 0.0828 3.15 e− 004 [0.082 0.083] 2.22 e+ 003
Nested MC+CV (n1 = 104 ) 0.0829 9.72 e− 005 [0.082 0.083] 2.13 e+ 004

Beisser's Approx + MC (n = 105 ) 0.0827 1.42 e− 005 [0.082 0.082] 2.05 e+ 003
Ju's Approx + MC (n = 105 ) 0.0829 1.41 e− 005 [0.082 0.082] 1.92 e+ 003

SG (level9, 125879 pts) 0.0821 2.14e+ 003

Table 4.7: The mean of basket option price by di�erent methods: Case of six assets
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Figure 4.8: Density of six dimensional basket put price

Figure 4.8 shows the distribution of the basket put price in the case of six dimensional

basket put. This was computed using (MC+Ju approximation ) and the kernel density

estimation. We see that a Gaussian distribution with parameters (0.0826, 0.0044) �ts very

well the sample density of the basket put price.

4.6 Conclusion

In this chapter, we investigated the impact of uncertainty in the covariance matrix of assets'

returns on the basket put price under Black-Scholes framework. We modeled the randomness

in the covariance matrix of assets's returns with Wishart distribution and we developed three

ways that use this distribution to compute mean quantities and sample densities of basket

put price: a nested MC simulation and two methods, based on MC and SGQ techniques,

that use approximation for basket option price. We looked at two di�erent problems by

varying dimensionality.

In the case of four dimensional basket put, the di�erent methods converge to the same value

of basket put price mean with a di�erence of about 10−4 for the number of samples and

SGQ levels needed in this case. Nested MC simulation is the worst method as it is very

time consuming. The method based on SGQ perform signi�cantly better as it needs less

nodes(∼ 23000 pts) than MC/Approx (105 pts). The approximation of basket put price

using the kernel density method indicates that it can be reasonably �tted by a Gaussian
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distribution.

For a six dimensional basket put, the di�erent methods converge to the same value of basket

put price mean with a di�erence of about 10−4 for the number of samples and SGQ levels

needed in this case. Again, nested MC simulation is the worst method as it is very time

consuming. However, unlike the previous case the method based on SGQ is no longer the

best as it needs more nodes ( ∼ 126000 pts) than MC/Approx (105 pts).

The approximation of basket put price using the kernel density method indicates that it can

be reasonably �tted by a Gaussian distribution.

Chiheb BEN HAMMOUDA 64 Graduation Project Report



Conclusion

Summary

The aim of this project was to develop a quantitative framework to investigate the impact

of parameters' uncertainty on option pricing. We focused on both European single asset and

basket options under Black-Scholes framework. We now go through our �ndings and list the

main results that we have obtained.

In the case of European single asset option, we investigated the impact of volatility's uncer-

tainty on a put's price. After getting the volatility sample from historical data and �tting

its density by the best parametric distribution, we implemented two probabilistic methods:

MC and PC approximation to compute mean quantities, α bounds and sample densities

of the put prices. Both methods gave same results but the surrogate PC/MC method was

signi�cantly faster. For the polynomial orders and the number of samples needed in our

case, PC method was up to 3300 times faster. The developed probabilistic approach has the

advantage of being applied with slight modi�cation to any kind of options or pricing models.

In the case of basket options, we computed the e�ects of uncertainty in the covariance matrix

of assets' returns on the basket put price. After modeling the randomness in the covariance

matrix with Wishart distribution, we developed three ways to compute mean quantities and

sample densities of basket put price: a nested MC simulation and two methods, based on

MC and SGQ techniques, that use an approximation of basket option price. We looked at

two di�erent problems with four and six dimensional basket puts.

For both cases, the di�erent methods approximate the same value of basket put price with

a di�erence of order 10−4.

In the case of four dimensional basket put, the method based on SGQ perform signi�cantly

better as it needs less nodes ( ∼ 23000 pts) than MC/Approx (105 pts) to approximate

the same value with a di�erence of about 10−4. However, this is no longer the case for six

dimensional basket put where SGQ needs more nodes ( ∼ 125000 pts) than MC/Approx
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(105 pts).

The approximation of basket put price density using the kernel density method indicates

that it can be reasonably �tted by a Gaussian distribution for both cases.

Possible Extensions

We now suggest some directions for future work. Firstly, as mentioned before, the probabilis-

tic approach that we developed in one dimensional case using MC and PC approximation

can be applied with slight modi�cation to any kind of options or pricing models. So, we can

extend our work for other parametric pricing models such as stochastic volatility model and

other types of options like American options.

Another important extension is to develop PC approximation for multidimensional options

in order to investigate the performance of this probabilistic technique for higher dimensional

problems.

Finally, constructing better dimension adaptive sparse grids may improve the performance

of SGQ in the case of multidimensional option pricing problems.
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Appendix A: Comparison of Approximation Methods

Correlation (ρ ) Beisser Ju Levy Monte Carlo CV StdDev
0,1 20,12 21,77 22,06 21,62 (0,0319)
0,3 24,21 25,05 25,17 24,97 (0,0249)
0,5 27,63 28,01 28,05 27,97 (0,0187)
0,7 30,62 30,74 30,75 30,72 (0,0123)
0,8 31,99 32,04 32,04 32,03 (0,0087)
0,95 33,92 33,92 33,92 33,92 (0,0024)
Dev 0,7 0,071 0,203

Table 8: Varying the correlation

Strike (K) Beisser Ju Levy Monte Carlo CV StdDev
50 54,16 54,31 54,34 54,28 (0,0383)
60 47,27 47,48 47,52 47,45 (0,0375)
70 41,26 41,52 41,57 41,50 (0,0369)
80 36,04 36,36 36,40 36,52 (0,0363)
90 31,53 31,88 31,92 31,85 (0,0356)
100 27,63 28,01 28,05 27,98 (0,0350)
110 24,27 24,67 24,70 24,63 (0,0344)
120 21,36 21,77 21,80 21,74 (0,0338)
130 18,84 19,26 19,28 19,22 (0,0332)
140 16,65 17,07 17,10 17,05 (0,0326)
150 14,75 15,17 15,19 15,15 (0,0320)
Dev 0,323 0,0310 0,065

Table 9: Varying the strike
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S(0) Beisser Ju Levy Monte Carlo CV StdDev
50 4,16 4,34 4,34 4,34 (0,0141)
60 7,27 7,51 7,52 7,50 (0,0185)
70 11,26 11,55 11,57 11,53 (0,0227)
80 16,04 16,37 16,40 16,35 (0,0268)
90 21,53 21,89 21,92 21,86 (0,0309)
100 27,63 28,01 28,05 27,98 (0,0350)
110 34,27 34,66 34,70 34,63 (0,0391)
120 41,36 41,75 41,80 41,71 (0,0433)
130 48,84 49,23 49,28 49,19 (0,0474)
140 56,65 57,04 57,10 57,00 (0,0516)
150 64,75 65,13 65,19 65,08 (0,0556)
Dev 0,316 0,031 0,072

Table 10: Varying the Stock Prices

Volatility Beisser Ju Levy Monte Carlo CV StdDev
5% 3,53 3,53 3,53 3,53 (0,0014)
10% 7,04 7,05 7,05 7,05 (0,0042)
15% 10,55 10,57 10,57 10,57 (0,0073)
20% 14,03 14,08 14,08 14,08 (0,0115)
30% 20,91 21,08 21,09 21,07 (0,0237)
40% 27,63 28,01 28,05 27,98 (0,0350)
50% 34,15 34,84 34,96 34,80 (0,0448)
60% 40,41 41,52 41,78 41,44 (0,0327)
70% 46,39 47,97 48,50 47,86 (0,0490)
80% 52,05 54,09 55,05 54,01 (0,0685)
100% 62,32 64,93 67,24 65,31 (0,0996)
Dev 1,22 0,12 0,69

Table 11: Varying the volatility symetrically
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Appendix B: Fitting Eigenvalues In Four Dimensional Case
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Appendix C: Fitting Eigenvalues In six Dimensional Case
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