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The Filtering Problem

Partially Observed Dynamics
Discrete-time dynamical system

ZI'H—1 — E(Zn) (1)
with linear noisy observations

Yni1 = Hzni1 + nppa where 7, ~ N(0,T).

State Estimation
Try to estimate z, given {y;} ;.
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ENSEMBLE KALMAN FILTER

Approximate Gaussian Filters

Prediction Step

/Z\n+1 - E(Zn)

Analysis Step

_1 ~
Zney = argming (1|C, 2 (2 = Zos )| 2+ 1T 2(ynsr — H2)IP)

Design Parameter

The operators C, 1 characterize model uncertainty and are design
parameters.
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ENSEMBLE KALMAN FILTER

The Ensemble Kalman Filter

Prediction Step
2 ==, jef{t,-- J}
Estimate model uncertainty:
Zni1 = JZ] 1 n+1
Cni1 =7 Z/ 1 n+1(Z{7+1)T - ZnHZ:—H

Analysis Step
Sn+1 - HCn-H H + r Kn+1 - Cn—|—1 H n+1
Z{’7+1 - (l n+1 H)Zn+1 + Kn+1yn+17 j € {1 J}

Perturbed Observations Data
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The Setting

We work in a setting that includes Lorenz '63, Lorenz ‘96 and
Navier-Stokes on a 2D torus.

The Model
dz

o +Az+B(z,z)=f

Assumptions 1
Forallwe V

(Aw,w) > \|w|?, (B(w,w),w)=0.

Assumptions 2
Forallw; e V

(B(wy, wp), wp) < Kljwy|||well[wa|,  (B(wy, w), wa) < Ki[wy||||wall||ws|.
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THEORETICAL PROPERTIES OF ENSEMBLE KALMAN FILTER

Discrete Time Filter: Well-Posedness

Assumptions

F=~21LH=1I

Theorem (Kelly, AMS)
There is constant 5 independent of n such that

exp (26n) —1 ) 5

TR b — 2o
E|2) — z0f? < exp (26m)ElZ) — 20 + K (G0 v —
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THEORETICAL PROPERTIES OF ENSEMBLE KALMAN FILTER

Continuous Time Limit

Scalings

r:%ro, zn=z(nh), zh=2Z(nh), h<1.

Limiting SPDEs
dz/

. o 1 il
+ Azl + B(Z, 2I) = f + CH*T (rgdg‘: - Hz).

Coupling
Coupled through the empirical covariance C
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THEORETICAL PROPERTIES OF ENSEMBLE KALMAN FILTER

Continuous Time Limit: Well-Posedness

Assumptions

Fo=~21,H=1I.

Theorem (Kelly, AMS)
There is constant 5 independent of t such that

exp (248t) — 1 )WQ‘

E|Z/(t) — z(t)|? < exp (281)E|Z/(0) — z(0)|? + K(J)( exp (23) — 1

V.
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ENSEMBLE FILTERS FOR INVERSE PROBLEMS

The Inverse Problem

X, Y Banach spacesand G: X — Y.

y = G(u) +n,
n ~ N(O,T)

Prior knowledge of subsurface properties, for example:
u~ plop-

Model/Data mismatch:

o(u:y) = 1Ty — G)|P
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ENSEMBLE FILTERS FOR INVERSE PROBLEMS

Example 1. Porous Media Flow: Forward Problem

State Variable
h: pore pressure (head)

Parameter
e = K: permeability (hydraulic conductivity)

Single-phase Darcy Flow

-V-e'Vh =f xeD
—eVh-n =0, xecoD
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ENSEMBLE FILTERS FOR INVERSE PROBLEMS

Example 1. Porous Media Flow: Inverse Problem

Pressure at well locations x’:
Gl(u) = h(x"), te{d1,...,L},

Measurement operator:

G(u) = (G‘(u),...,GL(u))

Unknown
e’ = K: permeability. u = log(K) € X := L>(D).

Data
y=Gu)+neY =R.L
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ENSEMBLE FILTERS FOR INVERSE PROBLEMS

Example 1. Porous Media Flow: Applications

Estimation of subsurface properties

@ Hydrology

@ Fossil fuel extraction: oil, shale gas
@ Carbon sequestration

@ Compressed air storage

@ Nuclear waste burial
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Example 2. Navier Stokes Equation: Forward Problem

State Variable
v: fluid velocity

Parameter
u =: initial fluid velocity

Navier-Stokes Equation as an ODE in [2 (T?)

div

%+VAV+B(V, v)=1f v(0)=u
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ENSEMBLE FILTERS FOR INVERSE PROBLEMS

Example 2. Navier Stokes Equation: Inverse Problem

Fluid velocity at a finite set of points in space-time:
GHK(u)=v(x, k), (.k)ef{l,- I x{1,-- K}
Measurement operator:

G(u) = (G"'(v),- -, GMK(v)),

Unknown
ue X =12 (T?).

Data
y=GUu)+neY =RK
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ENSEMBLE FILTERS FOR INVERSE PROBLEMS

Example 2. Navier Stokes Equation: Applications

Determination of Initial Fluid Velocity Field

@ Weather Forecasting
@ Oceanography
@ Atmospheric Chemistry
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Filtering and Inverse Problems

Artificial Dynamics
Define

z= ( g > , =(2) = < GEIU) ) , Zni1 = =(2n).

and then data is, for H = (0, /),

We Are In General Setting Above

We can estimate z, given {yj}]f':1 and, in this particular inverse
problems setting, up given {y; ;7:1.

For Ensemble Methods

L=y o
Yn=Y+1n, nNN(Oar)
N N N . ANALYSIS OF ENSEMBLE FILTERS 4
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ENSEMBLE FILTERS FOR INVERSE PROBLEMS

Key Theoretical Result

Linear Span of Initial Ensemble
A= span{LIé}/‘-/:1.

Theorem (lglesias, Law, AMS)
U, e Atorall (n,j) e Nx {1,--- ,J}.

Implications
@ Compare EnKF with Best Approximation (BA) in A.
@ Compare EnKF with Least Squares (LSQ) in A.
@ Study Effect of choice of A.

Specific Case of Invariant Subspace Property

G. Li and A. Reynolds. An iterative ensemble Kalman filter for data

assimilation. SPE Annual Technical Conference, 2007.
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Sketch Proof

2-(2)
Prediction Step
(1))
Pl G(uh)
Compute empirical covariance to estimate model uncertainty:

Cuu CUP
Cn+1 = ( (CU’}?+1)T C,E)Jﬁ1 )

n+1

Analysis Step
Upey = Uh+ oy (CRy + 1) ¥y — GL))
Phis = G(Ub) + O (C2 +T) Y (vhy — Gluh))
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Sketch Proof (Continued)

Define
=B ilaBh
Ay = (CR +T)7" (Vhyy — Gl

EnKF updates can be written as

N R e A B
Upgy = Un+ 3 Xkt (Phats iy ) U

EnKF mean (parameter) at the final time
U:Z‘,{:1 ozju{)EAEspan{ua,...,ug}. }
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NUMERICAL RESULTS
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Best Approximation (BA)

Best Approximation in a Compact Set

ut = truth
A= compact subset of X

s = argmine 4 (J|u - u'])
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Regularized Least Squares (LSQ)

Minimization Over a Compact Set

A = compact subset of X
ULsqg = argminueA (q)(U; y))

Truncated lteration

P(Ukr1;Y) < O(Uk: y)
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Recap of Algorithms

EnKF
U:E}-j:1 ajué,GAEspan{ua,...,ub’}. )
BA
2
Ugp = argminHuT - Z]-J:1 aju{)‘ , ut = truth

a€RY )

LSQ Variants On
Usq = arngin ¢(Z/-J:1 aju{);yf), y = data
a€cR
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EnKF

True

Samples from the Prior

Rl
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NUMERICAL RESULTS

EnKF (Elliptic)

Mathematics Institute (Warwick)
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NUMERICAL RESULTS

Porous Media Flow

Groundwater
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NUMERICAL RESULTS

Navier-Stokes

Choice of Initial Ensemble
@ For Porous media flow used draws from Gaussian prior.
@ For Porous media flow also used Karhunen-Loeve (KL) basis.
@ For NSE use draws from the attractor.
@ For NSE also use draws from KL basis of empirical Gaussian.
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NUMERICAL RESULTS

Navier-Stokes

NSE
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CONTINUOUS TIME LIMIT: INVERSE PROBLEMS
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Scaling Limit

If we scale the noise covariance I — h~ 1Ty and consider the limit
h — 0 then we obtain the following system of SDEs:

a1 —= az ;
= - G -Gy = — G/
dz! aw/
= val
r VT Vi
1 J
~_ k
G=-> G
k=1
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CONCLUSIONS

Summary

@ The EnKF is well-posed, in both discrete and continuous time
settings, in fully observed case; filter instability reported in the
literature involves interaction with numerical instability.
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CONCLUSIONS

Summary

@ The EnKF is well-posed, in both discrete and continuous time
settings, in fully observed case; filter instability reported in the
literature involves interaction with numerical instability.

@ The EnKF for inverse problems is a derivative-free optimization
technique which produces an approximation in the linear span of
the initial ensemble A.
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CONCLUSIONS

Summary

@ The EnKF is well-posed, in both discrete and continuous time
settings, in fully observed case; filter instability reported in the
literature involves interaction with numerical instability.

@ The EnKF for inverse problems is a derivative-free optimization
technique which produces an approximation in the linear span of
the initial ensemble A.

@ The error incurred by EnKF is similar to that of derivative-based
LSQ optimization techniques in A.

@ Both EnKF and LSQ produce errors of the same magnitude as BA.

@ The choice of the initial ensemble A can have considerable impact
on accuracy of EnKF.
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CONCLUSIONS
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In addition to the two papers highlighted at the start, upon which the
talk is based, the following papers are also of background interest:

@ Elliptic Inverse Problem: M.Dashti and A.M. Stuart, “Uncertainty
quantification and weak approximation of an elliptic inverse
problem.” SIAM J. Numerical Analysis 49(2011), 2524—-2542.

@ Navier-Stokes Inverse Problem: S.L. Cotter, M. Dashti and
A.M.Stuart. "Bayesian inverse problems for functions and
applications to fluid mechanics". Inverse Problems 25 (2009)
115008.

@ Invariant Subspace Property: G. Li and A. Reynolds. An
iterative ensemble Kalman filter for data assimilation. In SPE
Annual Technical Conference and Exhibition, 2007.

" . . ) ANALYSIS OF ENSEMBLE FILTERS 38
Mathematics Institute (Warwick) http://homepages.warwick.ac.uk/~masdr/ /38



	REFERENCES
	ENSEMBLE KALMAN FILTER
	THEORETICAL PROPERTIES OF ENSEMBLE KALMAN FILTER
	ENSEMBLE FILTERS FOR INVERSE PROBLEMS
	NUMERICAL RESULTS
	CONTINUOUS TIME LIMIT: INVERSE PROBLEMS
	CONCLUSIONS

