
Politecnico di Torino
Facoltà di Ingegneria I

Corso di Laurea in Ingegneria Matematica

King Abdullah University of Science and Technology
Center for Uncertainty Quantification in Computational Science and Engineering

Master Thesis

Multilevel Monte Carlo method for PDEs
with fluid dynamic applications

Advisor:

Prof. Claudio CANUTO

Co-advisor:

Dr. Matteo ICARDI

Co-advisor:

Prof. Raúl TEMPONE
Candidate:

Nathan QUADRIO

October 2014

Prof. Claudio Canuto

Department of Mathematics,

Polytechnic University of Turin,

Turin, Italy.

Dr. Matteo Icardi

Division of Mathematics & Computer, Electrical and Mathematical Sciences & Engineering

King Abdullah University of Science and Technology,

Thuwal, Kingdom of Saudi Arabia.

Prof. Raúl Tempone

Division of Mathematics & Computer, Electrical and Mathematical Sciences & Engineering

King Abdullah University of Science and Technology,

Thuwal, Kingdom of Saudi Arabia.

1

To Anita,

a light for me when all the other lights went out.

2

“In mathematics you don’t understand things. You just get used to them.”

John von Neumann

3

Abstract

This thesis focuses on PDEs in which some of the parameters are not known exactly but affected

by a certain amount of uncertainty, and hence described in terms of random variables/random

fields. This situation is quite common in engineering applications.

A common goal in this framework is to compute statistical indices, like mean or variance,

for some quantities of interest related to the solution of the equation at hand (“uncertainty

quantification"). The main challenge in this task is represented by the fact that in many appli-

cations tens/hundreds of random variables may be necessary to obtain an accurate represen-

tation of the solution variability. The numerical schemes adopted to perform the uncertainty

quantification should then be designed to reduce the degradation of their performance when-

ever the number of parameters increases, a phenomenon known as “curse of dimensionality".

A method that acts in this direction is Monte Carlo sampling. Such method is known to

be dimension independent and very robust but it is also known for is very slow convergence

rate. In this work we describe Monte Carlo sampling together with a solid error analysis and

we provide a test for its robustness by integrating different functions with different regularitues

and by solving different PDE problems with random coefficients.

Later on we introduce the technique of variance reduction and a further application of this

idea that goes with the name of Multilevel Monte Carlo (MLMC) method. The asymptotic cost

of solving the stochastic problem with the multilevel method is proved to be significantly lower

than that of the standard method and, in certain circumstances, grows only proportionally with

respect to the cost of solving the deterministic problem. Numerical calculations demonstrat-

ing its effectiveness are presented and more complex problems such as elliptic PDEs in a do-

main with random geometry are also presented, this last task has been performed to test a

code designed for the simulation of flow through porous media at the pore scale. The results

are promising considering the very complex geometries that require extremely expensive dis-

cretizations.

This work is the final outcome of the participation to the Visiting Student Research Pro-

gram at the King Abdullah University of Science and Technology, a project that allows students

4

to conduct research with faculty mentors in selected areas of pure and applied sciences, and a

Visiting Research Fellowship at the University of Texas in Austin.

Keywords: Uncertainty Quantification, Monte Carlo Sampling, Variance Reduction, Multi-

level Monte Carlo.

5

Acknowledgements

This thesis is the result of the fruitful collaboration among many people, who deserve grateful

acknowledgement.

My deepest thanks goes to Matteo Icardi for the huge support in every aspect of this work,

from the inspiring discussions at the blackboard to the technical guidance and suggestions in

the numerical results, to the proof-reading of every single page and slide I have written, with

24/7 availability.

A huge thanks goes also to Raúl Tempone: in addition to the warm hospitality in the many

places I have visited him and the contagious enthusiasm in facing any mathematical challenge,

I always have greatly benefitted from his help in discussing and dissecting any problem we had

to solve and from his many suggestions.

I am also greatly thankful to Claudio Canuto, who is and will always be a great inspiration

for me an my work, for the overall help and the infinite patience.

At KAUST, I would like to thank David Yeh, who made for me the whole KAUST experience

possible and great.

This thesis would not have been possible without the amazing and constant support I got

from my beloved ones: my parents, my grandma and my sister. The grand finale is however

for Anita, who is my love, my strength, my hope and my change of perspective. This thesis is

dedicated to her.

Turin, October 2014 Nathan Quadrio

6

Contents

Abstract 5

Acknowledgements 6

1 Introduction to Uncertainty Quantification 12

1.1 Forward uncertainty propagation . 14

1.2 Inverse problem within uncertainty quantification 16

1.3 Overview . 19

2 Monte Carlo Method 20

2.1 Introduction . 20

2.2 Monte Carlo method . 21

2.2.1 Numerical tests . 25

2.3 Quasi-Monte Carlo method . 28

2.3.1 Error analysis in 1D . 30

2.3.2 Numerical tests . 32

2.4 Monte Carlo method for PDEs with random coefficient 34

2.4.1 Error analysis . 34

2.4.2 Complexity analysis . 38

2.4.3 Numerical tests . 39

2.5 Variance Reduction . 44

2.5.1 Control Variate . 44

7

CONTENTS

3 Multilevel Monte Carlo Method 47

3.1 Introduction . 47

3.2 Multilevel Monte Carlo method . 48

3.2.1 MLMC implementation . 51

3.3 Numerical tests . 53

3.4 Application to random geometry problems . 56

3.4.1 Heterogeneous materials . 56

3.4.2 The geometry generation . 58

3.5 Simulations . 61

3.5.1 Elliptic PDE with random forcing . 61

3.5.2 Elliptic PDE with a single random inclusion 63

3.5.3 Diffusion on a randomly perforated domain 66

3.5.4 Pore-scale Navier-Stokes . 68

3.6 Conclusions . 72

APPENDIX 72

A Multilevel Monte Carlo Pore-Scale Code 73

A.1 Main purpose . 74

A.2 Structure . 74

A.3 Final statements . 76

8

List of Figures

1.1 Forward uncertainty propagation. 15

1.2 Bayesian inverse problem. 16

1.3 Uncertainty quantification in bayesian inversion. 18

2.1 Deterministic quadrature (left) vs. Monte Carlo sampled (right) points in the case

d = 2. 23

2.2 1D functions used to test the MC integration (left column) and convergence of

the computational error as 1/
p

M (right column). 27

2.3 Idea of discrepancy (left) and example of Sobol sequence (right) in a two-dimensional

domain. The discrepancy can be also seen more intuitively as∆P = # points in [0,x]
M −

Vol([0,x]). 29

2.4 1D functions used to test the MC integration (left column) and convergence of the

computational error (right column) as 1/
p

M for the MC and 1/M for the “good

cases” of QMC. 33

2.5 Numerical simulation for Model 1 - Mesh refinement (left column, I = 1/h =
64,128,512) and increase of the variability (right column N = 128,256,512). The

phenomenon of homogenization can be seen very well in the second column. . . 42

2.6 Numerical simulation for Model 2 - Different numbers of random variables (left

column N = 1,4,8) and different number of samples (right column M = 102,103,104). 43

9

LIST OF FIGURES

3.1 Numerical result for the 1D elliptic PDE with random diffusion solved modeled

with a piecewise constant coefficient. Rates of strong and weak error (up-left and

up-right plots resp.), consistency check (Eq. 3.3) and kurtosis (middle-left and

middle-right plots resp.), accuracy vs. cost (low-right) and sample vs. level for

different accuracies (low-left). 55

3.2 Examples of random heterogeneous materials. Left panel: A colloidal system of

hard spheres of two different sizes. Right panel: A Fontainebleau sandstone. Im-

ages from [37]. 57

3.3 Random geometry realizations. 59

3.4 Results for the QoI in the elliptic PDE with random forcing. 61

3.5 Results for the QoI in the elliptic PDE with random forcing - γ estimate 62

3.6 Results for the elliptic PDE with a single random inclusion. 63

3.7 Results for the elliptic PDE with a single random inclusion. 64

3.8 Results for the diffusion on a randomly perforated domain. 67

3.9 Mesh of a geometry realization. 69

3.10 Results for the incompressible Navier-Stokes flow simulation.. 70

A.1 Pore-Scale Code. 73

10

List of Tables

3.1 Numerical result for the 1D elliptic PDE with random diffusion solved modeled

with a piecewise constant coefficient. 54

3.2 Cost comparison between MLMC and StdMC as ε→ 0 for the 1D elliptic PDE with

random diffusion. 54

3.3 Different classes of steady-state effective media problems considered here. F ∝
KeĠ , where Ke is the general effective property, G is the average (or applied) gen-

eralized gradient or intensity field, and F is the average generalized flux field.

Class A and B problems share many common features and hence may be attacked

using similar techniques. Class C and D problems are similarly related to one an-

other. 58

3.4 Results for the elliptic PDE with random forcing. 63

3.5 Results for the diffusion in a random domain. 66

3.6 Results for the incompressible Navier-Stokes flow simulation. 71

3.7 Predicted cost of the MLMC estimator given by Theorem 4 to achieve a MSE of ε2

compared to the cost of the standard MC estimator given by Equation 2.4. 72

11

CHAPTER 1

Introduction to Uncertainty Quantification

Since more and more powerful computer are being developed, allowing for more complex

models to be solved, it is important to assess if the mathematical and the computational mod-

els are accurate enough and, in general, if one can establish an ”error bar” on the results or a

more accurate quantification of its variability. Uncertainty Quantification (UQ) aims at devel-

oping rigorous methods to characterize the impact of ”limited knowledge” on model parame-

ters of the quantities of interest. As UQ is at the interface of physics, mathematics and statistics,

a deep understanding of the physical problem of interest is required as well as its mathematical

description and a good probabilistic framework. In fact the most modern UQ approaches are a

combination of numerical analysis and statistical techniques.

Even if numerical simulations have reached a wide spread use and success in terms of low-

ering production costs and of reduction of physical prototyping, it still remains difficult to pro-

vide a certain confidence level in all the information obtained from numerical predictions. This

difficulty mainly comes from the amount of uncertainties related to the inputs of any compu-

tation attempting to represent a physical system. As a consequence, for some applications we

still prefer the physical tests, so that the quantification of the errors and uncertainties becomes

necessary in order to establish the numerical simulations predictive capabilities.

Classically, the errors leading to discrepancies between simulations and real world systems

are grouped into three distinct families:

• Model error: Simulations rely on the resolution of mathematical models taking into ac-

12

count the main characteristics of the system being studied. Often, simplifications of the

models are performed in order to facilitate their resolution and based on some assump-

tions with the direct consequence of modeling some sort of ideal system different form

the real one. What one is expecting is that the predictions based on the simplified model

will remain sufficiently accurate to conduct a suitable analysis.

• Numerical error: When a mathematical model is discretized, numerical errors are intro-

duced since the numerical methods provide usually only an approximation of the exact

model. These errors can be reduced to an arbitrarily low level by using finer discretiza-

tions and, therefore, more computational resources. To this aim, it is important to design

numerical methods incorporating specific measures, based for instance on notions of

convergence, consistency and stability. It is known that these errors will always be nonzero

due to the finite representation of numbers in computers.

• Data error: Mathematical models need to be specified with parameters and data regard-

ing for instance geometry, boundary and initial conditions and external forcings. While

parameters may be physical or model constants, data cannot be exactly specified be-

cause of limitations in experimental data available, in the knowledge of the system or be-

cause of inherent variability of the system studied (e.g. the porosity in a porous medium).

Using data which partially reflect the nature of the exact system induces additional er-

rors, called data errors, to the prediction.

The latter are usually referred as uncertainties and a more precise characterization based on

the distinction in aleatory and epistemic uncertainties can be done:

• Aleatory uncertainty: It is the physical variability present in the system being analyzed

or its environment. It is not strictly due to lack of knowledge and cannot be reduced. Ad-

ditional experimental characterization might provide more conclusive evidence of the

variability but cannot eliminate it completely. Aleatory uncertainty is normally charac-

terized using probabilistic approaches.

• Epistemic uncertainty: It is a potential deficiency that is due to a lack of knowledge. It

can arises from assumption introduced in the derivation of the mathematical model used

or simplifications related to the correlation or dependence between physical processes.

It is possible to reduce the epistemic uncertainty by using, for example, a combination of

calibration, inference from experimental observations and improvement of the physical

models. It is not easily characterized by probabilistic approaches because it might be

13

1.1. FORWARD UNCERTAINTY PROPAGATION

difficult to infer any statistical information due to the nominal lack of knowledge. Typical

examples of sources of epistemic uncertainties are turbulence model assumptions and

surrogate chemical kinetics models.

To sum up, what uncertainty analysis aims to is identifying the overall output uncertainty in a

given system.

There are two major types of problems in uncertainty quantification: one is the forward

propagation of uncertainty and the other is the inverse assessment of model uncertainty and

parameter uncertainty. There has been a proliferation of research on the former problem and

a number of numerical analysis techniques were developed for it. On the other hand, the lat-

ter problem is drawing increasing attention in the engineering design community, since un-

certainty quantification of a model and the subsequence predictions of the true system re-

sponse(s) are of great interest in both robust design and engineering design making.

1.1 Forward uncertainty propagation

Once a suitable mathematical model of a physical system is formulated, the numerically sim-

ulation task typically involves several steps.

Initially one has to specify the case, i.e. the input parameters. Generally, one needs to

state exactly the geometry associated with the system and, in particular, the computational

domain. Boundary conditions have also to be imposed. In the case of transient systems, ini-

tial conditions are also provided and, when present, external forcing functions are applied to

the system. In the end physical constants are also specified in order to describe the properties

of the system, as well as modeling or calibration data. The next step is the simulation. One

has to define a computational grid on which the model solution is first discretized. Additional

parameters related to time integration, whenever relevant, are also specified. Numerical so-

lution of the resulting discrete analogue of the mathematical model can then be performed.

Here one should choose a deterministic numerical model having a well-posed mathematical

formulation in the sense of Hadamard, i.e. one wants that the mathematical model admits the

existence of a unique solution with continuos dependence from the data, and with which can

be achieved small discretization errors. The final step concerns the analysis of the computed

solution.

The simulation methodology above reflects an idealized situation that may not be always

achieved in practice. In fact, in many cases, the input data set may not be completely known

due to the reasons mentioned before. Thus, though model equations may be deterministic,

14

1.1. FORWARD UNCERTAINTY PROPAGATION

Figure 1.1: Forward uncertainty propagation.

it may not be possible to rely on a single deterministic simulation. A probabilistic framework

is useful to represent the variability of the input data, that provide a variance analysis which

characterize a confidence measure in compute predictions and a risk analysis to determine the

probabilities of the system exceeding certain critical values. Within a probabilistic framework,

the problem of uncertainty propagation consists of the generation of PDFs of the outcomes

given distribution of all the parameters.

Uncertainty propagation is the quantification of uncertainties in system output(s) propa-

gated from uncertain inputs. It focuses on the influence of the parametric variability, listed in

the sources of uncertainty on the outputs. The targets of uncertainty propagation analysis can

be:

• To evaluate low-order moments of the outputs, i.e. mean and variance.

• To evaluate the reliability of the outputs. This is especially useful in reliability engineering

where outputs of a system are usually closely related to the performance of the system.

• To assess the complete probability distribution of the outputs. This is useful in the sce-

nario of utility optimization where the complete distribution is used to calculate the util-

ity.

Existing uncertainty propagation approaches include probabilistic approaches and non-

probabilistic approaches.

Now, let X ,R be Banach spaces and G : X → R. For example G might represent the forward

15

1.2. INVERSE PROBLEM WITHIN UNCERTAINTY QUANTIFICATION

Figure 1.2: Bayesian inverse problem.

map which takes input data u ∈ X for a partial differential equation into the solution r ∈ R. As

Stuart affirms in [Stuart2010], uncertainty quantification in the forward problem framework is

concerned with determining the propagation of randomness in the input u into randomness

in some quantity of interest q ∈Q, with Q again a Banach space, found by applying the operator

Q : R →Q to G(u); thus q = (Q ◦G)(u). The situation is illustrated in Figure 1.1.

Sampling-based techniques are the simplest approaches to propagate uncertainty in nu-

merical simulations: they involve repeated simulation (also called realizations) with a proper

selection of the input values. All the results are collected to generate a statistical characteri-

zation of the outcome. In the following the Monte Carlo methods, the Multilevel Monte Carlo

methods and a comparison between those two will be provided.

1.2 Inverse problem within uncertainty quantification

Given some experimental measurements of a system and some computer simulation results

from its mathematical model, inverse uncertainty quantification estimates the discrepancy

between the experiment and the mathematical model (which is called bias correction), and

estimates the values of unknown parameters in the model if there are any (which is called pa-

rameter calibration or simply calibration). Generally this is a much more difficult problem than

forward uncertainty propagation; however it is of great importance since it is typically imple-

mented in many model updating process (or “history-matching”).

Many inverse problems in the physical sciences require the determination of an unknown

16

1.2. INVERSE PROBLEM WITHIN UNCERTAINTY QUANTIFICATION

field from a finite set of indirect measurements. Examples include oceanography, oil recov-

ery, water resource management and weather forecasting. In the Bayesian approach to these

problems, the unknown and the data are modelled as a jointly varying random variable, typi-

cally linked through solution of a partial differential equation, and the solution of the inverse

problem is the distribution of the unknown given the data.

Many important results and a lot of work has been done in this field, amongst the most

useful is one known as Bayes’ theorem:

prob(X |Y , I) = prob(Y |X , I)×prob(X , I)

prob(Y , I)
(1.1)

The importance of this property to data analysis becomes apparent if we replace X and Y by

“input” (also denoted as u) and “data” (also denoted as y):

prob(input | data, I) ∝ prob(data | input, I)×prob(input, I)

The power of Bayes’ theorem lies in the fact that it relates the quantity of interest, the probabil-

ity that the hypothesis is true given the data, to the term we have a better chance of being able

to assign, the probability that we would have observed the measured data if the hypothesis was

true.

The various terms in Bayes’ theorem have formal names. The quantity on the far right,

prob(input, I), is called the prior probability; it represents our state of knowledge (or ignorance)

about the truth of the hypothesis before we have analysed the current data. This is modified by

the experimental measurements through the likelihood function, or prob(data | input, I), and

yields the posterior probability, prob(input | data, I), representing our state of knowledge about

the truth of the hypothesis in the light of the data. In a sense, Bayes’ theorem encapsulates the

process of learning. We should note, however, that the equality of Eqn 1.1 has been replaced

with a proportionality, because the term prob(data|I) (the so-called evidence) has been omit-

ted.

This approach is a natural way to provide estimates of the unknown field, together with

a quantification of the uncertainty associated with the estimate. It is hence a useful practi-

cal modelling tool. However it also provides a very elegant mathematical framework for in-

verse problems: whilst the classical approach to inverse problems leads to ill-posedness, the

Bayesian approach leads to a natural well-posedness and stability theory. Furthermore this

framework provides a way of deriving and developing algorithms which are well-suited to the

formidable computational challenges which arise from the conjunction of approximations aris-

ing from the numerical analysis of partial differential equations.

17

1.2. INVERSE PROBLEM WITHIN UNCERTAINTY QUANTIFICATION

Figure 1.3: Uncertainty quantification in bayesian inversion.

So, in practice, inverse problems are concerned with the problem of determining the input

u when given noisy observed data y found from G(u). Let Y be the Banach space where the

observations lie, let O : R → Y denote the observation operator, define G = O ◦G , and consider

the equation

y =G (u)+η (1.2)

viewed as an equation for u ∈ X given y ∈ Y . The element η ∈ Y represents noise and typically

something about the size of η is known but the actual instance of η entering the data y is not

known. The aim is to reconstruct u from y. The Bayesian inverse problem is to find the condi-

tional probability distribution on u|y from the joint distribution of the random variable (u, y);

the latter is determined by specifying the distributions on u and η and, for example, assuming

that u and η are independent. This situation is illustrated in Figure 1.2.

To formulate the inverse problem probabilistically it is natural to work with separable Ba-

nach spaces as this allows for development of an integration theory as well as avoiding a variety

of pathologies that might otherwise arise; we assume separability from now on. The probabil-

ity measure on u is termed the prior, and will be denoted by µ0, and that on u|y the posterior,

and will be denoted by µy . Once the Bayesian inverse problems has been solved, the uncer-

tainty in q can be quantified with respect to input distributed according to the posterior on

u|y, resulting in improved quantification of uncertainty in comparison with simply using in-

put distributed according to the prior on u. The situation is illustrated in Figure 1.3. The black

dotted lines demonstrate uncertainty quantification prior to incorporating the data, the red

18

1.3. OVERVIEW

curves demonstrate uncertainty quantification after the data has been incorporated by means

of Bayesian inversion.

1.3 Overview

This thesis consists in four chapters and it illustrates methods that could be applicable in both

forward and inverse problem frameworks.

In Chapter 2, for the sake of generality we introduce the Monte Carlo and Quasi-Monte

Carlo method in the context of high-dimensional integration. We show the robustness of the

former and the convenience of the latter in terms of convergence rate. Then we show the ap-

plication of Monte Carlo in the PDEs framework and we provide the relative error analysis. In

the end, we introduce another Monte Carlo improving technique, the variance reduction one,

which gives the idea that lies behind the main argument of this thesis.

In Chapter 3, we show a clever variance reduction technique, the Giles’ multilevel Monte

Carlo. The theory is provided together with some simple tests cases to show its effectiveness

and its convenience in terms of computational costs. In the end we also provide some appli-

cations in Computational Fluid Dynamic problems, in particular we provide the results of the

simulation of PDEs on a random geometry. So, if in a first instance we deal with PDEs with

random coefficient coming from a Karhunen-Loève expansion or from a piecewise constant

model in the second one we try to apply the same methodologies to a different kind of random

parameter.

19

CHAPTER 2

Monte Carlo Method

2.1 Introduction

In this chapter we first review the Monte Carlo and the quasi-Monte Carlo method in the con-

text of high-dimensional integration. Then we show the application of Monte Carlo in PDE with

random coefficients and, after some error analysis, we provide and comment some numerical

tests with their results.

The Monte Carlo method is a widely used tool in many disciplines, including physics, chem-

istry, engineering, finance, biology, computer graphics, operations research and management

science. Examples of problems that it can address are:

• A call center manager wants to know if adding a certain number of service representative

during peak hours would help decrease the waiting time of calling customers.

• A portfolio manager needs to determine the magnitude of the loss in value that could

occur with a 1% probability over a one-week period.

• The designer of telecommunications network needs to make sure that the probability of

losing information cells in the network is below a certain thresold.

Realistic models of the system above typically assume that at least some of their components

behave in a random way. For instance, the call arrival times and processing times for the call

center cannot realistically be assumed to be fixed and known ahead of time and thus it makes

sense instead to assume that they occur according to some stochastic model.

20

2.2. MONTE CARLO METHOD

The Monte Carlo simulation method uses random sampling to study properties of systems

with components that behave in a random fashion. More precisely, the idea is to simulate on

the computer the behavior of these systems by randomly generating the variables describing

the behavior of their components. Samples of the quantities of interest can then be obtained

and used for statistical inference.

2.2 Monte Carlo method

The Monte Carlo method is certainly very popular and its origins can be traced back in 1946,

when physicists at Los Alamos Scientific Laboratory were investigating radiation shielding and

the distance that neutrons would likely travel through various materials. Despite having most

of the necessary data, such as the average distance a neutron would travel in a substance be-

fore it collided with an atomic nucleus, and how much energy the neutron was likely to give off

following a collision, the Los Alamos physicists were unable to solve the problem using con-

ventional, deterministic mathematical methods. Stanislaw Ulam had the idea of using random

experiments. He recounts his inspiration when he was convalescing from an illness and play-

ing solitaires. He questioned himself on the chances that the cards of a Canfield solitaire can

come out successfully. After spending a lot of time trying to estimate them by pure combi-

natorial calculations, he wondered whether a more practical method than “abstract thinking”

might not be to lay it out say one hundred times and simply observe and count the number of

successful plays. This was already possible to envisage with the beginning of the new era of fast

computers, and he immediately thought of problems of neutron diffusion and other questions

of mathematical physics, and more generally how to change processes described by certain

differential equations into an equivalent form interpretable as a succession of random opera-

tions. Later in 1946, he described the idea to John von Neumann and they began to plan actual

calculations.

Being secret, the work of von Neumann and Ulam required a code name. Von Neumann

chose the name Monte Carlo. The name refers to the Monte Carlo Casino in Monaco where

Ulam’s uncle would borrow money to gamble. Using lists of "truly random" random numbers

was extremely slow, but von Neumann developed a way to calculate pseudorandom numbers,

using the middle-square method. Though this method has been criticized as crude, von Neu-

mann was aware of this: he justified it as being faster than any other method at his disposal,

and also noted that when it went awry it did so obviously, unlike methods that could be subtly

incorrect.

21

2.2. MONTE CARLO METHOD

Monte Carlo methods were central to the simulations required for the Manhattan Project,

though severely limited by the computational tools at the time. In the 1950s they were used

at Los Alamos for early work relating to the development of the hydrogen bomb, and became

popularized in the fields of physics, physical chemistry, and operations research. The Rand

Corporation and the U.S. Air Force were two of the major organizations responsible for funding

and disseminating information on Monte Carlo methods during this time, and they began to

find a wide application in many different fields.

So, the fundamental idea on which Monte Carlo (MC) methods rely is a pseudo-random

sampling of a RV in order to construct a set of realization of the input data. To each of these

realizations corresponds a unique solution of the model.

In many stochastic applications one wants to estimate E [Y] . In standard MC approach one

can simulate it using

A (Y ; M) ≡ 1

M

M∑
i=1

Y (ωi),

ωi being independent and identically distributed (iid) samples, and choose M sufficiently large

to control the statistical error

E [Y]−A (Y ; M)

The following example of Monte Carlo integration will be more clarifying than any other expla-

nations.

Example The integral I = ∫
[0,1]N f (x)dx will be computed by the Monte Carlo method, where it

is assumed f (x) : [0,1]N →R. Let Y = f (X), where X is uniformly distributed in [0,1]N . One has:

I =
∫

[0,1]N
f (x)d x

=
∫

[0,1]N
f (x)p(x)d x [p is the uniform pdf]

= E
[

f (x)
]

[x is uniformly distributed in [0,1]N]

' 1

M

M∑
i=1

f (x(ω(i)))

≡ IN ,M

where the values {x(ω j)} are iid and are sampled uniformly in the cube [0,1]d by sampling the

components xi (ω j) independently and uniformly on the interval [0,1]. We can find an example

on how the evaluation points are taken in Figure 2.1, where we can see the difference between a

Monte Carlo quadrature against a deterministic one (uniform).

22

2.2. MONTE CARLO METHOD

Figure 2.1: Deterministic quadrature (left) vs. Monte Carlo sampled (right) points in the case d = 2.

What ensure the convergence of the method are the laws of large numbers that we recall

briefly in the following. First of all, we introduce the weak law of large numbers.

Theorem 1 (Weak law of large numbers). Assume Y j , j = 1,2,3, . . . are independent, identically

distributed random variables and E
[
Y j

]=µ<∞. Then

M∑
j=1

Y j

M
P−→µ, as M →∞, (2.1)

where
P−→ denotes convergence in probability, i.e. the convergence 2.1 means

P
(| M∑

j=1

Y j

M
−E [Y] | > ε)→ 0

for all ε→ 0

Then, by changing the definition of convergence we can state the strong law of large num-

bers.

Theorem 2 (Strong law of large numbers). Assume Y j , j = 1,2,3, . . . are independent, identically

distributed random variables with E
[|Y j |

]<∞ and E
[
Y j

]=µ. Then

M∑
j=1

Y j

M
a.s.−−→µ, as M →∞, (2.2)

where
a.s.−−→ denotes almost sure convergence, i.e. the convergence 2.2 means

P
({ M∑

j=1

Y j

M
→µ

})= 1.

23

2.2. MONTE CARLO METHOD

In other words, the important result that lies behind the Laws of Large Numbers is that a for

large M the empirical average is very close to the expected value µ with very high probability.

Now that we know for sure that the method converge to something, we would like to say

something about the rate of convergence. To understand this and how the statistical error be-

have we can refer to the Central Limit Theorem that now will be also recalled.

Theorem 3. Assume ξ j , j = 1,2,3, . . . are independent, identically distributed (iid) and E
[
ξ j

]= 0,

E
[
ξ2

j

]
= 1. Then

M∑
j=1

ξ jp
M

* ν,

where ν is N (0,1) and* denotes convergence of the distributions, also called weak convergence,

i.e. the convergence means

E

[
g
(M∑

j=1

ξ jp
M

)]
→ E

[
g (ν)

]
,

for all bounded and continuous functions g .

Having this in mind and referring to the example, one can compute the error IM − I to see

in practice how this theorem can be applied in the MC context.

Let the error εM be defined by

εM =
M∑

j=1

f (x j)

M
−

∫
[0,1]d

f (x)d x

=
M∑

j=1

f (x j)−M E
[

f (x)
]

M

By the Central Limit Theorem, one has

p
MεM *σν,

where ν is N (0,1) and

σ2 =
∫

[0,1]d
f 2(x)d x −

(∫
[0,1]d

f (x)d x
)2

=
∫

[0,1]d

(
f 2(x)−

∫
[0,1]d

f (x)d x
)2

d x

In practice, σ2 is approximated by

σ̂2 = 1

M −1

M∑
j=1

(
f (x j)−

M∑
m=1

f (xm)

M

)

24

2.2. MONTE CARLO METHOD

This implies that for any set B = (−C ,C)

P (
p

MεM ∈ B) → P (N (0,1) ∈ B)

Given a constant, 0 <α¿ 1, one has to choose C =Cα such that the following confidence level

constraint is satisfied

P (N (0,1) ∈ B) =
∫
|x|≤Cα

e−
x2

2p
2π

d x = 1−α

So in the end one has

P (|εM | ≤ Cαp
M

) ≈ 1−α, for large M

Hence the statistical error of the Monte Carlo estimator is O(1/
p

M), which is independent

of the dimension d . The comparison between the convergence rate of a deterministic quadra-

ture, say M−2/d of the trapezoidal rule, versus M−1/2 supports the suggestion that, even for

moderate dimensions d , the Monte Carlo method can outperform deterministic methods.

Although the Monte Carlo error has the nice property that its convergence rate of 1/
p

M

does not depend on the dimension, this rate is slow. For this reason, a lot of work has been done

to find ways of improving the Monte Carlo error and two different paths can be taken. The first

one is try to find ways of reducing the variance σ2 of f . Methods achieving this are under the

category of variance reduction techniques. The second approach is to use an alternative sam-

pling mechanism (a deterministic one actually) - often called quasi-random or low-discrepancy

sampling - whose corresponding error has a better convergence rate. Using these alternative

sampling mechanisms for numerical integration is usually referred to as quasi-Monte Carlo in-

tegration.

2.2.1 Numerical tests

In this paragraph we show the results of some actual computations. The sources of these exer-

cises can be traced back at the summer school in Mathematical and Algorithmic aspects of

Uncertainty Quantification hold by Nobile and Tempone at the University of Texas, Austin.

Similarly to the very first example of the chapter, we are interested in calculating the follow-

ing quantity

g =
∫

[0,1]N
f (x)dx

for some different functions that mainly differ by the degree of regularity. In particular we look

at different examples of f for some real constants {cn , wn }N
n=1 taken from

25

2.2. MONTE CARLO METHOD

1. Gaussian: f (x) = exp(
∑N

n=1 c2
n(xn −wn)2), with cn = 7.03/N and wn = 1

2 .

The exact solution reads:∫
[0,1]N

f (x)dx =
N∏

n=1

p
π

2cn
(erf(cn(1−wn))+erf(cn wn))

2. Continuous: f (x) = exp(−∑N
n=1 cn |xn −wn |), with cn = 2.04/N and wn = 1

2 .

The exact solution reads:∫
[0,1]N

f (x)dx =
N∏

n=1

1

cn
(2−e−cn wn −e−cn (1−wn))

3. Discontinuous: f (x) =

0, if x1 > w1 or x2 > w2

exp(−∑N
n=1 cn xn), otherwise

with cn = 4.3/N and

w1 = π
4 and w2 = π

5 .

The exact solution reads:∫
[0,1]N

f (x)dx = 1∏N
n=1 cn

(ec1w1 −1)(ec2w2 −1)
N∏

n=3
(ecn −1).

The pseudo code used for each case is straightforward

Algorithm 1 MonteCarlo

1: u ← random vector of dimension M ×N [M : #samples, N : dimension of the problem]

2: compute f (u)

3: I ← 1
M

∑M
m=1 f (um)

4: compare I with Iexact

From this simple test we want to show the effectiveness and the robustness of the method.

As we can see in Figure 2.2, the regularity of the function is not affecting the results but the

convergence is very slow and goes with 1/
p

M . The Central Limit Theorem bound, the red line

in the figure, is computed as c0σ̂/
p

M , where c0 = 3 and σ̂ is the sample variance

σ̂2 = 1

M −1

M∑
j=1

(
f (x j)−

M∑
m=1

f (xm)

M

)2

The computational error, depicted in black, is computed as a function of M and it is calculated

as the cumulative sum of the absolute value of the difference between the exact solution and

the computational one divided by the samples M . This error is below the red line with a certain

probability depending on the choice of c0 (related to the normal distribution).

26

2.2. MONTE CARLO METHOD

(a)

10
0

10
2

10
4

10
6

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Computational error − N=20

M

Error

CLT bound

(b)

(c)

10
0

10
2

10
4

10
6

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Computational error − N = 20

M

Error

CLT bound	

(d)

(e)

10
0

10
2

10
4

10
6

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Computational error − N = 20

M

Error
CLT bound

(f)

Figure 2.2: 1D functions used to test the MC integration (left column) and convergence of the compu-

tational error as 1/
p

M (right column).

27

2.3. QUASI-MONTE CARLO METHOD

2.3 Quasi-Monte Carlo method

This section discusses alternatives to Monte Carlo simulation known as quasi-Monte Carlo or

low-discrepancy methods. These methods differ from ordinary Monte Carlo in that they make

no attempt to mimic randomness. Indeed, they seek to increase accuracy specifically by gen-

erating points that are too evenly distributed to be random. This contrasts with the variance

reduction techniques that will be discussed in the next sections, which take advantage of the

stochastic formulation to improve precision.

Low-discrepancy methods have the potential to accelerate convergence from the O(1/
p

M)

rate associated with Monte Carlo (M being the number of paths or points generated) to nearly

O(1/M) convergence: under appropriate conditions, the error in a quasi-Monte Carlo approx-

imation is O(1/M 1−ε) for all ε > 0. Standard variance reduction techniques, affecting only the

implicit constant in O(1/
p

M), are not nearly so ambitious. We will see, however, that the ε in

O(1/M 1−ε) hides a dependence on problem dimension.

The tools used to develop and analyze low-discrepancy methods are very different from

those used in ordinary Monte Carlo, as they draw on number theory and abstract algebra rather

than probability and statistics. Our goal is therefore to present key ideas and methods rather

than an account of the underlying theory. Moreover, the QMC approach has been well surveyed

in a recent work by Dick, Kuo and Sloan1.

So we are now going to introduce the use of low-discrepancy sampling to replace the pure

random sampling that forms the backbone of the Monte Carlo method. A low-discrepancy

sample is one whose points are distributed in a way that approximates the uniform distribution

as closely as possible. Unlike for random sampling, points are not required to be independent.

In fact, the sample might be completely deterministic.

As a first step, let us consider P = {ξ1, . . . ,ξM } a set of points ξi ∈ [0,1]N and f : [0,1]N →R a

continuos function. A quasi-Monte Carlo method (QMC) to approximate IN (f) = ∫
[0,1]N f (y)dy

is an equal weight cubature formula of the form

IN ,M (f) = 1

M

M∑
i=1

f (ξi)

Let us now introduce a way of measuring the uniformity of a point set that is not spe-

cific to a particular type of construction. More precisely, the idea is to measure the distance

between the empirical distribution induced by the point set and the uniform distribution via

1J. Dick, F. Y. Kuo, I. H. Sloan High-dimensional integration: The quasi-Monte Carlo way, Acta Numerica / Volume

22 / May 2013, pp 133-288.

28

2.3. QUASI-MONTE CARLO METHOD

the Kolmogorov-Smirnov statistic. The concept of discrepancy looks precisely at such distance

measures. We can then define it as

Definizione 1. Let x ∈ [0,1]N and [0,x] = [0, x1]×·· ·× [0, xN], then the local discrepancy is

∆P (x) = 1

M

M∑
i=1

1[0,x](ξi)−
N∏

i=1
xi

while the star-discrepancy is

∆∗
P,N = sup

x∈[0,1]N
|∆P (x)|

(a) Discrepancy. (b) Sobol sequence.

Figure 2.3: Idea of discrepancy (left) and example of Sobol sequence (right) in a two-dimensional do-

main. The discrepancy can be also seen more intuitively as ∆P = # points in [0,x]
M −Vol([0,x]).

We can have a more intuitive idea of discrepancy by looking at Figure 2.3(a) and we can give

an alternative definition as

∆P = # points in [0,x]

M
−Vol([0,x])

At this point we can introduce the definition of low discrepancy sequences.

Definizione 2. A sequence (ξ1,ξ2, . . .), ξi ∈ [0,1]N is a low discrepancy sequence if the set of

points PM = (ξ1, . . . ,ξM) satisfies

∆∗
PM ,N ≤CN

(log M)N

M
.

29

2.3. QUASI-MONTE CARLO METHOD

So we can say that QMC methods use equal weight cubature formulae with low discrep-

ancy sequences of points. Several sequences exist in literature, some of them available also in

MATLAB, such as: Halton, Hammersley, Sobol, Faure, Niederreiter, etc...

The simplest example is the Halton sequence and in order to construct that sequence we

first have to define the radical inverse function φb(i) as follows:

if i =
∞∑

n=1
inbn−1, in ∈ {0,1, . . . ,b −1} , then φb(i) =

∞∑
n=1

inb−n ,

so, in base b = 10, the radical inverse of i = 15421 is φ10(i) = 0.12451. Then, if p1, . . . , pN denote

the first N prime numbers, the Halton sequence P = {ξ1,ξ2, . . . } is given by

ξi = (φp1 (i),φp2 (i), . . . ,φpN (i))

and its star-discrepancy satisfies

∆∗
N := sup

x∈[0,1]N
|∆P (x)| =O

((log M)N

M

)
Other better sequences instead such as Hammersley, Sobol, Faure, etc... have a star-discrepancy

∆∗
N =O

((log M)N−1

M

)
.

2.3.1 Error analysis in 1D

Let us consider for simplicity the N = 1 dimensional case just to have an idea on how the dis-

crepancy comes into play in this framework. The result can be generalized for arbitrary dimen-

sion. The following error representation holds:

1

M

M∑
i=1

f (ξi)−
∫

[0,1]
f (y)d y =∆P (1) f (1)−

∫
[0,1]

∆P (y) f ′(y)d y

which proof can be find in [Nobile,Tempone].

Hence, the error in the QMC integration is bounded by

∣∣∣ 1

M

M∑
i=1

f (ξi)−
∫

[0,1]
f (y)d y

∣∣∣= ∣∣∣∫
[0,1]

∆P (y) f ′(y)d y
∣∣∣≤∆∗

P‖ f ′‖L1(0,1)

To estimate the error in practice in a quasi-Monte Carlo computation, the following strategy

has been adopted. We consider η∼U ([0,1]N) as a uniformly distributed random vector (shift)

and

IN ,M (f ,η) = 1

M

M∑
i=1

f ({ξi +η })

30

2.3. QUASI-MONTE CARLO METHOD

as the QMC formula with the random shift η. Then we take s i.i.d. shifts η1, . . . ,ηs ∼U ([0,1]N).

Finally we estimate the integral

IN ,M (f) = 1

s

s∑
j=1

IN ,M (f ,η j) = 1

sM

s∑
j=1

M∑
i=1

f ({ξi +η j })

and the error based on the η−sample standard deviation, i.e.

eN ,M (f) = c0p
s

√√√√ 1p
s −1

s∑
j=1

(IN ,M (f ,η j)− IN ,M (f))2

In Figure 2.4 this quantity is represented with a green label. We can see that it gets more

and more precise as the number of shifts increase2.

2More details about these results can be found in [Nobile,Tempone].

31

2.3. QUASI-MONTE CARLO METHOD

2.3.2 Numerical tests

In this section we provide an estimation of the same integrals reported above with a quasi-

Monte Carlo method. We use the function i4_sobol_generate.m to generate Sobol sequences3.

The pseudocode for the algorithm is the following

Algorithm 2 Quasi Monte Carlo

1: U ← i4_sobol_generate(M , N) [generate the Sobol sequence]

2: for i = 1 → S do

3: shift ← rand(N ,1), [generate the random vector of shifts]

4: ushift ← mod(U +SS,1) [compute a shifted sequence]

5: u ← [u,ushift] [update the overall vector of random points]

6: compute f (u)

7: I ← 1
M ·S

∑M ·S
m=1 f (um)

8: compare I with Iexact

The Sobol sequence generator works on base 2 so the initial amount of sample is M = 2048.

Moreover, for the computation a number of shifts s = 1000 is chosen.

In Figure 2.4 we can see in the right column the behavior of the correspondent function

on the left. In the black line we indicate the standard Monte Carlo computational error as

we did in the previous section. in the blue line instead, we represent the Quasi-Monte Carlo

computational error. The red lines represent the two rates O(1/
p

M) and O(1/M) while the

green one is the error based on the η−sample standard deviation. We were expecting the latter

to be above the QMC error with a certain probability related to the choice of c0, but as we can

see, is true only after a certain number of shifts.

It is clear how in this framework the methods does not behave in the same way for different

types of regularity of the integrand function. If in the case of a continuos or a infinitely differ-

entiable function we have a gain of the rate at almost O(1/M) in the case of the discontinuous

function instead remain pretty similar to the stdMC one.

3This package has been taken from John Burkardt’s home page:

http://people.sc.fsu.edu/∼jburkardt/m_src/m_src.html.

32

2.3. QUASI-MONTE CARLO METHOD

(a)

10
0

10
2

10
4

10
6

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

M

Computational Error MC vs QMC − N=10

Error QMC

MCS error

O(1/M)

Error stdMC

CLT bound

(b)

(c)

10
0

10
2

10
4

10
6

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

M

Computational Error MC vs QMC − N=10

Error QMC

MCS error

O(1/M)

Error stdMC

CLT bound

(d)

(e)

10
0

10
2

10
4

10
6

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

M

Computational Error MC vs QMC − N=10

Error QMC

MCS error

O(1/M)

Error stdMC

CLT bound

(f)

Figure 2.4: 1D functions used to test the MC integration (left column) and convergence of the compu-

tational error (right column) as 1/
p

M for the MC and 1/M for the “good cases” of QMC.

33

2.4. MONTE CARLO METHOD FOR PDES WITH RANDOM COEFFICIENT

2.4 Monte Carlo method for PDEs with random coefficient

In this section we provide some numerical analysis to discuss the sources of error that occurs

when we deal with SPDEs and we try to solve the randomness with a sampling-based tech-

nique. We are going to define and denote u as the solution of a certain problem, y as the vector

of random parameters and we want to find the expectation of a certain quantity of interest Q

in order to place ourselves in the framework described in Chapter 1. The main results of this

analysis come from [32]. Here we develop some calculations and add some clarifications.

Let y = (y1, . . . , yN) be a random vector with density ρ(y) : Γ→ R+, u(y) : Γ→ V a Hilbert-

valued function, u ∈ L2
ρ(Γ;V), and Q : V →R a continuous functional on V (possibly non linear),

such that E
[|Q(u(y))|p]<∞ for p sufficiently large.

Similarly as before, the goal here is to compute E
[
Q(u(y))

]
and using the classical Monte

Carlo approach one can approximate expectation by sample averages. In fact, if {y(ωm)}M
m=1 be

iid y samples one has

E
[
Q(u(y))

]≈ 1

M

M∑
m=1

Q(u(y(ωm)))

where for each y(ωm) one has to find the solution u(y(ωm)) of the PDE and evaluate the q.o.i.

Q(u(y(ωm))). As said before, the Monte Carlo approach has the nice property that the con-

vergence rate is M−1/2 independently from the length of y and the regularity of u(.), but the

convergence is slow and, in this case, the possibly available regularity of the solution cannot be

exploited.

Assume now that the PDE had been discretized by some mean (finite elements, finite vol-

umes, spectral methods,...), so that in practice the discrete solutions uh(y(ωm)), m = 1, . . . , M

are computed. Then the MC estimator will be

E
[
Q(u(y))

]≈ 1

M

M∑
m=1

Q(uh(y(ωm)))

2.4.1 Error analysis

At this point some error analysis can be done. The first thing that one can notice is that the

error is composed of two terms. In fact

E
[
Q(u(y))

]− 1

M

M∑
m=1

Q(uh(y(ωm))) =

= E[
Q(u(y))

]−E[
Q(uh(y))

]+E[
Q(uh(y))

]− 1

M

M∑
m=1

Q(uh(y(ωm))) =

34

2.4. MONTE CARLO METHOD FOR PDES WITH RANDOM COEFFICIENT

= E[
Q(u(y))−Q(uh(y))

]︸ ︷︷ ︸
discretization error

+E[
Q(uh(y))

]− 1

M

M∑
m=1

Q(uh(y(ωm)))︸ ︷︷ ︸
statistical error

where the first term is the discretization error that will be denoted as E Q (h) while the second is

the statistical error that will be denoted E
Q
h (M).

Discretization error

Let Q : V →R with Q(0) = 0 be a functional that is globally Lipschitz, i.e.

∃CQ > 0 s.t. |Q(u)−Q(u′)| ≤CQ‖u −u′‖V , ∀u,u′ ∈V

and assume that exists α> 0 and Cu(y) > 0 with
∫
ΓCu(y)pρ(y)dy <∞ for some p > 1, such that

‖u(y)−uh(y)‖V ≤Cu(y)hα, ∀y ∈ Γ and 0 < h < h0 (2.3)

Then

|E Q (h)| = |E[
Q(u(y))−Q(uh(y))

] | = |
∫
Γ

(Q(u(y))−Q(uh(y)))ρ(y)dy|

≤ CQ

∫
Γ
‖u(y)−uh(y)‖V ρ(y)dy

≤ CQ hα
∫
Γ

Cu(y)ρ(y)dy

≤ CQ‖Cu‖Lp
ρ

hα

The value of α in Equation 2.3 may depend both on the space V and on the accuracy order

of the approximation method chosen. Since in our application we take both piecewise linear

finite element method and first order accuracy finite volume methods and the space is usually

L2 the we are expecting α= 2.

Example Consider the following elliptic problem with uniformly bounded random coefficient−div(a(x,y)∇u(x,y)) = f (x), x ∈ D

u(x,y) = 0, x ∈ ∂D
∀y ∈ Γ⊂RN

where D ⊂ Rd is an open, convex, Lipschitz domain and f ∈ L2(D). The assumptions on the

random coefficient are the following:

• finite Karhunen–Loève expansion: a(x,y) = ā +∑N
i=1

√
λi yi bi (x);

35

2.4. MONTE CARLO METHOD FOR PDES WITH RANDOM COEFFICIENT

• independence of the RVs: yi ∼U (−p3,
p

3) iid (so Γ= [−p3,
p

3]N);

• bi ∈C∞(D);

•
∑N

i=1

√
3λi‖bi‖∞ ≤ δā, 0 < δ< 1.

Thanks to these one can state the following

(1−δ)ā ≤ a(x,y) ≤ (1+δ)ā, ‖∇a(·,y)‖L∞(D) ≤Ca , ∀y ∈ Γ

that ensure the coercivity of the bilinear form. Moreover, denoting

H 1
0 = {v ∈ H 1(D) : ‖v −ϕn‖H 1(D) → 0, for some (ϕn) ⊂C∞

0 (D)}

endowed with the norm ||v ||H 1
0
= ||∇v ||L2(D) and thanks to the Lax-Milgram theorem (see [7],

sect. 4.2) which is valid under these conditions, we can assert the existence, the uniqueness of the

solution u(y) ∈ H 1
0 ⊂ H 1(D) and the continuos dependency from the data

‖u(y)‖H 1
0 (D) ≤

CP‖ f ‖L2(D)

(1−δ)ā
, ∀y ∈ Γ

where CP is the Poincaré constant, i.e.

‖v‖L2(D) ≤CP‖v‖H 1
0 (D), v ∈ H 1

0 (D).

Moreover, since the problem is elliptic with homogenous boundary conditions, f ∈ L2 and the

domain is convex (see [8]), a uniform bound in y can be stated on the H 2−norm of the solution

∃Cu > 0, s.t. ‖u(y)‖H 2(D) ≤Cu , ∀y ∈ Γ

Since the problem is well-posed in the sense of Hadamard, one can state the weak formulation

and then consider a well-posed discrete formulation. Now in particular, a piecewise linear finite

element approximation will be taken in consideration so the problem can be written∀y ∈ Γ find uh(y) ∈Vh , s.t.∫
D a(·,y)∇uh(y) ·∇vh(y) = ∫

D f vh ∀vh ∈Vh

where Vh ⊂ H 1
0 (D) is the space of continuous piecewise linear functions on a uniform and ad-

missible triangulation Th , vanishing on ∂D.

The discrete solution uh(y) satisfies the same bound as the continuous one,

||uh(y)||H 1(D) ≤
|| f ||L2(D)

(1−δ)ā
√

1+C 2
P

, ∀y ∈ Γ

36

2.4. MONTE CARLO METHOD FOR PDES WITH RANDOM COEFFICIENT

and

E
[|Q(uh(y))|p] 1

p ≤ E[
(CQ ||uh(y)||)p] 1

p ≤ CQ || f ||L2(D)

(1−δ)ā
√

1+C 2
P

, ∀p ≥ 1

Then

||u(y)−uh(y)||L2(D) +h||∇u(y)−∇uh(y)||L2(D) ≤Cuh2

Since the bound is uniform in y, all moments are bounded

E
[
||u(y)−uh(y)||p

L2(D)

] 1
p +hE

[
||∇u(y)−∇uh(y)||p

L2(D)

] 1
p ≤Cuh2, ∀p ≥ 1

Statistical error

Assuming that Q is a globally Lipschitz functional one can observe that

E
Q
h (M) = E

[
Q(uh(y))

]− 1

M

M∑
m=1

Q(uh(y(ωm)))

= 1

M

M∑
m=1

[
E
[
Q(uh(y))

]−Q(uh(y(ωm)))
]

and, if one takes the expectation with respect to the random sample,

E
[
E

Q
h (M)

]
= 0

Then

Var
[
E

Q
h (M)

]
= 1

M
Var

[
Q(uh(y))

]
and one can estimate

Var
[
Q(uh(y))

] ≤ E
[
Q(uh(y))2]

≤ C 2
Q ||uh ||2L2

ρ(Γ;V)

≤ 2C 2
Q (||u||2

L2
ρ(Γ;V)

+||u −uh ||2L2
ρ(Γ;V)

)

≤ 2C 2
Q (||u||2

L2
ρ(Γ;V)

+h2α||Cu ||2L2
ρ(Γ;V)

) <∞

In the end one can conclude that for Lipschitz functionals Q one has

Var
[
E

Q
h (M)

]
≤ C

M
→ 0 as M →∞

with constant C uniformly bounded with respect to h. Moreover, since Var
[
Q(uh(y))

] ≤ C one

can apply the law of large numbers, law of iterated logarithms and the Central Limit Theorem.

In particular, the previous result implies, via the Chebyshev inequality, convergence in proba-

bility, that is, for any given ε> 0

P (|E Q
h (M)| > ε) ≤

Var
[
E

Q
h (M)

]
ε2 ≤ C

Mε2 → 0 as M →∞

37

2.4. MONTE CARLO METHOD FOR PDES WITH RANDOM COEFFICIENT

2.4.2 Complexity analysis

In the end one has that the error can be split in two sources as

E
[
Q(u(y))

]− 1

M

M∑
m=1

Q(uh(y(ωm))) = E Q (h)+E
Q
h (M)

where

|E Q (h)| = |E[
Q(u(y))−Q(uh(y))

] | ≤C hα

is the discretization error and

|E Q
h (M)| = |E[

Q(uh(y))
]− 1

M

M∑
m=1

Q(uh(y(ωm)))| ≤C0

√
Var[Q(uh)]

M

is the statistical error motivated by the Central Limit Theorem, i.e.

P (
p

M |E Q
h (M)| ≤ c0

√
Var[Q(uh)]) → 2Φ(c0)−1 as M →∞

Let be assumed now that the computational work to solve for each u(y(ωm)) is O(h−dγ), where

d is the dimension of the computational domain and γ > 0 represents the complexity of gen-

erating one sample with respect to the number of degrees of freedom. One has therefore the

following estimates

W ∝ Mh−dγ

for the total work and

|E Q (h)|+ |E Q
h (M)| ≤C1hα+ C2p

M
for the total error. What one would like to do is to choose optimally h and M and one possible

way is to minimize the computational work subject to an accuracy constraint, i.e. the problem

can be written find minh,M Mh−dγ s.t.

C1hα+ C2p
M

≤ TOL

The Lagrangian of the above problem is

L (M ,h,λ) = Mh−dγ+λ(C1hα+ C2p
M

−TOL)

Therefore one gets to the system
∂L
∂M = h−dγ− λC2

2
p

M 3
= 0

∂L
∂h =−dγMh−dγ−1 +λC1αhα−1 = 0

∂L
∂λ =C1hα+ C2p

M
−TOL = 0

38

2.4. MONTE CARLO METHOD FOR PDES WITH RANDOM COEFFICIENT

Taking in consideration the first and the second equation, resolving with respect to M and

eliminating λ one get to
1p
M

= 2αC1

dγC2
hα

using the third equation and resolving with respect to h one has

C1hα+C2
2αC1

dγC2
−TOL = 0

hα = TOL
dγ

C1(dγ+2α)
→ 1p

M
= TOL

2α

C2(dγ+2α)

Since
1p
M

∝ TOL → M ∝ TOL−2

hα∝ TOL → h ∝ TOL1/α

the resulting complexity is then

W ∝ TOL−(2+dγ/α) (2.4)

2.4.3 Numerical tests

In this case we want to look at the solution of a one dimensional boundary value problem

−(a(x,ω)u′(x,ω))′ = 4π2 cos(2πx)︸ ︷︷ ︸
=: f (x)

, for x ∈ (0,1)

with u(0, .) = u(1, .) = 0 and we are interested in computing the expected value of the following

QoI

Q(u(ω)) =
∫ 1

0
u(x,ω)d x

We use an uniform I +1 uniform grid 0 = x0 < x1 < <̇xI = 1 on [0,1] with uniform spacing h =
xi −xi−1 = 1/I , i = 1, . . . , I . Using this grid we can build a piecewise linear FEM approximation,

uh(x,ω) =
I−1∑
i=1

uh,i (ω)ϕi (x),

yielding a tridiagonal linear system for the nodal values, A(ω)uh(ω) = F, with

Ai ,i−1(ω) =−a(xi−1/2,ω)

h2

Ai ,i (ω) = a(xi−1/2,ω)+a(xi+1/2,ω)

h2

39

2.4. MONTE CARLO METHOD FOR PDES WITH RANDOM COEFFICIENT

Ai ,i+1(ω) =−a(xi+1/2,ω)

h2

and

Fi = f (xi).

Here we used the notation xi+1/2 = xi+xi+1
2 and xi−1/2 = xi+xi−1

2 . The integral in Q(uh) can be

then computed exactly by a trapezoidal method, yielding

Q(uh) = h
I−1∑
i=1

uh,i .

We look at two different models for the diffusion coefficient a(x,ω). The first is a piecewise

constant model and we define it as

a(x,ω) = 1+σ
N∑

n=1
Yn(ω)I[x̂n−1,x̂n](x),

with equispaced nodes x̂n = n
N for 0 ≤ n ≤ N and i.i.d. uniform random variables Yn ∼U ([−p3,

p
3]).

Tests are conducted for different uniform mesh refinements, i.e. values of I = N 2l , l ≥ 0. We also

try different number of input random variables N = 10, N = 20 and N = 40. The constant σ has

been chosen ensuring coercivity, namely 1−σp3 > 0.

The second model is defined as

a(x,ω) = exp(κ(x,ω))

where κ(x,ω) is a stationary random field with the Matérn covariance function

C (x, y) =σ2 1

Γ(ν)2ν−1

(p
2ν

|x − y |
ρ

)ν
Kν

(p
2ν

|x − y |
ρ

)
where Γ is the gamma function and Kν is the modified Bessel function of the second kind. We

look at the following special cases of C with ρ = 0.1 and σ2 = 2

ν= 0.5, C (x, y) = σ2 exp
(
−|x − y |

ρ

)
ν= 1.5, C (x, y) = σ2

(
1+

p
3|x − y |
ρ

)
exp

(
−
p

3|x − y |
ρ

)
ν= 2.5, C (x, y) = σ2

(
1+

p
5|x − y |
ρ

+
p

3|x − y |2
ρ2

)
exp

(
−
p

5|x − y |
ρ

)
ν→∞, C (x, y) = σ2 exp

(
−|x − y |2

2ρ2

)
For this example we chose to represent the stationary random κ(x,ω) using the truncated

Karhunen-Loève expansion with N terms

κ(x,ω) ≈
N∑

n=1

√
λnYn(ω)en(x)

40

2.4. MONTE CARLO METHOD FOR PDES WITH RANDOM COEFFICIENT

where {Yk } is a set of i.i.d. uniform random variables over [−p3,
p

3]. To find the eigenfunction

and eigenvalues of C we solve the eigenvalue problem∫ 1

0
C (x, y)en(y)d y =λnen(x) (2.5)

we do this by discretizing C as a matrix by evaluating the function C (xi+ 1
2

, x j+ 1
2

) over the grid

{ xi+ 1
2

}I−1
i=0

×{ xi+ 1
2

}I−1
i=0

with N ≤ I . Then we use MATLAB’s function eig() and we place the eigen-

vector in a decreasing order, namely

λ1 <λ2 < ·· · <λN

This discretization corresponds to a piecewise constant FEM approximation to the eigenvalue

problem (2.5).

With the theory that lies behind the Karhunen-Loève expansion we could fill an entire sec-

tion. In this work we decided to avoid the explanations as we used it as a tool to develop our

calculations.

In Figure 2.5 we present the results related to Model 1. We decide to represent the expected

value of the solution (black line) in each point of the domain with the relative standard devi-

ation (red lines). We do that for different mesh refinements (left column) and for a different

number of random variables (right column), namely in the left column the refinements are

shown while in the right column the increasing random variables. The main result that we

want to point out is the homogenization of the random coefficient. This phenomenon consists

in a sort of averaging of the coefficient which can be approximated as a constant one better and

better as the number of random variables increases, that is as become more and more oscillat-

ing. It can be seen in the significant reduction of variance in the Figure 2.5(f). The conclusion

is that the estimate of our quantity of interest gets more and more accurate as the variability of

the problem increases.

In Figure 2.6 instead we present the results related to Model 2. Again, in black we repre-

sent the expected value of the solution in each point of the domain with the relative standard

deviation in red. In the left column we decided to test different truncations of the KL expan-

sion while keeping constant the mesh refinements. In the right column instead we present the

results with a different number of samples making sure to choose a number of terms of the

KL expansion that covers the 90% of the spectrum. In this case, unlike the previous case, we

can see that the more terms we include the more the variability of the problem increases until

we cover a reasonable part of the spectrum. On the other hand, if we increase the number of

samples, we can see the convergence of the standard deviation and, therefore, of the variance.

41

2.4. MONTE CARLO METHOD FOR PDES WITH RANDOM COEFFICIENT

0 0.2 0.4 0.6 0.8 1

−4

−3

−2

−1

0

Solution for I=64, N=32, M=100

x

u
(x

)

E[u]

1.96*std[u]

(a)

0 0.2 0.4 0.6 0.8 1

−4

−3

−2

−1

0

Solution for I=512, N=128, M=100

x

u
(x

)

E[u]
1.96*std[u]

(b)

0 0.2 0.4 0.6 0.8 1

−4

−3

−2

−1

0

Solution for I=128, N=32, M=100

x

u
(x

)

E[u]
1.96*std[u]

(c)

0 0.2 0.4 0.6 0.8 1

−4

−3

−2

−1

0

Solution for I=512, N=256, M=100

x

u
(x

)

E[u]
1.96*std[u]

(d)

0 0.2 0.4 0.6 0.8 1

−4

−3

−2

−1

0

Solution for I=512, N=32, M=100

x

u
(x

)

E[u]
1.96*std[u]

(e)

0 0.2 0.4 0.6 0.8 1

−4

−3

−2

−1

0

Solution for I=512, N=512, M=100

x

u
(x

)

E[u]
1.96*std[u]

(f)

Figure 2.5: Numerical simulation for Model 1 - Mesh refinement (left column, I = 1/h = 64,128,512) and

increase of the variability (right column N = 128,256,512). The phenomenon of homogenization can be

seen very well in the second column.

42

2.4. MONTE CARLO METHOD FOR PDES WITH RANDOM COEFFICIENT

0 0.2 0.4 0.6 0.8 1
−6

−5

−4

−3

−2

−1

0

1
Solution for I=128, N=1, M=100 and nu=0.5

x

u
(x

)

E[u]
1.96*std[u]

(a)

0 0.2 0.4 0.6 0.8 1
−6

−5

−4

−3

−2

−1

0

1
Solution for I=128, N=16, M=100 and nu=0.5

x

u
(x

)

E[u]
1.96*std[u]

(b)

0 0.2 0.4 0.6 0.8 1
−6

−5

−4

−3

−2

−1

0

1
Solution for I=128, N=8, M=100 and nu=0.5

x

u
(x

)

E[u]
1.96*std[u]

(c)

0 0.2 0.4 0.6 0.8 1
−6

−5

−4

−3

−2

−1

0

1
Solution for I=128, N=16, M=1000 and nu=0.5

x

u
(x

)

E[u]
1.96*std[u]

(d)

0 0.2 0.4 0.6 0.8 1
−6

−5

−4

−3

−2

−1

0

1
Solution for I=128, N=16, M=100 and nu=0.5

x

u
(x

)

E[u]
1.96*std[u]

(e)

0 0.2 0.4 0.6 0.8 1
−6

−5

−4

−3

−2

−1

0

1
Solution for I=128, N=16, M=10000 and nu=0.5

x

u
(x

)

E[u]
1.96*std[u]

(f)

Figure 2.6: Numerical simulation for Model 2 - Different numbers of random variables (left column

N = 1,4,8) and different number of samples (right column M = 102,103,104).

43

2.5. VARIANCE REDUCTION

2.5 Variance Reduction

Since the Monte Carlo error can be written as

E [Y]− 1

M

M∑
j=1

Y (ω j) ≈Cα

√
Var[Y]

M

the paths to reduce it that we can walk through are two: the first is to increase the samples M

while the other is reduce the quantity Var[Y] . So the main idea of variance reduction is try to

“reduce” Var[Y] without changing E [Y] . In practice, one wants to find another RV Z such that:

• E [Z] = E [Y] ;

• Var[Z] ¿ Var[Y] ;

and then apply the Monte Carlo method to the variable Z instead of Y in a way that

E [Y]− 1

M

M∑
j=1

Z (ω j) ≈Cα

√
Var[Z]

M
¿Cα

√
Var[Y]

M
.

2.5.1 Control Variate

In this case the idea is to look for a RV X that has a strong correlation (positive or negative) with

Y and a known mean E [X] , generate a sample of both RVs and combine the empirical means

to an estimator with lower variance than the MC one.

Then, one can define a new random variable

Z (β) = Y −β(X −E [X])

The point is that since since E [X] is known, we are free to add a term β(X −E [X]) with mean

zero to the MC estimator, so that the unbiasedness is preserved. The variance is:

Var
[

Z (β)
] = E

[
(Y −β(X −E [X])−E [Y])2]

= E
[
((Y −E [Y])−β(X −E [X]))2]

= Var[Y]+β2 Var[X]−2βCov(X ,Y)

If one derives this last expression with respect to β, the minimum can be easily found to be

β∗ = Cov(X ,Y)

Var[X]

44

2.5. VARIANCE REDUCTION

and one has a total variance reduction of

Var
[

Z (β∗)
]= Var[Y]

(
1− (Cov(X ,Y))2

Var[X]Var[Y]

)
< Var[Y]

In practice, all the quantities are approximate using sample covariances and variances. It should

be pointed out that this kind of variance reduction really pays off under certain conditions, i.e.

if the assumption that the work to generate the pair (X j ,Y j) is (1+θ) times the work to generate

Y j is made one has that this strategy is convenient only if

Var[Y] > (1+θ)Var
[
V (β∗)

]
then, we can remark the previous condition as

1 > (1+θ)(1−ρ2) → ρ2 > 1

1+θ
Example Consider Monte Carlo integration for calculating I = ∫ 1

0 f (x)d x. This integral can be

seen as the expected value of f (U), where

f (x) = 1

1+x

and U follows a uniform distribution [0,1]. Using a sample of size M and denoting the sample

as u1, . . . ,uM , one has that the estimate is given by

I ≈ 1

M

M∑
i=1

f (ui).

If one introduces g (x) = 1+x as a control variate with a known expected value

E
[
g (U)

]= ∫ 1

0
(1+x)d x = 3

2

can combine the two into a new estimate

I ≈ 1

M

M∑
i=1

f (ui)− β̂∗
(1

M

M∑
i=1

g (ui)− 3

2

)
Using M = 5000, the following results has been obtained, where the coefficient β̂∗ has been esti-

Estimate Variance

Classical estimate 0.6952 0.0196

Control variate 0.6931 0.0006

45

2.5. VARIANCE REDUCTION

mated with the sample covariance and variance respectively

s f ,g = 1

M −1

M∑
j=1

(f (u j)− 1

M

M∑
i=1

f (ui))(g (u j)− 1

M

M∑
i=1

g (ui))

sg = 1

M −1

M∑
j=1

(g (u j)− 1

M

M∑
i=1

g (ui))2

so that β̂∗ ≈ 0.4768 and the variance has been reduced by 97%. Note that the exact result is ln2 ≈
0.69314718

Although this example is very simple and intuitive, a few words must be spent on the kind of

control variables are typically used in practice. In theory, any variable X correlated with Y and

whose expectation is known can be used as a control variable. This means that the potential

candidates to be used are quantities that are closely related to the one for which we try to esti-

mate the mean, but that are, in some sense, simpler and whose expectation is known.

In the context of SPDE or PDE with random coefficient we can apply this idea using a

coarser discretization of the problem (e.g. with double the gridsize h) with the same realiza-

tion of {Yk } as a control variable for the approximation of E [Q(uh)]. This idea is the basis of

multilevel Monte Carlo and the results will be shown in the next chapter.

46

CHAPTER 3

Multilevel Monte Carlo Method

3.1 Introduction

Monte Carlo methods are a very general and useful approach to the estimation of quantities

arising from stochastic simulation. However they can be computationally expensive, partic-

ularly when the cost of generating individual stochastic samples is very high, as in the case

of stochastic PDEs. Multilevel Monte Carlo is a recently developed approach which greatly

reduces the computational cost by performing most simulations with low accuracy at a corre-

spondingly low cost, with relatively few simulations being performed at high accuracy and a

high cost.

According to [16], when the dimensionality of the uncertainty (or the uncertain input pa-

rameters) is low, it can be appropriately modeled using the Fokker-Planck PDE (when is the Eu-

lerian counterpart of an SDE) and using stochastic Galerkin, stochastic collocation or polyno-

mial chaos methods (Xiu and Karniadakis 2002, Babuška, Tempone and Zouraris 2004, Babuška,

Nobile and Tempone 2010, Gunzburger, Webster and Zhang 2014). When the level of uncer-

tainty is low, and its effect is largely linear, then moment methods can be an efficient and accu-

rate way in which to quantify the effects on uncertainty (Putko, Taylor, Newman and Green

2002). However, when the uncertainty is high-dimensional and strongly non-linear, Monte

Carlo simulation remains the preferred approach.

Monte Carlo simulation is extremely simple as we could appreciate in the previous chapters

and we already know that its weakness relies in its computational cost that can be very high,

47

3.2. MULTILEVEL MONTE CARLO METHOD

particularly when when each sample might require the approximate solution of a PDE, or a

computation with many time steps.

Giles and Waterhouse in [17] developed a variant of MLMC which uses quasi-Monte Carlo

samples instead of independent Monte Carlo samples. The numerical results were very en-

couraging for SDE applications in which the dominant computational cost was on the coarsest

levels of resolution where QMC is known to be most effective due to the low number of dimen-

sions involved. However there was no supporting theory for this research.

More recently, there has been considerable research on the theoretical foundations for

multilevel QMC (MLQMC) methods (Niu, Hickernell, Müller-Gronbach and Ritter 2010, Kuo,

Schwab and Sloan 2012, Dick et al. 2013, Baldeaux and Gnewuch 2014, Dick and Gnewuch

2014a, Dick and Gnewuch 2014b). These theoretical developments are very encouraging, and

may lead to the development of new, more efficient, multilevel methods.

3.2 Multilevel Monte Carlo method

The history of multilevel Monte Carlo can be traced back to Heinrich et al. [21, 22], where it

was introduced in the context of parametric integration. Kebaier [23] then used similar ideas

for a two-level Monte Carlo method to approximate weak solutions to stochastic differential

equations in mathematical finance. As we have already seen, one of the classic approaches to

Monte Carlo variance reduction is through the use of a control variate which is well correlated

with the variable we want to approximate and has a known expectation. In [15], Giles extended

this idea to more that two levels and dubbed his extension the Multilevel Monte Carlo (MLMC)

method.

The multilevel idea comes from the control variate technique where, instead of finding an-

other random variable correlated to the first one, one use the same random variable but with a

different approximation so the sampling is made not just from one approximation of a certain

quantity of interest, but from several.

Let g denote a functional of a solution u of an underlying stochastic model and let gl denote

the corresponding approximation on level l corresponding to a discretization hl ∈ {hl }L
l=0.

The goal, as for the Monte Carlo method, is to estimate E
[
g
]

while controlling the error that

will be defined below. The expected value of the finest approximation can be expressed as

E
[
gL

]= E[
g0

]+ L∑
l=1

E
[
gl − gl−1

]

48

3.2. MULTILEVEL MONTE CARLO METHOD

That it can be seen as a control variate if one develops it as a telescopic series

E
[
gL

] = (E
[
gL

]−E[
gL−1

]
)+E[

gL−1
]

= (E
[
gL

]−E[
gL−1

]
)+ (E

[
gL−1

]−E[
gL−2

]
)+E[

gL−2
]

= . . .

where each variable is controlled by itself at a lower level. Then the MLMC estimator is

Y =
L∑

l=0
Yl , Yl = M−1

l

Ml∑
m=1

(gl (ωl ,m)− gl−1(ωl ,m)) (3.1)

with g−1 ≡ 0 and

E [Y] = E[
gL

]
, Var[Y] =

L∑
l=0

M−1
l Vl , Vl ≡ Var

[
gl − gl−1

]
It is important to emphatize that the quantity gl (ωl ,m)−gl−1(ωl ,m) in (4) comes from using the

same random sample on both levels.

If we define C0,V0 to be the cost and variance of one sample of g0, and Cl ,Vl to be the cost

and variance of one sample of Pl −Pl−1, then the overall cost and variance of the multilevel

estimator is
∑L

l=0 Ml Cl and
∑L

l=0 M−1
l Vl respectively.

For a fixed cost, the variance is minimized by choosing Ml to minimize

L∑
l=0

(Ml Cl +µ2M−1
l Vl)

for some value of the Lagrange multiplier µ2. This gives Ml = µ
√

Vl /Cl . To achieve an overall

variance of ε2 then it is required that µ = ε−2 ∑L
l=0

√
Vl Cl , and the total computational cost is

then

C = ε−2
(L∑

l=0

√
Vl Cl

)2
.

It is important to note whether the product Vl Cl increases or decreases with l , i.e. whether

or not the cost increases with level faster than the variance decreases. If it increases with level,

so that the dominant contribution to the cost comes from VLCL then we have C ≈ ε−2VLCL ,

whereas if it decreases and the dominant contribution comes from V0C0 then C ≈ ε−2V0C0.

This contrast to the standard MC cost of approximately ε−2V0CL , assuming that the cost of

computing gL is similar to the cost of computing gL − gL−1 and that Var
[
gL

]≈ Var
[
g0

]
.

This shows that in the first case the MLMC cost is reduced by a factor VL/V0, correspond-

ing to the ratio of the variances Var
[
gL − gL−1

]
and Var

[
g0

]
, whereas in the second case it is

49

3.2. MULTILEVEL MONTE CARLO METHOD

reduced by a factor C0/CL , the ratio of the cost of computing g0 and gL − gL−1. If the product

Vl Cl does not vary with level, then the total cost is ε−2L2V0C0 = ε−2L2VLCL .

Since the multilevel estimator Y is an approximation of E
[
g
]

, then, according to [9], we can

define the mean square error (MSE) as

MSE ≡ E[
(Y −E[

g
]
)2]= Var[Y]+ (E [Y]−E[

g
]
)2 (3.2)

To ensure that the MSE is less than ε2, it is sufficient to ensure that (E
[
gL − g

]
)2 and Var[Y]

are both less than 1
2ε

2. Combining this idea with a geometric sequence of levels in which the

cost increases exponentially with level, while both the weak error E
[
gL − g

]
and the multilevel

correction variance Vl decrease exponentially, we can state the following theorem

Theorem 4 (Cliffe, Giles, Scheichl, Teckentrup). Let g denote a random variable and let gl de-

note the corresponding level l numerical approximation.

If there exist independent estimators Yl based on Ml Monte Carlo samples, each with ex-

pected cost Cl and variance Vl , and positive constants α,β,γ,c1,c2,c3 such that α ≥ 1
2 min(β,γ)

and

1. |E[
gl − g

] | ≤ c12−αl

2. E [Yl] =

E
[
g0

]
, l = 0

E
[
gl − gl−1

]
, l > 0

3. Vl ≤ c22−βl

4. Cl ≤ c32γl

then there exists a positive constant c4 such that for any ε < e−1 there are values L and Ml for

which the multilevel estimator

Y =
L∑

l=0
Yl

has a mean-square-error with bound

MSE ≡ E[
(Y −E[

g
]
)2]< ε2

with a computational complexity C with bound

E [C] =


c4ε

−2, β> γ,

c4ε
−2 log(ε)2, β= γ,

c4ε
−2−(γ−β)/α, β< γ.

50

3.2. MULTILEVEL MONTE CARLO METHOD

The statement of the theorem is a slight generalization of the original theorem in [Giles,2008b].

It corresponds to the theorem and proof in [9], except for the minor change to the expected

costs to allow for applications in which the simulation cost of individual samples is itself ran-

dom. Note that if condition 3. is tightened slightly to be a bound on E
[
(gl − gl−1)2

]
, that is

usually the quantity which is bounded in numerical analysis, then it would follow that α≥ 1
2β.

From the theorem above we can make the following assertions.

In the case β > γ, the dominant computational cost is on the coarsest levels where Cl =
O(1) and O(ε−2) samples are required to achieve the desired accuracy. This is the standard

result for a Monte Carlo approach using i.i.d. samples; to do better would require an alternative

approach such as the use of Latin hypercube or quasi-Monte Carlo methods.

In the case β< γ, the dominant computational cost is on the finest levels. Because of con-

dition 1., 2−αL = O(ε) and hence CL = O(ε−γ/α). If β= 2α, which is usually the best that can be

achieved since typically Var
[
gl − gl−1

]
is similar in magnitude to E

[
(gl − gl−1)2

]
which is greater

than (E
[
gl − gl−1

]
)2, than the total cost is O(CL), corresponding to O(1) samples on the finest

level which is the best that can be achieved.

The last case of β= γ is the one for which both the computational effort and the contribu-

tions to the overall variance are spread approximately evenly across all the level.

3.2.1 MLMC implementation

Based on the theory in the previous section, the geometric MLMC algorithm used for the nu-

merical test is:

Algorithm 3 MLMC

1: start with L = 2 and initial target of M0 samples on levels l = 0,1,2

2: while extra samples need to be evaluated do

3: evaluate extra samples on each level

4: compute/update estimates on each level for Vl , l = 0, . . . ,L

5: define optimal Ml , l = 0, . . . ,L

6: test for weak convergence

7: if not converged, set L := L+1 and initialize target ML

8: end while

In the above algorithm, the equation for the optimal Ml is

Ml =
⌈

2ε−2
√

Vl /Cl

(L∑
l=0

√
Vl Cl

)⌉
51

3.2. MULTILEVEL MONTE CARLO METHOD

where Vl is the estimated variance and Cl is the cost of an individual sample on level l . This

ensures that the estimated variance of the combined multilevel estimator is less than 1
2ε

2.

The test for weak convergence tries to ensure that |E[
g − gL

] | < ε/
p

2, to achieve an MSE

which is less than ε2, with ε being a user-specified r.m.s. accuracy. If |E[
g − gL

] | ∝ 2−αl then

the remaining error is

E
[
g − gL

]= ∞∑
l=L+1

E
[
gl − gl−1

]= E
[
gL − gL−1

]
(2α−1)

This leads to the convergence test |E[
gL − gL−1

] |/(2α−1) < ε/
p

2, but for sake of robustness, we

extend this check to extrapolate from the previous two data points |E[
gL−1 − gL−2

] |, |E[
gL−2 − gL−3

] |,
and take the maximum over all three as the estimated remaining error. This is possible for very

simple problem, like the first we are presenting in the next section. As the problem grows in

complexity, the task becomes harder and harder.

The results presented later use the two routines given by [16] written in MATLAB:

• mlmc.m: driver code which performs the MLMC calculation using an application-specific

routine to compute
∑

n(g (n)
l − g (n)

l−1)p for p = 1,2 and a specified number of independent

samples;

• mlmc_test.m: a program which perform various tests and then calls mlmc.m to perform

a number of MLMC calculations.

In the results are also reported the consistency check versus level plot and the kurtosis ver-

sus level plot. These need some explanation. If a,b,c are estimates for E
[

g f
l−1

]
, E

[
g f

l

]
, E [Yl] ,

respectively, then it should be true that a −b + c ≈ 0. The consistency check verifies that this is

true.

Since √
Var[a −b + c] ≤

√
Var[a]+

√
Var[b]+

√
Var[c]

it computes and plots the ratio
|a −b + c|

3(
p

Va +
√

Vb +
p

Vc)
(3.3)

where Va ,Vb ,Vc are empirical estimates for the variances of a,b,c. The probability of this ratio

being greater than unity is less than 0.3%. Hence, if so, it indicates a likely programming error

or a mathematical error in the formulation which violates the crucial identity

E
[

g f
l

]
= E[

g c
l

]
that provides the same expectation on level l for the two approximations1.

1according to Giles the superscript f stands for “fine” while c stands for “coarse”.

52

3.3. NUMERICAL TESTS

The MLMC approach needs a good estimate for Vl = Var[Yl] , to achieve that at least 10

samples are needed and they may be sufficient in many cases for a rough estimate, but many

more are needed when there are rare outliers. When the number of samples M is large, the

standard deviation of the sample variance for a random variable X with zero mean is approxi-

mately
p

(κ−1)/M E
[

X 2
]

where the kurtosisκ is defined asκ= (E
[

X 4
]

/E
[

X 2
]
)2. If this quantity

is very large it could indicate that the empirical variance estimate is poor.

3.3 Numerical tests

In this section we construct a Multilevel Monte Carlo estimate for the quantity E [Q(u)] for the

boundary-value problem already seen in the Standard Monte Carlo chapter.

We recall that the problem is

−(a(x,ω)u′(x,ω))′ = 4π2 cos(2πx)︸ ︷︷ ︸
=: f (x)

, for x ∈ (0,1)

with u(0, .) = u(1, .) = 0 and we are interested in computing the expected value of the following

QoI

g (u(ω)) =
∫ 1

0
u(x,ω)d x

The diffusion term is modelled as a piecewise constant coefficient

a(x,ω) = 1+σ
N∑

n=1
Yn(ω)I[x̂n−1,x̂n](x),

with σ chosen ensuring the coercivity and so equal to 1/2. Level l uses a uniform grid with

spacing hl = 2−(l+1). A first order finite element approximation is used (piecewise linear finite

elements).

The uniform first order accuracy means that there is a constant K such that

|g − gl | < K h2
l (3.4)

and therefore we should obtain α = 2, β = 4 and γ = 1, resulting in an O(ε−2) complexity (see

Theorem 4). All these features can be verified in the numerical results in Figure 3.1, in Table 3.1

and in Table 3.2.

In Figure 3.1, we have the performance plots for the problem and the quantity of interest

described above. In the top row we have the weak and the strong error from which we compute

the α and the β of the Theorem 4. As we see in the plot on the left, for large values of hl , the

53

3.3. NUMERICAL TESTS

variance of gl and gl − gl−1 are close. Increasing hl even further, the two graph will eventually

cross, and Var
[
gl − gl−1

]
will be larger than Var

[
gl

]
. In this situation the cost of the MLMC

method from level l will actually be bigger than those using standard MC, rendering any further

coarsening useless. In the middle row plot we report the consistency check and the kurtosis,

the two quantities defined above.

Estimates of the parameters based on linear regression:

α= 2.03 exponent for MLMC weak convergence

β= 4.08 exponent for MLMC variance

γ= 1.01 exponent for MLMC cost

Table 3.1: Numerical result for the 1D elliptic PDE with random diffusion solved modeled with a piece-

wise constant coefficient.

The bottom two plots are related to the implementation of the MLMC algorithm and to its

cost. The left plot shows a comparison of the cost of standard MC with the cost of MLMC (the

actual results are reported exactly in Table 3.2). Note that the MLMC algorithm does not only

result in large savings in the computational cost, but that the cost of the MLMC estimator also

grows more slowly then the cost of the standard MC estimator as ε→ 0.

ε MLMC cost StdMC cost Gain factor

0.005 4.6 ·106 1.1 ·108 24

0.01 9.7 ·105 1.4 ·107 14

0.02 2.3 ·105 1.6 ·106 7

0.05 4.1 ·104 2.6 ·105 6

0.1 9.8 ·103 3.1 ·104 3

Table 3.2: Cost comparison between MLMC and StdMC as ε→ 0 for the 1D elliptic PDE with random

diffusion.

From the original MATLAB code provided by [16] we modify only the application-specific

routine.

54

3.3. NUMERICAL TESTS

0 2 4 6 8
0

0.1

0.2

0.3

0.4

level l

c
o
n
s
is

te
n
c
y
 c

h
e
c
k

0 2 4 6 8
7

8

9

10

11

12

level l

k
u
rt

o
s
is

0 2 4 6
10

2

10
4

10
6

10
8

level l

M
l

0.005

0.01

0.02

0.05

0.1

10
−2

10
−1

10
1

10
2

10
3

10
4

accuracy ε

ε
2
 C

o
s
t

Std MC

MLMC

0 2 4 6
−30

−25

−20

−15

−10

−5

0

level l

lo
g

2
 v

a
ri
a
n
c
e

g
l

g
l
− g

l−1

0 2 4 6
−15

−10

−5

0

level l
lo

g
2
 |
m

e
a
n
|

g
l

g
l
− g

l−1

Figure 3.1: Numerical result for the 1D elliptic PDE with random diffusion solved modeled with a piece-

wise constant coefficient. Rates of strong and weak error (up-left and up-right plots resp.), consistency

check (Eq. 3.3) and kurtosis (middle-left and middle-right plots resp.), accuracy vs. cost (low-right) and

sample vs. level for different accuracies (low-left).

55

3.4. APPLICATION TO RANDOM GEOMETRY PROBLEMS

3.4 Application to random geometry problems

The objective of this study is to characterize the uncertainty in the estimation of parameters,

such as permeability, dispersivity and capillary pressure, when they are computed numerically

from fluid dynamics simulations at the pore-scale. This is an important aspects that is often

overlooked when samples of porous media are studied (either experimentally or numerically).

In fact, realistic pore scale simulations can contain a large number of uncertainties, due to the

computational and experimental capabilities2 and to the lack of knowledge in the micro-scale

physical parameters, boundary conditions, and geometrical details of the pore space. This can

result in a huge variability of estimated upscaled parameters.

Due to the presence of very complex stochastic inputs (such as the geometry), it is very dif-

ficult to parametrize explicitly the randomness in terms of a finite number of independent ran-

dom variables. Therefore it is hard to use standard uncertainty quantification approaches. This

problem is instead perfect to test the Multilevel Monte method described previously. However,

even if the original algorithm is adaptive, for some cases, the number of levels and the initial

number samples is chosen a priori.

In a first place we implement the Giles’ multilevel algorithm in a new code described ac-

curately in Appendix A and we build some example without any physical relevance in order to

test it. Then we construct an appropriate fluid model for the physical phenomenon of interest

that in our case will be the pore-scale Navier-Stokes description, then we implement efficiently

a numerical approximation based on the finite volume solver OpenFOAM [33], and finally we

construct an efficient sampling algorithm to estimate the statistics of upscaled parameters.

3.4.1 Heterogeneous materials

Aiming to introduce the problem that we are going to study, we now give some general defini-

tions regarding the physical context. In particular, in the following, we state some considera-

tions about the so-called heterogeneous materials.

According to [37], an heterogeneous material is composed of domain of different materi-

als or the same in different states. it is assumed that the “microscopic” length scale is much

larger than the molecular dimensions but much smaller than the characteristic length of the

macroscopic sample. In such circumstances, the heterogeneous material can be viewed as a

continuum on the microscopic scale, and macroscopic or effective properties can be ascribed

2That, for example, limit the size of the domain to be studied or that are invasive changing the properties of the

sample

56

3.4. APPLICATION TO RANDOM GEOMETRY PROBLEMS

to it.

Figure 3.2: Examples of random heterogeneous materials. Left panel: A colloidal system of hard spheres

of two different sizes. Right panel: A Fontainebleau sandstone. Images from [37].

The physical phenomena of interest occur on “microscopic” length scales and structures on

this scale are generally referred to as “microstructures”. In many instances, the microstructures

can be characterized only statistically, and therefore such materials are referred to as random

heterogeneous materials. There is a vast family of random microstructures that are possible

and porous media are included in it. Figure 3.2 shows examples of synthetic and natural ran-

dom heterogeneous materials. The first example shows a scanning electron micrograph of a

colloidal system of hard spheres of two different sizes, primarily composed of boron carbide

(black regions) and aluminum (white regions). The second example shows a planar section

through a Fontainebleau sandstone obtained via X-ray microtomography.

There are different classes of problems (we give a general idea in Table 3.3), but here the fo-

cus will be put on steady-state effective property associated with the fluid permeability tensor,

k. The knowledge of this effective property is required for many applications in engineering,

physics, geology and materials science. This quantity is a key macroscopic property for de-

scribing slow viscous flow through porous media and it is the proportionality constant between

the average fluid velocity and applied pressure gradient in the porous medium. This relation is

Darcy’s law for the porous medium and it is known as

q =−k

µ
∇P

where µ is the dynamic viscosity, q is the velocity field and ∇P is the applied pressure gradient.

The effective properties of a heterogenous material depend on the phase properties and

on the microstructural information, including the phase volume fraction which represent the

57

3.4. APPLICATION TO RANDOM GEOMETRY PROBLEMS

Class General effective Average (or applied) Average generalized

property (Ke) generalized intensity (G) flux (F)

A Thermal conductivity Temperature gradient Heat flux

Diffusion coefficient Concentration gradient Mass flux

B Elastic moduli Strain field Stress field

C Survival time Species production rate Concentration field

D Fluid permeability Applied pressure gradient Velocity field

Sedimentation rate Force Mobility

Table 3.3: Different classes of steady-state effective media problems considered here. F ∝ KeĠ , where

Ke is the general effective property, G is the average (or applied) generalized gradient or intensity field,

and F is the average generalized flux field. Class A and B problems share many common features and

hence may be attacked using similar techniques. Class C and D problems are similarly related to one

another.

simplest level of information.

3.4.2 The geometry generation

After introducing the problem, we show how we can generate our stochastic realizations. The

first step requires to build a representative microscopic model of a porous media in order to

simulate fluid flow in these systems. There are many ways to obtain such model: one way

could be using real sample images, for example experimentally acquired by micro-computer

tomography techniques, another could be reconstructing realistically by means of suitable al-

gorithms. The latter is the one used by Icardi et al. in their work [10] and it simulate the sedi-

mentation of real three-dimensional grains, represented by convex polygonal surface meshes,

generating loose sand-like structures from given particle forms and grain size distribution. A

third way, the one we used in this work, could be placing point randomly in the domain until

the desired porosity is reached. We just remind that the definition of porosity is the volume of

grains over the total volume. This last method is less realistic and the model is far from a natural

porous media but it is more interesting, from a UQ point of view, to study the effect of a random

geometry. As already said, the problem is very complex and, in order to avoid the homogeniza-

tion phenomenon, we to consider a right number of grains. In one hand, if we have that too

many grains we will cause homogenization, therefore the multilevel algorithm would fail be-

cause the quantities, from one level to another will be uncorrelated. On the other hand, if we

58

3.4. APPLICATION TO RANDOM GEOMETRY PROBLEMS

have too few grains, we will lose the physical relevance of the problem. In Figure 3.3 we show

too examples of random geometry that we use to simulate the incompressible Navier-Stokes

flow at the pore scale.

(a) (b)

Figure 3.3: Random geometry realizations.

So, to go down the third path described above, we first have to establish the sources of

randomness. In the end we consider two of them: the size together with the shape of the grains

and their position in the domain.

We deal with this task in an ad-hoc algorithm written ex-novo and described entirely in

Appendix A together with the whole code used for the simulations. The main function for the

grain generation is sample and in the following we report the pseudocode.

In order to make our model more realistic, we thought and realized other improvements.

First of all we add the possibility of having ellipsoids instead of simple spheres. Then we also

developed a function that permits us to choose if we want an homogeneous or heterogeneous

porosity that works with an acceptance-rejection algorithm.

59

3.4. APPLICATION TO RANDOM GEOMETRY PROBLEMS

Algorithm 4 sample()
1: V0 → 2Lx ·2Ly ·2Lz (total domain volume)

2: V → 0 (grain volume)

3: for i = 1 → #grains do

4: p → (V0 −V)/V0 (check for porosity)

5: if desired porosity is reached then

6: break

7: end

8: if we do not want overlapping then

9: tries → 0

10: x ∼ Unif(−Lx ,Lx), y ∼ Unif(−Ly ,Ly), z ∼ Unif(−Lz ,Lz)

11: µ generated from a desired distribution (Uniform, Lognormal) or fixed

12: while max_tries is reached do

13: check for overlapping

14: tries → tries+1

15: if tries ≡ max_tries then

16: break

17: end

18: end

19: V =V + 4
3πµ

3

20: else

21: x ∼ Unif(−Lx ,Lx), y ∼ Unif(−Ly ,Ly), z ∼ Unif(−Lz ,Lz)

22: generate µ from desired distribution (Uniform, Lognormal)

23: V =V + V
V0

4
3πµ

3 [“statistical” porosity calculation]

24: end

25: end

60

3.5. SIMULATIONS

3.5 Simulations

In this section we examine the performance of the multilevel Monte Carlo method in comput-

ing the expected values of some quantities of interest for different model problems in 3D. In

the application with physical relevance we will focus on the expected value of the cumulative

outflow from the domain on the outlet.

The simulations have been carried out in parallel on a Linux workstation with 22 Intel Xeon

E5-2680 cores at 2.70 GHz and the CPU time for each simulation is reported case by case in the

relative table of results.

3.5.1 Elliptic PDE with random forcing

The main purpose is to test our MLMC pore-scale simulation. The problem is relatively sim-

ple. It is a laplacian in a three-dimensional domain with a constant random forcing and with

homogeneous Dirichlet boundary conditions.∆u(x) = f (ω), ∀x ∈ Γ⊆ [0,1]d

u(x) = 0, ∀x ∈ ∂Γ
(3.5)

where Γ, in this case, is exactly the open cube (0,1)3, f (ω) is constant random forcing uniformly

distributed in (0,100).

0 1 2 3 4
−8

−6

−4

−2

0

2

level l

lo
g

2
 |
E

[g
l−

g
l−

1
]|

alpha = 2.03

(a) α estimate.

0 1 2 3 4
−25

−20

−15

−10

−5

0

5

level l

lo
g

2
 V

a
r[

g l−
g

l−
1
]

beta = 4.05

(b) β estimate.

Figure 3.4: Results for the QoI in the elliptic PDE with random forcing.

As quantity of interest, we consider the functional

g (u) =
∫
Γ

u(x)dx

61

3.5. SIMULATIONS

At each realization we call the three-dimensional finite element mesh generator (Gmsh)

and the open source finite element solver GetDP.

0 1 2 3 4
10

0

10
1

10
2

10
3

10
4

level l

W
o

rk

gamma = 3.08

Figure 3.5: Results for the QoI in the elliptic PDE with random forcing - γ estimate

In order to solve the problem we are using a piecewise linear FEM so, in the same fashion

of Equation 3.4, we are expecting α ≈ 2 and β ≈ 4. In Figures 3.4 and 3.5 are represented the

rates of α and β. For each level l we have the value of the E
[
gl − gl−1

]
and the corresponding

error bar in the plot on the left, while in the right we have the values of Var
[
gl − gl−1

]
with the

error bars. The number between each point represent the local rate so, in order to have an

overall estimate, we should average all the value giving more importance to the last terms that

are more representative of the asymptotic behavior of the problem.

As we can see, the results obtained as overall estimate are close enough to two for α and to

four for β, so they are in agreement with the assumptions and they let us think that the code

works and that we can rely on it for further implementations.

62

3.5. SIMULATIONS

3.5.2 Elliptic PDE with a single random inclusion

Here we choose a problem that has not a real physical meaning, but it is our first approach to

PDEs on random geometry. We can think at this example as a problem where the domain is

divided in two subdomains randomly and one of those is a sphere that can at most touch the

original boundaries.

0 1 2 3 4 5
−10

−8

−6

−4

−2

0

level l

lo
g

2
 |
E

[g
l−

g
l−

1
]|

alpha = 1.96

(a) α estimate.

0 1 2 3 4 5
−30

−25

−20

−15

−10

−5

level l

lo
g

2
 V

a
r[

g l−
g

l−
1
]

beta = 3.87

(b) β estimate.

Figure 3.6: Results for the elliptic PDE with a single random inclusion.

The problem is again a three-dimensional laplacian with constant forcing and homoge-

neous Dirichlet boundary conditions∆u(x) = f , ∀x ∈ Γ(ω) ⊂ [0,1]d

u(x) = 0, ∀x ∈ ∂Γ(ω)
(3.6)

where Γ(ω) is the open subset of [0,1]3 with a sphere shaped hole randomly placed in the sense

that, given a fixed radius r , the position (X ,Y , Z) is represented by three RV uniformly dis-

tributed as X ∼U (−(0− r),1− r), Y ∼U (−(0− r),1− r) and Z ∼U (−(0− r),1− r).

Results of the simulation, Estimator = 1.10

MLMC stat. error 7.0 ·10−3 MLMC stat. error % 0.0064

StdMC stat. error 2.3 ·10−1 Stat. err. gain factor 33

MLMC Work 3.9 ·105 (∼ 5 d) StdMC Work 2.0 ·107 (∼ 234 d)

Table 3.4: Results for the elliptic PDE with random forcing.

63

3.5. SIMULATIONS

As quantity of interest, similarly to the previous case, we consider the functional

g (u) =
∫
Γ(ω)

u(x)dx

As in our first instance with the new code, the blackbox solver is GetDP and the mesh is built

with Gmsh and similarly to the previous case, we have α ≈ 2 and β ≈ 4. Moreover, this time in

the domain we have two different conductivities corresponding to the different subdomains.

In Figure 3.7(b) we report a realization of the random inclusion and, for sake of clearness, we

show a section of the domain in correspondence of the inclusion itself while, in Figure 3.7(a),

the estimate of γ≈ 3.5 is shown and it is a bit higher than the expected 3.

0 1 2 3 4 5
10

−2

10
0

10
2

10
4

10
6

level l

W
o

rk

gamma = 3.41

(a) γ estimate. (b) Section of the domain.

Figure 3.7: Results for the elliptic PDE with a single random inclusion.

In Table 3.4 we report the main results of the simulation. We will now describe the outputs

that will be reported in same way for all the following cases. The first two quantities are the

statistical error discussed in Chapter 2 and the relative percentage with respect to the estimator.

In the middle row we make a first comparison with the standard Monte Carlo method while

keeping the bias error fixed. We recall that we have previously defined the MSE as |E[
g
]−Y |,

but, as we did in Chapter 2, it can controlled separately by splitting it in bias and statistical

error, defined as

bias = |E[
g −Y

] |, stat. err. = |E [Y]−Y |

respectively.

64

3.5. SIMULATIONS

The statistical error of a single level is computed as

StdMC stat. err = c0

√
Var

[
gL

]
ML

(3.7)

and it represents, the statistical error that would be achieved with only the last single level. In

order to give an idea of the improvement we also report the gain factor that is simply the ratio

between the statistical of the single level and the original statistical error. Finally the last two

quantities are the MLMC work and the standard Monte Carlo one. The previous is computed

directly as the sum of the CPU time in each level

L∑
l=0

Ml ·Wl

while the latter is an estimate computed as

MMC ·WL

where the number of Monte Carlo samples is calculated using Equation 3.7, replacing the single

level statistical error with the standard one and then solving for ML . In other words, these last

two quantities represent a comparison of the work for the same level of error.

As we can see from the Table 3.4, even for this simple the standard Monte Carlo method is

clearly outperformed. In Table 3.7, instead, we make a statement on the theoretical complexity.

65

3.5. SIMULATIONS

3.5.3 Diffusion on a randomly perforated domain

In this third case, we consider a problem of more physical relevance. Even though we cannot

assume to deal with a porous medium, in this application we apply a pressure gradient and we

compute the diffusive flux in the outlet. The formulation becomes

∆u(x) = f , ∀x ∈ Γ(ω) ⊂ [0,1]d (3.8)

and the boundary is partitioned

no-slip: u = 0, ∇n p = 0 on Ig

inlet: ∇nu = 0, p = pi (x) on Ii = {x : x1 = 0}

outlet: ∇nu = 0, p = po(x) = 0 on Io = {x : x1 = 1}

symmetry: ∇nut = 0, un = 0, ∇n p = 0 on Is = {x : x2, x3 = 0}

Our quantity of interest is the effective diffusive flux of the sample given by

g (u) =
∫ 1

0 u({1,0}, x2, x3)d x2 d x3

∆p
.

where ∆p = 〈p(0, x2, x3)〉−〈p(1, x2, x3〉 is the mean pressure gradient between inlet and outlet.

The domain is similar to the previous one, it is divided into two subdomains with different

conductivities, one and zero. The inclusions are several this time and they are randomly placed

in each and every single realization with Algorithm 4 but, in this case, there is no “porosity” to

be reached. In fact, the number of inclusions is fixed and small.

Results of the simulation, Estimator = 0.98

MLMC stat. error 1.3 ·10−4 MLMC stat. error % 0.0001

StdMC stat. error 4.6 ·10−3 Stat. err. gain factor 35

MLMC Work 6.6 ·104 (∼ 18 h) StdMC Work 7.0 ·105 (∼ 8 d)

Table 3.5: Results for the diffusion in a random domain.

At each realization we call the three-dimensional finite element mesh generator (Gmsh)

and the open source finite element solver GetDP.

In figure 3.8(d) we can see a section of the cubic domain where the solution, the stationary

field, is represented. In the other 3 plot of Figure 3.8 we estimate α, β and γ. The results of

the statistics are reported in Table 3.5 while in Table 3.7we report α, β and γ and we make a

statement on the theoretical complexity.

66

3.5. SIMULATIONS

0 1 2 3
−10

−8

−6

−4

−2

0

level l

lo
g

2
 |
E

[g
l−

g
l−

1
]|

alpha = 1.51

(a) α estimate.

0 1 2 3
−26

−24

−22

−20

−18

−16

level l

lo
g

2
 V

a
r[

g l−
g

l−
1
]

beta = 3.56

(b) β estimate.

0 1 2 3
10

1

10
2

10
3

10
4

10
5

level l

W
o

rk

gamma = 2.99

(c) γ estimate. (d) Section of the domain.

Figure 3.8: Results for the diffusion on a randomly perforated domain.

67

3.5. SIMULATIONS

3.5.4 Pore-scale Navier-Stokes

In this paragraph we consider the adimensional steady incompressible Navier-Stokes equa-

tion3 u(x;ω) ·∇u(x;ω)+∇p(x;ω)− 1
Re ∇· (∇u(x;ω)) = 0,

∇·u = 0
∀x ∈ Γ(ω) ⊂ [0,1]d ,

with the Reynolds number Re = U L
ν , and the pressure p, and velocity u being the stochastic

solutions from which we seek to approximate some QoI. The domain Γ(ω) ⊂ [0,1]3 is a subset

of the unit cube with several inclusions that, in this case, can represent the pores of a porous

medium. The algorithm for the geometry generation is exactly the one in Algorithm 4. The

radius µ of the grains is sampled from a uniform distribution as well as the position (X ,Y , Z) in

the space until a fixed desired porosity is reached.

Partitioning the boundary ∂Γ(ω) in subregions Ii , the following boundary conditions are

imposed: 

no-slip: u = 0, ∇n p = 0 on Ig

inlet: ∇nu = 0, p = pi (x) on Ii = {x : x1 = 0}

outlet: ∇nu = 0, p = po(x) = 0 on Io = {x : x1 = 1}

symmetry: ∇nut = 0, un = 0, ∇n p = 0 on Is = {x : x2, x3 = 0}

where ∇n is the derivative in the normal direction and ut and un are respectively the tangential

and normal direction of the velocity with respect to the boundary.

Our quantity of interest is the effective horizontal permeability of the sample given by

g (u) =
∫ 1

0 u({1,0}, x2, x3)d x2 d x3

∆p
.

where ∆p = 〈p(0, x2, x3)〉−〈p(1, x2, x3〉 is the mean pressure gradient between inlet and outlet.

Numerical solution realizations

The three dimensional incompressible steady Navier-Stokes equtions were solved at each step

of the MLMC routines with black-box solver simpleFoam also coming from the open-source

code OpenFOAM. The equations are discretize with the Finite Volume Method. A second-order

central difference schemes with limiters to avoid oscillations was used for spatial discretization

3The Stokes flow equations are obtained by simply removing the first non-linear advection term in the first equa-

tion

68

3.5. SIMULATIONS

Figure 3.9: Mesh of a geometry realization.

and the SIMPLEC scheme was used to overcome the pressure-velocity coupling problem. The

whole domain was studied with a fixed hydraulic head drop between inlet and outlet and with

symmetric conditions on the lateral boundaries. This means that the resulting main flow is

directed among the x-axis and there is no flow escaping from lateral boundaries.

Typically, we are not capable of deriving solution realizations u`(ω) by analytical means.

Numerical approximations of the solution realizations can be constructed by first approximat-

ing the geometry Γ`(ω) by a numerical method representation Γ`(ω), thereafter using a black

box numerical solver, in our case OpenFOAM, to generate a numerical solution realization u`(ω)

from the input geometry Γ`(ω), and at the end compute the QoI g (u`(ω)). For implementa-

tional purposes we will assume there exists an α> 0 such that∣∣E[
g (u)− g (u`)

]∣∣=O
(
2−α`

)
, (3.9)

and a γ > 0 such that the cost of computing/generating a numerical solution realization pair

(u`−1(ω),u`(ω)) and computing its QoI has the following asymptotic bound

C` := E[
Computational cost(∆`g (·)]=O

(
2γ`

)
,

where we denote

∆`g (ω) = g (u`(ω))− g (u`−1(ω)).

In Figure 3.10 we estimate the weak and the strong error rates. In this case, as stated above,

we are using second-order schemes so we are expecting anα≈ 2. However, since our grid is not

69

3.5. SIMULATIONS

0 1 2 3 4
−16

−15

−14

−13

−12

−11

−10

−9

level l

lo
g

2
 |
E

[g
l−

g
l−

1
]|

alpha = 1.52

(a) α estimate.

0 1 2 3 4
−35

−30

−25

−20

−15

level l

lo
g

2
 V

a
r[

g l−
g

l−
1
]

beta = 3.07

(b) β estimate.

0 1 2 3 4
10

2

10
3

10
4

10
5

10
6

level l

W
o

rk

gamma = 3.53

(c) γ estimate. (d) Deterministic solution with streamlines.

Figure 3.10: Results for the incompressible Navier-Stokes flow simulation..

structured, the 1.5 obtained as rate is not a bad result. The strong error rate is also not bad and

it is 3. The rate of the work is good considering that we are dealing with a three-dimensional

problem and the grid is highly non-uniform, as we could appreciate in Figure 3.9 where we can

see that there are refinements in correspondence of the grains. In particular, in Figure 3.9, we

also want to show the an example of the heterogenous porosity that we were talking about in

section 3.4.2. The building of our grid was made by the mesh utility snappyHexMesh, native

to the open-source package OpenFOAM. This operation was performed in two steps. First, a

structured, cartesian mesh was created in the fluid portion of the domain, in order to minimize

average non-orthogonality and skewness. The second step consisted in modifying the mesh by

means of relocating boundary vertices, resulting in a body fitted mesh.

70

3.5. SIMULATIONS

Results of the simulation, Estimator = 2.1753 ·10−3

MLMC stat. error 1.3 ·10−4 MLMC stat. err. % 0.0617

StdMC stat. error 4.9 ·10−2 Stat. err. gain factor 362

MLMC Work 4.6 ·105 (∼ 5 d) StdMC Work 1.7 ·107 (∼ 191 d)

Table 3.6: Results for the incompressible Navier-Stokes flow simulation.

In Table 3.6 we report the results of the simulation and, similarly to the other cases, the

advantages of the MLMC method is clear. In this case we can see how the standard Monte

Carlo is not only outperformed, but also it would be impossible to realize in a reasonable time.

In Table 3.7we report α, β and γ and we make a statement on the theoretical complexity.

71

3.6. CONCLUSIONS

3.6 Conclusions

The work done in this thesis attempts to emphasize the conceptual simplicity of the multilevel

approach; in essence it is simply a recursive control variate strategy, using cheap approxima-

tions to some random output quantity as a control variate for more accurate but more costly

approximations. In practice, the challenge is to develop a tight coupling between successive

approximation levels, to minimize the variance of the difference in the output obtained from

each level. After an analysis of the results of the previous applications to fluid dynamics, we

can state two important conclusions regarding the Multilevel Monte Carlo method.

First, we used the Multilevel Monte Carlo method for very complex problems with different

black-box solvers like OpenFOAM and GetDP and we proved it to be flexible and modular, even

though is not trivial, because the computational costs of some applications are still consider-

able. The algorithm can be used with application-specific routines and, in most of the cases, it

works and it is robust.

With the numerically observed values for α, β and γ it is also possible to compare the the-

oretically predicted costs given by Theorem 4 for each case we studied and we do this in Table

3.7. We see from Table 3.7 that asymptotically the MLMC leads to a huge improvement over the

standard MC for all the cases.

Case α β γ MLMC compl. StdMC compl.

Rand. forcing 2 4 3 O(ε−2) O(ε−7/2)

Single rand. incl. 2 4 3.5 O(ε−2) O(ε−15/4)

Rand. diffusion 1.5 3.5 3 O(ε−2) O(ε−4)

Pore-scale N-S 1.5 3 3.5 O(ε−7/3) O(ε−13/3)

Table 3.7: Predicted cost of the MLMC estimator given by Theorem 4 to achieve a MSE of ε2 compared

to the cost of the standard MC estimator given by Equation 2.4.

To conclude, in this thesis we successfully applied the Multilevel Monte Carlo algorithm

to elliptic PDEs with random parameters. The results clearly show the advantage of using the

MLMC estimator over a standard MC estimator for this type of model and for the quantities

of interest considered. They further show that the gain of the MLMC estimator is not limited

to smooth or easy problems but also for very complex ones. The improvements are in fact

considerable when the solver cost is relevant (for 3D problem γ ≥ 3), or in cases where the

discretization error is large.

72

APPENDIX A

Multilevel Monte Carlo Pore-Scale Code

MAIN FILE
run.py

runDict.pyEXTERNAL MODULES
general.py

POST-PROCESSING

A.SOLVE()

CASE STUDY

Instance - SOLVER
S(G)

Instance - GEOM
G(level,name)

Instance - ESTIMATOR
A(name,pde,

geometry)

MULTILEVEL
MONTE CARLO

mlmc.py

DETERMINISTIC
STUDY

single.py

mlmcDict.py

singleDict.py

class: ESTIMATOR

openfoamDict.py

gmshgetdpDict.py

packingDict.py

OPENFOAM
SOLVER

openfoam.py

PACKING
ANALYZER
packing.py

GETDP PDE
SOLVER

gmshgetdp.py

class: SOLVER

randomgeoDict.py

bsandDict.py

RANDOM
GEOMETRY

randomgeo.py

SEDIMENTATION
CODE

bsand.py

class: GEOM

Figure A.1: Pore-Scale Code.

In this Appendix we want to give an idea on the main purposes and structure of the code

73

A.1. MAIN PURPOSE

we used for the MLMC simulations presented in this thesis. In Figure A.1 we show a schematic

representation of its main features that we will explain in details below. The code [27] has been

structured as a wrapper, developed in Python, containing calls to external sub-modules. An

object-oriented programming paradigm has been used, by creating abstract classes of different

types whose multiple instances are then created.

A.1 Main purpose

After understanding the potentialities of multilevel Monte Carlo and after a deep study of Giles’

algorithm we extended the code in order to apply the method to more complex problems such

as the ones described in Chapter 3. To do this, we need to combine existing solvers of different

types and generate complex pre- and post- processing routines. The code has been structured

as a “general-purpose” MLMC estimator for complex computational problems therefore with a

high level of abstraction and flexibility.

The basis of the code was initially thought to solve a finite number of deterministic prob-

lems like the ones in [26], where the fluid flow and the solute transport through porous media

are described. Since we had in mind something that could work in a wider spectrum of prob-

lems and with different approaches, we extended it also for statistical estimation of random

PDE, keeping the physical complexity of the problems.We ended up with a code that can deal

with deterministic and statistical problems that can solve different PDE model equations. This

is achieved by calling external solvers such as OpenFOAM , GetDP and Fenics in order to solve

problems like Steady State Navier-Stokes, two-phases compressible flows, two-phases incom-

pressible flows, Darcy, Laplacian, etc.

A.2 Structure

The main script of the whole program is run.py where all the external modules are imported,

the main settings of the estimation are loaded and the main object, containing (called es-

timator) is created and solved. All the settings are imported from dictionary files, such as

runDict.py. Every part of the program, in fact, is associated with a dictionary where the pa-

rameters are stored and can be easily configured by the user, as we can clearly see in Figure

A.1. As we can also see from Figure A.1, there are three classes that characterize the three main

elements of each problem. Each of these elements can be loaded by different files, according

to the problem we want to solve

74

A.2. STRUCTURE

From the first one, the Estimator class, we can choose the approach of problem. In fact, if

we want to estimate a quantity of interest with the multilevel Monte Carlo method we create

an instance with mlmc.py, on the other hand, if we want to find a deterministic solution or

a fixed parametric study of a given problem we create an instance with single.py. In the

former the Giles’ multilevel algorithm and other similar algorithms are implemented. They

can be adaptive, like the original one, or we can set a priori some parameters like the initial

number of sample and number of levels. These parameters, together with the confidence (c0),

the tolerance (ε or TOL) and the splitting between the bias and the statistical error, can be set

in mlmcDict.py WIth the latter instead, a single deterministic simulations can be run.

After the estimator has been created and set up, it is solved by running the selected algo-

rithm, implemented in the class itself. To do this usually a second class is used, called Geom

class that store all the information of the geometry. For each realization an instance of the

Geom class is created. Two kind of geometries can be created. With randomgeo.py the geom-

etry is constructed, as we have already well seen in Chapter 3, as a realization of two random

variables, one for the position of the grains (if we deal with a porous medium) or the position

of the inclusion (if we do not deal with a physically relevant problem), and one for the char-

acteristic dimension of the grain/inclusion, i.e. the radius. With bsand.py instead, a realistic

porous medium geometry can be created. In this latter case, is simulated the sedimentation of

the real three-dimensional grains, represented by convex polygonal surface meshes, generat-

ing loose sand-like structures from given particle forms and grain size distributions. The actual

grain shape and grain size distributions are obtained respectively by two-dimensional scan-

ning electron microscopy (SEM) scans and static-light scattering measurements carried out on

standard sand samples.

A third and last is Solver class. Has to do with the all the settings and routines specific for

each solver. A geometry is passed to construct a solver object on top of it. The solver is de-

fined in three files, openfoam.py, gmshgetdp.py and packing.py, in order to define which

code to use to solve our problem. The first has the obvious connection with the open-source

code OpenFOAM1. In this case, each time a sample is realized and the geometry is built, it creates

the mesh with the utility snappyHexMesh and it calls the right solver suitable for the problem

we are trying to solve (for our problems simpleFoam, the steady-state solver for incompress-

ible and turbulent flows). The second solver, instead, is linked to Gmsh2, a three-dimensional

1website - http://www.openfoam.com
2website - http://geuz.org/gmsh/

75

A.3. FINAL STATEMENTS

finite element mesh generator, and GetDP3 (“General environment for the treatment of Dis-

crete Problems”), an open-source scientific software environment for the numerical solution

of integro-differential equations, open to the coupling of physical problems (electromagnetic,

thermal, etc.) as well as of numerical methods (finite element method, integral methods, etc.)

which can deal with such problems of various dimensions (1D, 2D or 3D) and time states (static,

transient or harmonic). The last but not least, packing.py is not aPDE solver, but it is though

to run statistical analysis’ on the geometry realizations once they are generated.

After each geometry and solver instances are created, the problem is solved, the quantities

of interest are stored in the estimator object and adaptively used for estimation. When the algo-

rithm stops results are plotted and a post-processing analysis can be conducted. It is important

to highlight that, being the Monte Carlo samples independent, the code can be parallelized at

two levels: the level of the MLMC estimator and the level of the single solver. Both of these

approaches have been used and combined.

A.3 Final statements

During the whole process of the thesis development we run many test cases to test and debug

the code and, in the end, we can say to have proved its effectiveness in important applications.

However, due to the complexity of the problems at hand, there is still space to many fur-

ther improvements related to performance, parallelization, analysis of convergence and non-

asymptotic behaviors. Also the extension to different problems and the linking to other external

software would be something extremely interesting for future works.

3website - http://www.geuz.org/getdp/

76

Bibliography

[1] S. Asmussen, P. W. Glynn Stochastic Simulation, Algorithms and Analysis, Springer, 2007.

[2] I. Babuška, F. Nobile, R. Tempone A stochastic collocation method for elliptic partial differ-

ential equations with random input data, SIAM Review 52(2), 2010.

[3] I. Babuška, R. Tempone, G. Zouraris Galerkin finite element approximations of stochastic

elliptic partial differential equations, SIAM Journal on Numerical Analysis 42(2), 800-825,

2004.

[4] J. Baldeaux, M. Gnewuch, ‘Optimal randomized multilevel algorithms for infinite-

dimensional integration on function spaces with ANOVA-type decomposition, SIAM Journal

of Numerical Analysis 52(3), 1128–1155, 2014.

[5] A. Barth, C. Schwab, N. Zollinger Multilevel Monte Carlo finite element method for elliptic

PDEs with stochastic coefficients Numer. Math. Online First, 2011.

[6] J. Bear Dynamics of fluids in porous media, Dover Publications, 1988.

[7] C. Canuto Notes on Partial Differential Equation, 2009.

[8] C. Canuto, S. Berrone Notes on Numerical Methods for Partial Differential Equation, 2011.

[9] K. A. Cliffe, M. B. Giles, R. Scheichl, A. L. Teckentrup Multilevel Monte Carlo methods and

application to elliptic PDEs with random coefficients, Springer-Verlag 2011.

[10] N. Collier, A. Haji-Ali, F. Nobile, E. von Schwerin, R. Tempone, A Continuation Multilevel

Monte Carlo algorithm, 2014.

77

BIBLIOGRAPHY

[11] J. Dick, M. Gnewuch Infinite-dimensional integration in weighted Hilbert spaces: anchored

decompositions, optimal deterministic algorithms, and higher order convergence, Founda-

tion of Computational Mathematics 184, 111–145, 2014a

[12] J. Dick, M. Gnewuch Optimal randomized changing dimension algorithms for infinite-

dimensional integration on function spaces with ANOVA-type decomposition, Journal of Ap-

proximation Theory 184, 111–145, 2014b

[13] J. Dick, F. Y. Kuo, I. H. Sloan High-dimensional integration: The quasi-Monte Carlo way,

Acta Numerica / Volume 22 / May 2013, pp 133-288.

[14] J. H. Ferziger, M. Perić Computational Methods for Fluid Dynamics, Springer-Verlag, 2002

[15] M. B. Giles, Multilevel Monte Carlo path simulation, Oxford, UK.

[16] M. B. Giles, Multilevel Monte Carlo methods, Oxford (2015), UK.

[17] M. B. Giles, B. Waterhouse Multilevel quasi-Monte Carlo path simulation, Advanced Fi-

nancial Modelling, Radon Series on Computational and Applied Mathematics, 165-181,

2009.

[18] P. Glasserman Monte Carlo Methods in FInancial Engineering, Springer, 2003.

[19] M. Gunzburger, C. Webster, G. Zhang Stochastic finite element methods for partial differ-

ential equations with random input data, Acta Numerica 23, 2014.

[20] A. Haji-Ali, F. Nobile, E. von Schwerin, R. Tempone, Optimization of mesh hierarchies in

Multilevel Monte Carlo samplers, 2014.

[21] S. Heinrich, Monte Carlo complexity of global solution of integral equations, Journal of

Complexity 14(2), 151-175, 1998.

[22] S. Heinrich, E. Sindambiwe Monte Carlo complexity of parametric integration, Journal of

Complexity 15(3), 317-341, 1999.

[23] A. Kebaier Statistical Romberg extrapolation: a new variance reduction method and appli-

cations to options pricing, Annals of Applied Probability 14(4), 2681-2705, 2005.

[24] F. Y. Kuo, C. Schwab, I. H. Sloan ‘Multi-level quasi-Monte Carlo finite element methods for a

class of elliptic partial differential equations with random coefficients, ArXiv preprint:, 2012.

78

BIBLIOGRAPHY

[25] G. Iaccarino, T. Magin, Short Course on Uncertainty Quantification, Stanford CA, USA.

[26] M. Icardi, G. Boccardo, T. Tosco, D. L. Marchisio, R. Sethi, Pore-scale simulation of fluid

flow and solute dispersion in three-dimensional porous media, 2014.

[27] M. Icardi, R. Tempone, Multilevel Monte Carlo Applications to Geometrical and Differential

Problems on Random Geometry, (in preparation).

[28] O. P. Le Maître, O. M. Knio, Spectral Methods for Uncertainty Quantification, Springer

[29] C. Lemieux, Monte Carlo and Quasi-Monte Carlo Sampling, Springer, 2009.

[30] G. Migliorati, F. Nobile, E. von Schwerin, R. Tempone, Analysis of the discrete L2 projection

on polynomial spaces with random evaluation, 2011.

[31] B. Niu, F. Hickernell, T. Müller-Gronbach, K. Ritter Deterministic multi-level algorithms for

infinite-dimensional integration on RN , Journal of Complexity 27(3-4), 331-351, 2010.

[32] F. Nobile, R. Tempone, Mathematical and Algorithmic Aspects of Uncertainty Quantication

Summer School at University of Texas, slides, 2014.

[33] OpenCFD The Open Source CFD Toolbox, User Guide, OpenCFD (ESI), 2013.

[34] M. Putko, A. Taylor, P. Newmann, L. Green Approach for input uncertainty propagation

and robust design in CFD using sensitivity derivatives, Journal of Fluids Engineering 124(1),

60-69, 2002.

[35] D. S. Sivia, Data Analysis, a Bayesian Tutorial, Oxford University Press, 2006.

[36] A. Stuart, Uncertainty Quantification in Bayesian Inversion, 2010.

[37] S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Proper-

ties, Springer-Verlag, 2002.

[38] D. Xiu, G. Karniadakis The Wiener–Askey polynomial chaos for stochastic differential equa-

tions, SIAM Journal on Scientific Computing, 2002.

79

	Abstract
	Acknowledgements
	Introduction to Uncertainty Quantification
	Forward uncertainty propagation
	Inverse problem within uncertainty quantification
	Overview

	Monte Carlo Method
	Introduction
	Monte Carlo method
	Numerical tests

	Quasi-Monte Carlo method
	Error analysis in 1D
	Numerical tests

	Monte Carlo method for PDEs with random coefficient
	Error analysis
	Complexity analysis
	Numerical tests

	Variance Reduction
	Control Variate

	Multilevel Monte Carlo Method
	Introduction
	Multilevel Monte Carlo method
	MLMC implementation

	Numerical tests
	Application to random geometry problems
	Heterogeneous materials
	The geometry generation

	Simulations
	Elliptic PDE with random forcing
	Elliptic PDE with a single random inclusion
	Diffusion on a randomly perforated domain
	Pore-scale Navier-Stokes

	Conclusions

	APPENDIX
	Multilevel Monte Carlo Pore-Scale Code
	Main purpose
	Structure
	Final statements

