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ENSEMBLE KALMAN FILTER

The Filtering Problem

Partially Observed Dynamics
Discrete-time dynamical system

zn+1 = Ξ(zn). (1)

with linear noisy observations

yn+1 = Hzn+1 + ηn+1 where ηn ∼ N(0, Γ).

State Estimation
Try to estimate zn given {yj}nj=1.
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ENSEMBLE KALMAN FILTER

Approximate Gaussian Filters

Prediction Step

ẑn+1 = Ξ(zn).

Analysis Step

zn+1 = argminz

(
||C−

1
2

n+1(z − ẑn+1)||2 + ||Γ−1/2(yn+1 − Hz)||2
)

Design Parameter
The operators Cn+1 characterize model uncertainty and are design
parameters.
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ENSEMBLE KALMAN FILTER

The Ensemble Kalman Filter

Prediction Step

ẑ j
n+1 = Ξ(z j

n), j ∈ {1, · · · , J}.

Estimate model uncertainty:

zn+1 = 1
J
∑J

j=1 ẑ j
n+1

Cn+1 = 1
J
∑J

j=1 ẑ j
n+1(ẑ j

n+1)T − zn+1zT
n+1

Analysis Step

Sn+1 = HCn+1HT + Γ, Kn+1 = Cn+1HT S−1
n+1

z j
n+1 = (I − Kn+1H)ẑ j

n+1 + Kn+1y j
n+1, j ∈ {1, · · · , J}.

Perturbed Observations Data

y j
n = yn + ηj

n, ηj
n ∼ N(0, Γ)
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THEORETICAL PROPERTIES OF ENSEMBLE KALMAN FILTER

The Setting

We work in a setting that includes Lorenz ’63, Lorenz ’96 and
Navier-Stokes on a 2D torus.

The Model
dz
dt

+ Az + B(z, z) = f

Assumptions 1
For all w ∈ V

〈Aw ,w〉 ≥ λ‖w‖2, 〈B(w ,w),w〉 = 0.

Assumptions 2
For all wi ∈ V

〈B(w1,w2),w2〉 ≤ K‖w1‖‖w2‖|w2|, 〈B(w1,w2),w3〉 ≤ K‖w1‖‖w2‖‖w3‖.
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THEORETICAL PROPERTIES OF ENSEMBLE KALMAN FILTER

Discrete Time Filter: Well-Posedness

Assumptions

Γ = γ2I,H = I.

Theorem (Kelly, AMS)
There is constant β independent of n such that

E|z j
n − zn|2 ≤ exp (2βn)E|z j

0 − z0|2 + K (J)
(exp (2βn)− 1

exp (2β)− 1

)
γ2.
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THEORETICAL PROPERTIES OF ENSEMBLE KALMAN FILTER

Continuous Time Limit

Scalings

Γ =
1
h

Γ0, zn = z(nh), z j
n = z j(nh), h� 1.

Limiting SPDEs

dz j

dt
+ Az j + B(z j , z j) = f + CH∗Γ−1

0

(
Γ

1
2
0

dW j

dt
− Hz

)
.

Coupling
Coupled through the empirical covariance C
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THEORETICAL PROPERTIES OF ENSEMBLE KALMAN FILTER

Continuous Time Limit: Well-Posedness

Assumptions

Γ0 = γ2I,H = I.

Theorem (Kelly, AMS)
There is constant β independent of t such that

E|z j(t)− z(t)|2 ≤ exp (2βt)E|z j(0)− z(0)|2 + K (J)
(exp (2βt)− 1

exp (2β)− 1

)
γ2.
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ENSEMBLE FILTERS FOR INVERSE PROBLEMS

The Inverse Problem

X ,Y Banach spaces and G : X → Y .

y = G(u) + η,

η ∼ N(0, Γ)

Prior knowledge of subsurface properties, for example:

u ∼ µ0.

Model/Data mismatch:

Φ(u; y) =
1
2
||Γ−1/2(y −G(u))||2
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ENSEMBLE FILTERS FOR INVERSE PROBLEMS

Example 1. Porous Media Flow: Forward Problem

State Variable
h: pore pressure (head)

Parameter
eu = K : permeability (hydraulic conductivity)

Single-phase Darcy Flow

−∇ · eu∇h = f , x ∈ D
−eu∇h · n = 0, x ∈ ∂D
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ENSEMBLE FILTERS FOR INVERSE PROBLEMS

Example 1. Porous Media Flow: Inverse Problem

Pressure at well locations x`:

G`(u) = h(x`), ` ∈ {1, . . . ,L},

Measurement operator:

G(u) =
(

G1(u), . . . ,GL(u)
)

Unknown
eu = K : permeability. u = log(K ) ∈ X := L∞(D).

Data

y = G(u) + η ∈ Y := RL.
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ENSEMBLE FILTERS FOR INVERSE PROBLEMS

Example 1. Porous Media Flow: Applications

Estimation of subsurface properties

Hydrology
Fossil fuel extraction: oil, shale gas
Carbon sequestration
Compressed air storage
Nuclear waste burial

Mathematics Institute (Warwick) http://homepages.warwick.ac.uk/∼masdr/
ANALYSIS OF ENSEMBLE FILTERS 17

/ 38



ENSEMBLE FILTERS FOR INVERSE PROBLEMS

Example 2. Navier Stokes Equation: Forward Problem

State Variable
v : fluid velocity

Parameter
u =: initial fluid velocity

Navier-Stokes Equation as an ODE in L̇2
div(T2)

dv
dt

+ νAv + B(v , v) = f , v(0) = u
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ENSEMBLE FILTERS FOR INVERSE PROBLEMS

Example 2. Navier Stokes Equation: Inverse Problem

Fluid velocity at a finite set of points in space-time:

Gj,k (u) = v(xj , tk ), (j , k) ∈ {1, · · · , J} × {1, · · · ,K}.

Measurement operator:

G(u) =
(
G1,1(u), · · · ,GJ,K (u)

)
,

Unknown

u ∈ X := L̇2
div(T2).

Data

y = G(u) + η ∈ Y := RJK .
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ENSEMBLE FILTERS FOR INVERSE PROBLEMS

Example 2. Navier Stokes Equation: Applications

Determination of Initial Fluid Velocity Field

Weather Forecasting
Oceanography
Atmospheric Chemistry
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ENSEMBLE FILTERS FOR INVERSE PROBLEMS

Filtering and Inverse Problems

Artificial Dynamics
Define

z =

(
u
p

)
, Ξ(z) =

(
u

G(u)

)
, zn+1 = Ξ(zn).

and then data is, for H = (0, I),

yn = Hzn + ηn where ηn ∼ N(0, Γ).

We Are In General Setting Above
We can estimate zn given {yj}nj=1 and, in this particular inverse
problems setting, un given {yj}nj=1.

For Ensemble Methods

y j
n = y + ηj

n, ηj
n ∼ N(0, Γ)
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ENSEMBLE FILTERS FOR INVERSE PROBLEMS

Key Theoretical Result

Linear Span of Initial Ensemble

A = span{uj
0}

J
j=1.

Theorem (Iglesias, Law, AMS)

uj
n ∈ A for all (n, j) ∈ N× {1, · · · , J}.

Implications
Compare EnKF with Best Approximation (BA) in A.
Compare EnKF with Least Squares (LSQ) in A.
Study Effect of choice of A.

Specific Case of Invariant Subspace Property
G. Li and A. Reynolds. An iterative ensemble Kalman filter for data
assimilation. SPE Annual Technical Conference, 2007.
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ENSEMBLE FILTERS FOR INVERSE PROBLEMS

Sketch Proof

z j
0 =

(
uj

0
p0

)
.

Prediction Step (
ûj

n+1
p̂j

n+1

)
=

(
uj

n

G(uj
n)

)

Compute empirical covariance to estimate model uncertainty:

Cn+1 =

(
Cuu

n+1 Cup
n+1

(Cup
n+1)T Cpp

n+1

)
Analysis Step

uj
n+1 = uj

n + Cup
n+1(Cpp

n+1 + Γ)−1
(

y j
n+1 −G(uj

n)
)

pj
n+1 = G(uj

n) + Cpp
n+1(Cpp

n+1 + Γ)−1
(

y j
n+1 −G(uj

n)
)
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ENSEMBLE FILTERS FOR INVERSE PROBLEMS

Sketch Proof (Continued)

Define

p̃j
n = p̂j

n − 1
J
∑J

k=1 p̂j
n

d j
n+1 ≡ (Cpp

n+1 + Γ)−1
(

y j
n+1 −G(uj

n)
)

EnKF updates can be written as

uj
n+1 = uj

n + 1
J
∑J

k=1
〈
p̃k

n+1,d
j
n+1

〉
uk

n

EnKF mean (parameter) at the final time

u =
∑J

k=1 αju
j
0 ∈ A ≡ span{u1

0 , . . . ,u
J
0}.
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NUMERICAL RESULTS

Best Approximation (BA)

Best Approximation in a Compact Set

u† = truth

A = compact subset of X

uBA = argminu∈A

(
‖u − u†‖

)
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NUMERICAL RESULTS

Regularized Least Squares (LSQ)

Minimization Over a Compact Set

A = compact subset of X

uLSQ = argminu∈A

(
Φ(u; y)

)
Truncated Iteration

Φ(uk+1; y) ≤ Φ(uk ; y)

uLSQ = uK
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NUMERICAL RESULTS

Recap of Algorithms

EnKF

u =
∑J

j=1 αju
j
0 ∈ A ≡ span{u1

0 , . . . ,u
J
0}.

BA

uBA = argmin
α∈RJ

∥∥∥u† −
∑J

j=1 αju
j
0

∥∥∥2
, u† = truth

LSQ Variants On

uLSQ = argmin
α∈RJ

Φ
(∑J

j=1 αju
j
0; y†

)
, y = data
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NUMERICAL RESULTS

EnKF
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NUMERICAL RESULTS

EnKF (Elliptic)
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NUMERICAL RESULTS

Porous Media Flow
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NUMERICAL RESULTS

Navier-Stokes

Choice of Initial Ensemble
For Porous media flow used draws from Gaussian prior.
For Porous media flow also used Karhunen-Loeve (KL) basis.
For NSE use draws from the attractor.
For NSE also use draws from KL basis of empirical Gaussian.
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NUMERICAL RESULTS

Navier-Stokes
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CONTINUOUS TIME LIMIT: INVERSE PROBLEMS

Scaling Limit

If we scale the noise covariance Γ→ h−1Γ0 and consider the limit
h→ 0 then we obtain the following system of SDEs:

duj

dt
=

1
J

J∑
k=1

〈
G(uk )−G, Γ−1

0

(
dz j

dt
−G(uj)

)〉
dz j

dt
= y +

√
Γ0

dW j

dt

G =
1
J

J∑
k=1

G(uk ).
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CONCLUSIONS
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CONCLUSIONS

Summary

The EnKF is well-posed, in both discrete and continuous time
settings, in fully observed case; filter instability reported in the
literature involves interaction with numerical instability.

The EnKF for inverse problems is a derivative-free optimization
technique which produces an approximation in the linear span of
the initial ensemble A.
The error incurred by EnKF is similar to that of derivative-based
LSQ optimization techniques in A.
Both EnKF and LSQ produce errors of the same magnitude as BA.
The choice of the initial ensemble A can have considerable impact
on accuracy of EnKF.
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CONCLUSIONS
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In addition to the two papers highlighted at the start, upon which the
talk is based, the following papers are also of background interest:

Elliptic Inverse Problem: M.Dashti and A.M. Stuart, “Uncertainty
quantification and weak approximation of an elliptic inverse
problem.” SIAM J. Numerical Analysis 49(2011), 2524–2542.
Navier-Stokes Inverse Problem: S.L. Cotter, M. Dashti and
A.M.Stuart. "Bayesian inverse problems for functions and
applications to fluid mechanics". Inverse Problems 25 (2009)
115008.
Invariant Subspace Property: G. Li and A. Reynolds. An
iterative ensemble Kalman filter for data assimilation. In SPE
Annual Technical Conference and Exhibition, 2007.

Mathematics Institute (Warwick) http://homepages.warwick.ac.uk/∼masdr/
ANALYSIS OF ENSEMBLE FILTERS 38

/ 38


	REFERENCES
	ENSEMBLE KALMAN FILTER
	THEORETICAL PROPERTIES OF ENSEMBLE KALMAN FILTER
	ENSEMBLE FILTERS FOR INVERSE PROBLEMS
	NUMERICAL RESULTS
	CONTINUOUS TIME LIMIT: INVERSE PROBLEMS
	CONCLUSIONS

