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Introduction

I These talks will give a basic introduction to sequential Monte
Carlo methods.

I These talks will seek to introduce SMC methods for a wide
variety of applications.

I It will also provide some details on the theory and
implementation of the methodology.
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The structure is as follows:

1. Introduction: motivations from Bayesian statistics and
standard Monte Carlo.

2. Sequential importance sampling/resampling. This includes the
weight and path degeneracy problems.

3. Advanced SMC methods. SMC samplers and particle Markov
chain Monte Carlo.

4. Theory and Application. The probabilistic theory and
implementation for real problems.
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Motivations from Bayesian statistics: Static Inference

I Consider observed data y1, . . . , yn. Suppose that given a
parameter vector θ ∈ Rd the data are i.i.d. with conditional
density f

L(y1:n; θ) =
n∏

i=1

f (yi |θ)

with y1:n = (y1, . . . , yn) and L(·) the likelihood function.

I In Bayesian statistical inference, one places a probability
density π on θ, prior to seeing the data.

Ajay Jasra SMC Methods
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I Then statistical inference is based upon the posterior
distribution

π(θ|y1:n)
L(y1:n; θ)π(θ)∫

Rd L(y1:n; θ)π(θ)dθ
θ ∈ Rd .

I Then, for example, one may interested in the posterior mean
of θ, or more generally the posterior expectation function of
π−integrable functions ϕ : Rd → R∫

Rd

ϕ(θ)π(θ|y1:n)dθ.

I Thus, one cannot typically apply Bayesian statistical models,
without having access to a class of numerical methods.
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I In most real statistical applications, one can seldom calculate
the posterior density, because the marginal likelihood is
unknown: ∫

Rd

L(y1:n; θ)π(θ)dθ.

I This is because the integral is often in very high dimension. In
such scenarios standard deterministic numerical integration is
so inaccurate as to be practically useless.
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Motivations from Bayesian statistics: Mixture Models

I Consider data y1, . . . , yn which are i.i.d. with density

f (yi |θ) =
k∑

j=1

ωjφ(yi ;µj , λ
−1
j )

θ = (ω1:k−1, µ1:k , λ1:k), with k known, φ the normal density.
I Suppose that

µj
i.i.d.∼ N (ξ, κ)

λj
i.i.d.∼ Ga(α, β)

ω1:k−1 ∼ D(δ)

with N the normal distribution, Ga the Gamma distribution
and D the Dirichlet distribution.
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I Thus the posterior distribution is of the form given above.

I As a result, one cannot perform statistical inference without
resorting to some numerical method.

I It is remarked that there are direct simulation methods for
such models (Fearnhead, P. & Meligkotsidou, 2007;
Mukhopadhyay, S. & Bhattacharya, 2011), but unless k ≤ 3
and n ‘not too large’ they are too computationally slow to be
used.
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Motivations from Bayesian statistics: Filtering

I A HMM is a pair of discrete-time processes, {Xk}k≥0 and
{Yk}k≥0.

I The hidden process, {Xk}k≥0, is a Markov chain.

I The observed process {Yk}k≥0 takes values in Rm.

I Given Xk the Yk are independent of
Y0, . . . ,Yk−1; X0, . . . ,Xk−1.

I Many real applications: Bioinformatics, econometrics and
finance.
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Example

I For example, with k ≥ 1, X0 = 0

Yk = Xk + σ1εk

Xk = Xk−1 + σ2νk

where εk , νk are i.i.d. standard normals.

I Here, θ = (σ1, σ2) are assumed known.

I The likelihood is Gaussian and the state-process under-goes a
Gaussian Markov transition.
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I In the notation to follow:

gθ(y |x) =
1

σ1

√
2π

exp{− 1

2σ2
1

(y − x)2}

and

qθ(x , x ′) =
1

σ2

√
2π

exp{− 1

2σ2
2

(x ′ − x)2}.
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I The objective is to compute πn(xn|y1:n) (supressing θ) which
can be written:

πn(xn|y0:n) =

∫
Rdx

gθ(yn|xn)qθ(xn−1, xn)πn−1(xn−1|y0:n−1)

p(yn|y0:n−1)
dxn−1

=
gn(yn, xn)

p(yn|y1:n−1)
πn(xn|y0:n−1).

This is called the filtering distribution.

I That is, given the posterior density at time n − 1 we perform
a prediction step (via πn(xn|y0:n−1)) and update to obtain the
posterior density at time n.

Ajay Jasra SMC Methods
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I Unless the model is linear and Gaussian (as in our example) or
the space of the hidden state is finite, one typically cannot
compute this distribution (the Kalman filter).

I Moreover, one may also want to calculate the static
parameters θ which is a very difficult problem.

I We will discuss methodology which will enable us to achieve
the first goal. We will also explain why static parameter
estimation is very difficult.
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Problem Setting

I Due to the above discussion, our interest (at one level) is in
the context where one considers estimation of integrals
w.r.t. a probability π

Eπ[h(X )] =

∫
h(x)π(x)dx .

I It is assumed that the density is known point-wise up-to a
constant.

I Interested in −∞ < Eπ[h(X )] <∞, X ∈ Rd , for many h.

Ajay Jasra SMC Methods



Outline
Introduction

A Review of some Monte Carlo methods
Sequential Monte Carlo Methods

SMC Samplers
Particle Markov chain Monte Carlo

Monte Carlo
Importance Sampling
Markov chain Monte Carlo

Monte Carlo

I Often, d is so high that deterministic numerical integration is
inaccurate.

I As a result, one often resorts to stochastic numerical methods.

I These are techniques for which the estimate should change
(even if the change is small) every time one obtains an answer.
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I If it is possible to sample i.i.d. samples X1, . . . ,XN from π
then one can use

1

N

N∑
i=1

h(Xi )

which converges almost surely via the strong law of large
numbers.

I In addition, the method is supposedly dimension independent.

I The problem is that, in a wide variety of problems, one cannot
sample from π.
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Unbiasedness + Variance

I Before we continue, we remark that:

E[
1

N

N∑
i=1

h(Xi )] =

∫
h(x)π(x)dx .

so the estimate is unbiased.

I In addition, to measure the accuracy of the procedure, one
can use the variance:

Var[
1

N

N∑
i=1

h(Xi )] =
1

N
Varπ[h(X )].

In some scenarios, the variance could be infinite.
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Lp−Bound

I It is possible to show (using the Marcinkiewicz-Zygmund
inequality e.g. see Cappé et al. (2005) pp. 292) that (for
bounded measurable functions, although this can be
expanded) for any p ≥ 1 there exist a Bp <∞

E[| 1
N

N∑
i=1

h(Xi )−
∫

h(x)π(x)dx |p]1/p ≤ Bp√
N
.

That is, the rate of convergence is O(N−1/2).

I This bound provides an finite sample rate of convergence. In
some scenarios (p = 2!) the exact moment is known.
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Central Limit Theorem

I In addition, one can also establish that for any function that is
square integrable w.r.t. π we have (e.g. Shiryaev(1996))(

1√
N

N∑
i=1

{h(Xi )− Eπ[h(X )]}
)
⇒ N (0,Varπ[h(X )]).

I The asymptotic variance gives an idea on the accuracy of the
approximation, although, here, it is related to the finite sample
one. For the methods to be described there will be a clear
distinction and the central limit theorem will provide valuable
information about accuracy of the approximation adopted.
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Importance Sampling

I We consider the scenarios where
I One cannot sample from π.
I Varπ[h(X )] is ‘large’.

In either scenario one cannot or would not want to use Monte
Carlo methods.

I We introduce a simple method which can help to alleviate this
problem.

I It is based upon a change of measure.
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I Let q(x) be any probability density such that if q(x) > 0 it
implies that π(x) > 0. Then one has

Eπ[h(X )] = Eq[h(X )w(X )]

where w(x) = π(x)/q(x) is the importance weight or
Radon-Nikodym derivative.

I Then one can just sample X1, . . . ,XN i.i.d. from q and use the
estimate

1

N

N∑
i=1

h(Xi )w(Xi )

which is asymptotically consistent, via the strong law of large
numbers.
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Unbiasedness + Variance

I As for Monte Carlo, the estimate is unbiased.

I In addition

Var[
1

N

N∑
i=1

h(Xi )w(Xi )] =
1

N
Varq[h(X )w(X )].

Here it is clear that some q’s are better than others. In
general, one wants to choose the importance distribution
which minimizes the variance.
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Optimal Importance Distribution

I It can be shown that the importance distribution that
minimizes the variance is (e.g. Rubinstein (1981))

q(x) =
|h(x)|π(x)∫
|h(x)|π(x)dx

.

Clearly, one cannot evaluate this density, so many importance
sampling schemes are based upon approximating this
distribution.

I In general, one wants q to follow the shape of h(x)π(x). If
there are many h one would like the variance of the weights to
be, as much as possible, ‘low’.
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Lp−Bound and Central Limit Theorem

I We can also show, if w(x) is bounded that

E[| 1
N

N∑
i=1

w(Xi )h(Xi )−
∫

h(x)π(x)dx |p]1/p ≤ Bp√
N
.

I The CLT holds(
1√
N

N∑
i=1

{w(Xi )h(Xi )−Eπ[h(X )]}
)
⇒ N (0,Varq[h(X )w(X )]).
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Self-Normalized Estimates

I Finally, we note that if π(x) is only known up-to a constant,
then we can use the estimate

N∑
i=1

w(Xi )h(Xi )

where

w(Xi ) =
w(x)∑N

j=1 w(Xj)

which does not require the evaluation of any unknown
constants of π or q.

I In addition, via the SLLN, this estimate is asymptotically
consistent. However, for any finite N it is biased; one of the
prices to pay for not evaluating the constants in π and q.
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Problems in High Dimensions

I At this stage, it may seem that one can at least solve the
problem of (static) Bayesian inference.

I However, in high dimensional situations, e.g. d ≥ 1000,
importance sampling typically collapses as the variance of the
importance weights can explode.

I It has been shown (Bickel et al. 2008) that as the dimension
goes to infinity, then one needs to increase the number of
samples at an exponential rate (for some stability properties)
in the dimension.

I This can be too expensive for many practicioners. We will
introduce a method, later, whose cost is (at most) cubic in
the dimension (Beskos et al. 2014).
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MCMC

I A standard technique in statistics/physics is to construct an
ergodic Markov chain of stationary distribution π.

I Simulate a Markov chain from an ergodic Markov kernel K
and use the estimate:

1

N

N∑
i=1

h(Xi )

where X1, . . . ,XN is the simulated chain.

I Under rather mild conditions, the above quantity also
converges almost surely to Eπ[h(X )].
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Some Markov chain Theory

I We consider an E−valued Markov chain (E = Rd) with
associated σ−algebra B(E ).

I Let K (x , y) be a non-negative function on E × E such that:

1. For any x ∈ E ,
∫
E

K (x , y)dy = 1
2. For any set A, the function

∫
A

K (x , y)dy is measurable.

Then K is a transition kernel.
I Let π : E → R+ be such that

1.
∫
E
π(x)dx = 1

2. πK = π.

Then π is the stationary (or invariant) density of the chain.

Ajay Jasra SMC Methods
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I The idea of a transition kernel, is to replace the concept of
the transition matrix. We have

P(Xn ∈ A|Xn−1 = x) =

∫
A

K (x , y)dy .

This is a conditional density which now tells us how the
Markov chain evolves over time.

I The n−step transition kernel is∫
A

Kn(x , y)dy =

∫
A

{∫
En−1

K (x , x1)×· · ·×K (xn−1, y)dx1:n−1

}
dy

and the Chapman-Kolmogorov:∫
A

Km+n(x , y)dy =

∫
A

{∫
Km(x , u)Kn(u, y)du

}
dy .

Ajay Jasra SMC Methods
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I The marginal density, at time n of the Markov chain is, given
an initial density function µ(0) of X0:

µ(n)(y) =

∫
E
µ(n−1)(x)K (x , y)dx

we use the short-hand µ(n) = µ(n−1)K .

I Consider a Markov chain {Xn} and a probability density λ.
The chain is said to be λ−irreducible if, for any A ∈ B(Rd)
with ∫

A
λ(x)dx > 0

and any x ∈ E , there exist a 0 < n0 <∞ such that∫
A Kn0(x , y)dy > 0.

Ajay Jasra SMC Methods
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I A Markov chain is aperiodic, if there does not exist a disjoint
partition B1, . . . ,Bn of Rd , with n ≥ 2 such that for all
i = 1, . . . , n, x ∈ Bi ∫

Bi+1

K (x , y)dy = 1

with the convention Bn+1 = B1.

I Let λ and η be any two probability densities, then the total
variation distance between them is

‖λ− η‖TV := sup
A∈B(Rd )

|
∫
A

[λ(x)− η(x)]dx |

the distance is based upon the set for which the two
probabilities most disagree.
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Convergence in Total Variation

I The distance is on [0, 1] (check this) and provides a way to
measure the distance between two probability densities. We
then have the following result.

I Suppose that K is a π−irreducible, aperiodic Markov kernel of
stationary distribution π. Then for any µ(0) we have that

lim
n→+∞

‖µ(n) − π‖TV = 0.

I Remark that there is a lot of theory on Markov chains (some
is below). For a complete introduction see Meyn & Tweedie
(2009) and Roberts & Rosenthal (2004).
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Strong Law of Large Numbers

I For any Harris positive Markov chain (invariant π) one has

1

N

N∑
i=1

h(Xi )→P

∫
E

h(x)π(x)dx

i.e. via the SLLN for Markov chains.

I Harris positive, is a Markov chain that is π−irreducible with
invariant π and is Harris recurrent: for every x ∈ E
Px(ηA =∞) = 1, with ηA the no. of visits to A and A any set
with positive π−measure.
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Lp−Bound

I It is also (under some conditions which are not defined here;
see Meyn & Tweedie (2009)) possible to establish an
Lp−Bound, for example, via the Poisson equation (see Gylnn
& Meyn (1996) and below).

I If a π−invariant Markov chain is geometrically ergodic
(possibly sub-geometric) then

E[| 1
N

N∑
i=1

h(Xi )−
∫

h(x)π(x)dx |p]1/p ≤ Bp√
N
.
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Central Limit Theorem

I There is also a CLT, indeed a functional CLT, which makes for
a very elegant proof based upon the Poisson equation.

I A function ĥ is said to be a solution to Poisson’s equation if

h(x)− π(h) = ĥ(x)− K (ĥ)(x).

I We consider a Harris positive Markov chain (invariant π) such
that a solution to Poisson exists and π(ĥ2) <∞. Suppose
further that

γ2
h = π(ĥ2 − K (ĥ)2) > 0.
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I Then we have that the CLT holds:(
1√
N

N∑
i=1

{h(Xi )− Eπ[h(X )]}
)
⇒ N (0, γ2

h).

I Here, we observe that the asymptotic variance has a very
different form to what we have seen thus far. On in-depth
analysis, one can find that if the Markov chain mixes quickly,
then the variance is ‘small’.

I In general, it can be very difficult to compute the variance,
even numerically. See e.g. Andrieu & Thoms (2008) and the
references therein.
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Metropolis-Hastings

I A chain can be set-up, which admits π as its invariant
measure, e.g. the Metropolis-Hastings (M-H) kernel
(Metropolis et al. 1953; Hastings, 1970).

I This is of the form:

K (x , dx ′) =

{
1 ∧ π(x ′)q(x ′, x)

π(x)q(x , x ′)

}
q(x , x ′)dx ′

+δx(dx ′)[1−
∫
Rd

{
1 ∧ π(u)q(u, x)

π(x)q(x , u)

}
q(x , u)du]

I where q is the proposal density.

I Under easily verifiable conditions, the chain is also ergodic.
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Optimal Scaling

I In 1997, Gareth Roberts (Roberts et al. 1997) and co-authors
proved a stunning result about the Metropolis-Hastings
algorithm.

I They proved, when having i.i.d. targets with normal random
walk proposals and taking d to infinity that the (say) first
component of the Markov chain converges to a Langevin
diffusion. This is when the proposal variance is scaled by 1/d .

I More interestingly, they show that using the limiting diffusion
that the optimal, in some sense, scaling induces an acceptance
rate of around 0.234; one should aim to scale the proposal so
that this rate is achieved.
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Metropolis-within-Gibbs

I In general, the MCMC method will not work well, when
proposing samples on the whole space (at least if d is big).

I One way to alleviate this problem is to adopt the so-called
Metropolis-within-Gibbs (MWG) algorithm. In this scenario
one samples from the full conditional densities:

π(xi |x−i )

with x−i = (x1, . . . , xi−1, xi+1, . . . , xd) using a
Metropolis-Hastings step.

I We remark that the full conditionals can have any dimension
less than d .
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I A basic MWG algorithm. Given x1:d ∈ Rd , sample

X ′1|x−1

from any Markov kernel of invariant distribution π(x1|x−1)
and update the state.

I Every subsequent step for n = 2, . . . , d does the same for the
full conditional density π(xn|x−n).
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I In ‘complex’ problems standard MCMC often does not work
well.

I For example, when π is multi-modal, or there are high
correlations between sub-blocks of X .

I That is, methods which rely upon mixtures and compositions
of M-H kernels (e.g. operating on sub-blocks of π) may
converge very slowly.

I In addition, for any real simulation, the samples may fail to
traverse the entire support of π.
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I This has lead to a vast literature on how to improve over
MCMC.

I Methods based upon
I multiple chains
I non-linear chains
I adaptive chains

have appeared.

I Recently, methods which use MCMC in SMC (and vice-versa)
have also appeared and we will, ultimately describe this.
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SMC Methods

I SMC methods simulate from a sequence of related
distributions of increasing dimension, known point-wise up-to
a normalizing constant.

I This technique can be used to sample from a single complex
distribution.

I The ideas of importance sampling and resampling are
combined.

I The method samples N > 1 samples in parallel.
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Sequential Importance Sampling

I Denote the sequence of densities π̃1, . . . , π̃p.

I At time step 1, simulate N i.i.d. samples (particles) from a
distribution q.

I Calculate the weight

W i
1 ∝

π̃1(x i
1)

q(x i
1)
.

I Can then approximate Eπ̃1
[h1(X1)] by

N∑
i=1

{
W i

1∑N
j=1 W j

1

}
h1(X i

1).
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I Use samples at time 1 to help simulate from π̃2.

I For i = 1, . . . ,N, to sample X i
2|x i

1 ∼ K2(x i
1, ·) and calculate

W i
2 ∝W i

1

[
π̃2(x i

1:2)

π̃1(x i
1)K2(x i

1, x
i
2)

]
.

I More generally, at time n the weight is

W i
n ∝W i

n−1

[
π̃n(x i

1:n)

π̃n−1(x i
1:n−1)Kn(x i

n−1, x
i
n)

]
and we continue until time p.
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Lp−Bound

I We can also show that (under some conditions)

E[| 1
N

N∑
i=1

W
i
nhn(X i

n).−
∫

hn(x1:n)π̃n(x1:n)dx |p]1/p ≤ Bp,n√
N
.

I However, under realistic conditions, Bp,n will typically explode
with the time parameter. This can mean that the error of the
algorithm will increase for any fixed N (indeed this is the
case) as n grows.
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Resampling + Weight Degeneracy

I In most scenarios, the variance of the weights increase with
the time parameter (e.g. Kong et al. (1994)).

I One way to deal with this problem is to resample the particles.

I This uses some stochastic rule to sample the N samples with
replacement, according to the weights from the current
particle cloud.

I The weights are then reset to one.

I This will mean that SMC is only useful for estimating the
marginals of π̃n on a fixed dimensional space (we discuss this
below).
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I Typically, one should not resample at every time step. This
can be very inefficient.

I Often use a measure of the quality of the particle
approximation.

I Resample when this measure falls below (or moves beyond)
some threshold.

I One often used measure is the effective sample size (ESS):

[
∑N

i=1 W
(i)
n ]2∑N

i=1(W
(i)
n )2

.

I This is a number between 1 and N which indicates (roughly)
how many useful samples the algorithm has.
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Theory of SMC

I The analysis of SMC methods is non-trivial and very different
from that of MCMC.

I One can represent the law of the algorithm via a Markov
chain, but due to the resampling step, one must think very
deeply about how to prove Lp−Bounds and CLTs.

I Most of the theory comes from the pioneering work of Pierre
Del Moral; see Del Moral (2004). Many other authors have
contributed, to a lesser extent, including: Laurent Miclo, Dan
Crisan, Eric Moulines, Francois Le Gland, Randl Douc,
Christophe Andrieu, Nicolas Chopin, Arnaud Doucet, Sylvain
Rubenthaler, Paul Fearnhead, Andreas Erbele, Hans Kunsch.
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I More recently, younger authors: Alex Beskos, Sumeet Singh,
Hock Peng Chan, Jimmy Olsson, Omiros Papaspiliopoulos,
Adam Johansen (and even myself...) have contributed and it
is still possible to do original research in this field.

I Del Moral’s work has proved Lp−Bounds and CLTs, large
deviation principles, propagation of chaos etc etc for SMC
methods.

I Much of the work is thinking about SMC algorithms as
approximations of Feynman-Kac formulae.

I These can be thought of as ‘importance sampling’ identities.

I The results below hold when one resamples at deterministic
times, or stochastic times (see Del Moral et al. (2011)).
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Lp−Bound

I Denote by π̃Nn the approximation of the density π̃n, n ≥ k ,
hk ∈ Bb(E[n−k,n]) then one has (under some conditions; see
Del Moral (2004))

E
[(
π̃Nn − π̃n)(hk)

)p]1/p

≤ Bp

N

I That is, for a fixed computational complexity, in the number
of particles, it is guaranteed that the marginal can be
approximated for a fixed lag; the bound will go to zero,
uniformly in time, as N →∞.

I This is not necessarily the case without resampling.
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Central Limit Theorem

I Again, under some conditions, one can prove that for
hn ∈ Bb(En)

√
N
(
π̃Nn − π̃n)(hk)

)
⇒ N (0, σ2

n).

I The asymptotic variance has a very complicated expression
and one can see Del Moral (2004) or Chopin (2004).
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Resampling

I The basic idea of resampling can be characterized as possible.

I At time n of the algorithm we sample, with replacement, N
particles from the current set of particles according to some
stochastic rule such that:

E[N i
n|X

(i)
0:n] = Nw

(i)
n (1)

where N i
n is the number of replicates of the i th particle at

time n and the argument of wn is omitted.
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Resampling Methods: Multinomial Resampling

I This is the most basic approach, as used in the bootstrap
filter of Gordon et al. (1993).

I The procedure is as follows: Resample with replacement N
particles, with probabilities proportional to their weights.

I This approach is termed multinomial resampling as, given

X
(1:N)
1:n , (N1

n , . . . ,N
N
n ) ∼MnN(N,w), w = (W

(1)
n , . . . ,W

(N)
n ).

Here N i
n are the replicates of the i th particle at time n.
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I For i ∈ TN compute the normalized weights:

W
(i)
n =

w
(i)
n∑N

j=1 w
(j)
n

.

I For i ∈ TN sample X̂
(i)
0:n according to the distribution:

π̂Nn (dx̂1:n) =
N∑
i=1

W
(i)
n δ

x
(i)
1:n

(dx̂1:n).
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Resampling Methods: Residual Resampling

I One of the drawbacks of the multinomial scheme is the
unnecessarily high variance that it introduces into the
algorithm.

I An attempt to deal with this problem is residual resampling
(or stochastic remainder resampling) (Baker, 1985),
rediscovered by Liu & Chen (1998).
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I For i ∈ TN compute the normalized weights.

I For i ∈ TN compute

w̄
(i)
n =

NW
(i)
n − bNW

(i)
n c

N −
∑N

j=1bNW
(i)
n c

.

I For i ∈ TN set
N i
n = bNw̄

(i)
n c+ N̄ i

n

where (N̄1
n , . . . , N̄

N
n ) ∼MnN(N −

∑N
j=1bNw̄

(j)
n c, w̄),

w̄ = (w̄
(1)
n , . . . , w̄

(N)
n ).
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Resampling Methods: Stratified Resampling

I This method, introduced by Kitagawa(1996) (see also
Fearnhead (1998)) is based upon ideas from survey sampling.
To ease the presentation, introduce the following mapping
Iw̄n,N : [0, 1]→ TN defined as

Iwn,N(u) = i if u ∈
( i−1∑
j=1

W
(i)
n ,

i∑
j=1

W
(i)
n

]
. (2)
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I For i ∈ TN compute the normalized weights.

I For i ∈ TN sample Ui ∼ U[(i−1)/N,i/N].

I For i ∈ TN set X̂
(i)
0:n = x

Iwn,N(Ui )
0:n .
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Resampling Methods: Systematic Resampling

I A refinement of the stratified resampling method is systematic
resampling (Whitely, 1994), rediscovered by Carpenter et
al. (1999). The approach attempts to reduce the randomness
in resampling by using only a single uniform random variable

I For i ∈ TN compute the normalized weights.

I Sample U ∼ U[0,1].

I For i ∈ TN set Ui = (i − 1)/N + U.

I For i ∈ TN set X̂
(i)
1:n = x

Iwn,N(Ui )
1:n .
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I In Crisan et al. (1999) several resampling schemes are
presented which lead to a random number of particles at each
time step. Essentially, they provide some resampling steps
that satisfy (1) and the extra condition:

E[|
Nn∑
i=1

N i
nf (X

(i)
n )− Nn

Nn∑
i=1

w
(i)
n f (X

(i)
n )|2|Fn−1] ≤ CNn‖f ‖2

where the spaces are homogeneous in time En = En−1,
f ∈ Cb(E ), Nn is the number of particles at time N and Fn−1

is the canonical filtration generated by the process at time
n − 1.

I This procedure, whilst theoretically interesting and
advantageous (over multinomial) has some drawbacks. This is
because the particle system can both die out, or explode.
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I In Fearnhead & Clifford (2003), the following scheme is
proposed. Assume that M ≤ N particles are to be produced,
and given the normalized weights, we may:

I Calculate the unique solution to
∑N

i=1{1 ∧
w̄ (i)

n

α } = M.

I For i ∈ TN retail x
(i)
0:n if w̄

(i)
n > α. Let the number of particles

be retained be M ′.
I Adopt any resampling method to resample M −M ′ particles

from the remaining N −M ′ particles.

Fearnhead & Clifford (2003) establish that when the
systematic resampling method is used in the final step, that
this procedure is optimal for the class of problems that they
investigate.
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I In Chopin (2007) a Rao-Blackwellized scheme is used for the
problem of dynamic change-point detection in time-series
models. The model is a hidden Markov model with a state

xn = (θn, in) ∈ En = R× {1, in−1 + 1}.

The Markov prior density is then

p(xn|xn−1) =

{
(θn−1, in−1 + 1) wp π1

(ξ, 1) wp 1− π1

where π1 is a known prior probability and ξ is drawn from
some known density πξ.
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I Then, to reduce the variance of the weights, both possibilities
are realized; that is, N ξ’s are drawn, and two particles are
produced with weights corresponding to a kernel with Dirac
on the choice in = in−1 + 1 or in = 1. Given the 2N particles,
N new particles are drawn.
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Discussion on Resampling

I A clear drawback of the resampling approach is the fact that
particles with a very high weight are likely to be resampled
many times. As a result, there will be a clear loss in particle
diversity. That is, the estimates of functionals of interest, post
resampling, may be very poor - this is verified, theoretically in
Chopin (2004).

I Indeed, resampling can only be thought of as a technique that
will improve estimation in the future.
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I In terms of computational cost, the standard SIR method,
that is with multinomial resampling, is O(N log N). However,
as noted in Doucet et al. (2000), this operation can be
reduced in computational complexity to O(N).

I Another question, is whether we should resample the particles
at all? As noted above, the resampling scheme can introduce
extra variance into the estimation procedure and
simultaneously, make the algorithm difficult to parallelize, so
despite the fact that the variance of the weights increases,
should a resampling technique be adopted?
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I As noted by Godsill & Clapp (2001) and in implemented in
Del Moral et al. (2007), if the discrepancy between
consecutive densities is high, we might try to introduce some
sort of interpolating distributions between them. This may
reduce the need to resample the particles.

I There are, however, at least two counter arguments to not
resampling the particles:

I There is theoretical evidence to the contrary.
I The introduction of interpolating densities can be very

computationally expensive, and not appropriate for real on-line
inference problems.

We have covered the first point. For the second point, it may
be necessary to introduce, a large number of intermediate
distributions, which may lead to the algorithm being too
expensive; see Bickel et al (2008).
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I Due to the above points, it is not expected that resampling at
every step of the algorithm is required; a sensible criterion is
required to decide when to resample. One aspect of IS
methods, that we have stressed in general, is the fact that the
variance of the importance weights provides a sensible, if not
perfect, measure of the performance of the algorithm.

I Typically, the criterion of the effective sample size is used.
One approach is to resample the particles when this quantity
drops below some pre-specified value, for example N/2.

I There is also a rejection method, which at least when the
maximum of the weights is known, is preferable to the
dynamic approach.
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Path Degeneracy

I We discuss a rather important point associated to SMC
algorithms. SMC methods, for most applications, should only
be used to approximate expectations on the marginal of π̃n or,
up to some small fixed lag k ≥ 1, π̃(xn−k:n).

I This fact has an important implication in reference to the
static parameter estimation problem.

I Due to the weight degeneracy problem, it is often not possible
to accurately approximate the joint distribution πn(x0:n) for
large n.
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I The path degeneracy problem is a product of the weight
degeneracy problem.

I Since it is necessary to resample the particles, looking
backward in time, many of the particles will be exactly the
same. Therefore, the approximation of the joint distribution is
in terms of a large number of similar paths; the method
cannot be expected to work well.
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I This is illustrated in Figure 1. The diagram shows the path of
5 particles for 4 time steps. The size of the circles represent
the weight of the particle prior to resampling and the arrows
denote the parentage post resampling. It is assumed that
resampling occurs at every time-step.
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I In Figure 1 the number of unique particles for an SMC
algorithm that resamples at every step, falls when looking
backwards in time. For extremely efficient algorithms, we can
expect that resampling does not occur too regularly; for
example 1-2 times in 100 time steps. In this extreme case we
have a diverse collection of particles which can approximate
the joint quite accurately.
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I The path degeneracy problem means that estimating static
parameters, online, for hidden Markov models and using a
Bayesian approach can be very problematic.

I For example, one has

π(θ, x1:n|y1:n) ∝
n∏

i=1

gθ(yi |xi )qθ(xi−1, xi )π(θ).

I Now, it could be that one uses SMC, with an MCMC step
after resampling (we discuss this next). However, due to the
path degeneracy problem, this technique is destined to fail.
This is because the posterior distribution depends upon the
path of the hidden Markov chain.

I There has been, recently, an elegant solution to this problem
(Chopin, et al. 2013), but the computational complexity
increases with the time parameter.
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SMC Samplers

I We now describe an SMC technique that is designed to
simulate from a sequence of probability densities on a
common state-space.

I This will be (for us), be useful when it is of interest to sample
from a single probability π, which is ‘complex’.

I The approach here is to introduce a sequence of densities.
The sequence starts at a very simple distribution and then
moves towards π with related distributions interpolating
between π and this initial distribution.

I The method is termed SMC samplers. It has been developed
by: Jarzynski (1997); Neal (2001); Gilks & Berzuini (2001);
Chopin (2002); Del Moral et al. (2006). It has also been
rediscovered by e.g. Botev & Kroese (2008).
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I As an example, consider:

πn(x) ∝ π(x)φn x ∈ Rd

with 0 < φ1 < · · · < φp = 1.

I The idea is to start with a very simple density φ1 ≈ 0 and
then move gradually towards π.

I When φ1 ≈ 0 the target density is ‘flat’ and should be easy to
sample from. Then, by appropriately constructing the
densities (such that they are not too far apart) it is possible to
use the SMC algorithm to interpolate between π1 and π.

I This idea has been successfully used in many articles.
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I Before we discuss the specifics, we just make some remarks.

I The algorithm can be used in many different contexts, such as
for rare events estimation (e.g. Cerou et al.(2011)), maximum
likelihood estimation (Johansen et al. 2008), as well as
approximate Bayesian computation (e.g. Del Moral at
el. (2008)).

I There has also been a great deal of interest in the theoretical
analysis including: Beskos et al. (2014); Del Moral & Doucet
(2003); Erbele & Marinelli (2010); Jasra & Doucet (2008)
and Whiteley (2011).
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I Recall that SMC methods sample from a sequence of densities
of increasing dimension.

I Our sequence of densities are on a common space.
I Consider the following idea. Perform IS w.r.t. π1 via proposal

Υ. Then to move to the next density, use a Markov kernel K2

say.
I In this scenario, the importance weight is

π2(x2)∫
Υ(x1)K2(x1, x2)dx1

.

I In most scenarios of interest, one cannot compute this
importance weight. It is possible to use an O(N2) algorithm
to remove the integral (even if K2 is a M-H kernel - see Del
Moral et al. (2008)), but this is too costly and in other
scenarios (e.g. compositions) one cannot compute the kernel.
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I It turns out, that one approach (Jarzynski, 1997; Neal 2001;
Del Moral et al. 2006) to circumvent this problem is to
introduce a sequence of densities:

π̃n(x1:n) = πn(xn)
n∏

j=2

Lj(xj , xj−1)

and use SMC methods on this sequence.

I The {Lj} are a sequence of backward Markov kernels and
up-to some minimal technical requirements are essentially
arbitrary.

I It turns out that one can characterize an optimal (in terms of
minimizing the variance of the importance weights) backward
kernel; see Del Moral et al. (2006).
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I The algorithm is thus nothing more than SIS. The incremental
weights are of the form

πn(xn)Ln(xn, xn−1)

πn−1(xn−1)Kn(xn−1, xn)
.

I Throughout this talk we will assume that Kn is an MCMC
kernel of invariant distribution πn

I In this scenario, it turns out that a sensible (and close to
optimal in some sense) backward kernel is

πn(xn)Kn(xn, xn−1)

πn(xn−1)
.
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I In our example the importance weight can be constructed as

W i
n ∝W i

n−1

πn(x i
n−1)φn

πn−1(x i
n−1)φn−1

I This algorithm can work very well in practice; see e.g. (Neal,
2001; Chopin 2002, Del Moral et al. 2006).
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Remarks

I It should be first noted that this algorithm can be made stable
in very high dimensions, when the number of particles is kept
fixed (see Beskos et al. (2014)).

I In more details, in N are the number of particles and d is the
dimension of the random variable, the algorithm will not
collapse w.r.t. the ESS, if one has a computational budget of
Nd2.

I From a practical perspective, in our example, it may be
difficult to set the {φn}. However, there is an approach which
allows on to do this on the fly (see Jasra et al. (2011) and
also Schäfer & Chopin (2011).
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I It should also be noted that one can adapt the MCMC kernels
on the fly too. In addition, this will not affect the theoretical
correctness of the algorithm (contrary to MCMC, where
proving ergodicity is rather complex - see Andrieu & Moulines
(2006)).
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Particle Markov chain Monte Carlo (PMCMC)

I We now present the final algorithm of this talk. For SMC
samplers we put MCMC within SMC. PMCMC, uses SMC
within MCMC (indeed, although we do not discuss it, there
are methods which put SMC within MCMC and this is within
SMC - SMC2 (Chopin et al. 2013)).

I The idea is to use an SMC algorithm as a proposal for an
M-H step. This algorithm was developed by Andrieu et
al. (2010), although there are some connections to algorithms
from molecular simulation e.g. Siepmann & Frenkel (1992).
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I We will begin by presenting the simplest generic algorithm
found in Andrieu et al. (2010), namely the particle
independent Metropolis-algorithm (PIMH). In this case θ and
p (the time step of the algorithm) are fixed and PIMH is
designed to sample from a pre-specified target distribution πp
as for SIS. This algorithm proceeds as on the next page.

I For now, suppose the target density is πp(u1:p), ui ∈ R.

I Some notations:

ψ(ū1:p, ā1:p−1) =

( N∏
i=1

M1(u
(i)
1 )

) p∏
n=2

( N∏
i=1

W̄
(ain−1)

n−1 Mn(u
(i)
n

|u(ain−1)

n−1 , . . . , u
(ai1)
1 )

)
, (3)

is the SMC algorithm.
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I Suppose one resamples, multinomially, at every iteration,
except when n = p. Denote the resampled index of the
ancestor of particle i at time n by ain ∈ TN ; this is a random

variable chosen with probability W̄
(ain−1)

n−1 .

I An approximation of the normalizing constant of πp is

Ẑp =

p∏
n=1

{
1

N

N∑
j=1

W
(j)
n

}
. (4)
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I 0. Sample ū1, . . . , ūp, ā1, . . . , āp−1 from (3). Sample k ∈ TN

from W̄ k
p and set this as a new state. Store

Ẑ (0), k(0), X̄1:p(0), ā1:p−1(0) (see eq. (4)). Set i = 1

I 1. Propose a new ū′1, . . . , ū
′
p, ā
′
1, . . . , ā

′
p−1 and k ′ as in step 0.

Accept or reject this as the new state of the chain with
probability

1 ∧ Ẑ ′

Ẑ (i − 1)
.

If we accept, store(
Ẑ (i), k(i), X̄1:p(i), ā1:p−1(i)

)
=
(

Ẑ ′, k ′, X̄ ′1:p(i), ā′1:p−1

)
. Set

i = i + 1.
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I In Andrieu et al. (2010) it is shown that the invariant density
of the Markov kernel above is exactly

πNp (k, ū1:p, ā1:p−1) =
πp(u

(k)
1:p )

Np

ψ(ū1:p, ā1:p−1)

M1(u
(bk1 )
1 )

∏p
n=2

{
W̄

(bkn−1)

n−1

× 1

Mn(u
(bkn )
n |u(bkn−1)

n−1 , . . . , u
(bk1 )
1 )

}
where ψ is as in (3) and as before we have bk

p = k and

bk
n = a

bkn+1
n for every k ∈ TN and n ∈ Tp−1. The target density

of interest, πp, is the marginal, conditional on k and ā1:p−1.
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I It is also possible to introduce an unknown parameter θ and
perform a M-H update; this is called particle marginal M-H.

I The elegant idea of Andrieu and Doucet is to introduce an
extended target density which facilitates the use of a particle
filter as a proposal and provides an unbiased estimate of the
original target density (also related to the exact simulations of
diffusion process - see (Beskos et al. 2006)).
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