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We explore the connection between the following areas:

I Large Deviations

I Hamilton-Jacobi equations (some aspects of weak KAM theory)

I Rare event simulations: Importance Sampling; Multiple-Splitting,
Sequential Monte Carlo; MCMC.
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General problem

Let X n = {X n(t), t ≥ 0} be a sequence of Markov processes on (Ω,F ,Pn).

Given A ∈ F , we want to compute

pn := Pn{X n(1) ∈ A}

using some unbiased estimator Zn with minimal variance.
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Using Monte Carlo simulations, one generates independent copies of X n, under
Pn, and estimates pn by empirical means

pM
n :=

1

M

M∑
i=1

11{Xn,i (1)∈A},

which are unbiased: E [pM
n ] = pn. But, the variance of a single replication is

Var(11{Xn,i (1)∈A}) = pn − p2
n ' pn � p2

n,

for pn small.

A very large sample size is needed for an accurate estimation of pn.
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• Importance sampling is based on the idea that the Markov process X n is
generated from a different probability P̄n, and pn is estimated by a sample
mean of independent r.v. of the form

Zn :=
dPn

dP̄n
(X n)11{Xn(1)∈A}.

We have
E P̄n

[Zn] = pn (Unbiasedness)

and
E P̄n

[Z 2
n ] = EPn

[Zn].

Hence,
Var(Zn) = E P̄n

[Z 2
n ]− p2

n = EPn

[Zn]− p2
n.

It is only the second moment that depends on the sampling probability P̄n.

• P̄n may be chosen such that EPn

[Zn] ∼ p2
n which is much better than pn if a

Monte Carlo approach is used.
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This is achieved if we e.g. impose the following asymptotic efficiency rule:

Whenever

lim
n→∞

−1

n
log pn = γ, (Large Deviations Principle)

Zn should satisfy

lim inf
n→∞

−1

n
log E P̄n

[Z 2
n ] ≥ 2γ, (Asymptotic Efficiency)

since, by Jensen’s inequality, E P̄n

[Z 2
n ] ≥ p2

n, we have

lim sup
n→∞

−1

n
log E P̄n

[Z 2
n ] ≤ 2γ.

2γ is called the ’optimal decay rate’.
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Noting that

E P̄n

[Z 2
n ] = EPn

[Zn].

The above asymptotic efficiency criterion states that the ’optimal’ sampling
probability P̄∗n is the one which satisfies

lim inf
n→∞

−1

n
log EPn

[
dPn

dP̄∗n
(X n)11{Xn(1)∈A}

]
≥ 2γ, (1)

whenever, pn satisfies the Large Deviations limit:

lim
n→∞

−1

n
log Pn{X n(1) ∈ A} = γ.
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Importance sampling seen as a control problem

The optimal sampling probability P̄∗n can be viewed as an ’optimal control’
variable and

W n(t, x) := −1

n
inf
P̄n

log EPn

x,t

[
dPn

dP̄n
(X n)11{Xn(1)∈A}

]
conditional upon X n(t) = x , t < 1 (Note that W n(1, x) = 0), is the
value-function of an associated control problem which satisfies a
Hamilton-Jacobi type equation.
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A limiting argument can be used to check that

W (t, x) := lim
n→∞

W n(t, x)

is the value function of a limiting control problem and solves (in an appropriate
sense) the Hamilton-Jacobi type equation:

Wt(t, x)− 2H(x ,−DW

2
(t, x)) = 0, W (1, x) = 0, for x ∈ A,

where, the ’Hamiltonian’ H(x , p) is the Legendre transform of the local LDP
rate function, L, of the Markov process X n under Pn:

H(x , p) = sup
q
{< p, q > −L(x , q)}.

To find an explicit solution is usually ”out of reach” except for simple cases.
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The subsolution approach

The subsolution approach to efficient importance sampling suggested by Paul
Dupuis and Hui Wang (2007) is based on the following observation:

Theorem (Dupuis and Wang (2007))

lim
n→∞

−1

n
inf
P̄n

log EPn

x,t

[
dPn

dP̄n
(X n)11{Xn(1)∈A}

]
≥ W̄ (t, x).

In particular, starting at (x = 0, t = 0),

lim
n→∞

−1

n
inf
P̄n

log EPn
[

dPn

dP̄n
(X n)11{Xn(1)∈A}

]
≥ W̄ (0, 0),

where, W̄ (x , t) satisfies W̄t(t, x)− 2H(x ,−DW̄
2

(t, x)) ≥ 0,

W̄ (1, x) ≤ 0, for x ∈ A.

(2)

W̄ is a so-called subsolution of our Hamilton-Jacobi equation:

Wt(t, x)− 2H(x ,−DW

2
(t, x)) = 0, W (1, x) = 0, for x ∈ A,
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Dupuis and Wang’s algorithm

• By constructing a subsolution W̄ to the HJ equation a change of measure
(using Girsanov or Esscher transforms) can be based on DW̄ (x , t) and the
performance (measured as the exponential decay rate of the second moment)
of the corresponding algorithm is given by W̄ (0, 0).

• For a pure jump process with intensity λ(x) under P, it will have intensity

λ̃(t, x) := λ(x) exp {−DW̄

2
(t, x)}

under the new measure P̄∗.

• For a diffusion process with drift b(t, x) under P, it will have drift

b̃(t, x) := b(t, x)− DW̄

2
(t, x)

under the new measure P̄∗.

• The importance sampling algorithm based on a subsolution W̄ is
asymptotically efficient if

W̄ (0, 0) = 2γ.
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A systematic construct such a subsolution

We suggest a systematic way to construct such a subsolution of

Wt(t, x)− 2H(x ,−1

2
DW (t, x)) = 0, W (1, x) = g(x).

We will do it for the function V (t, x) := 1
2
W (1− t, x) which solves the forward

HJ equation:

Vt(t, x) + H(x ,DV (t, x)) = 0, V (0, x) = g(x).

Recalling that
H(x , p) = sup

q
{< p, q > −L(x , q)},

V is the value-function of the variational problem

V (x , t) = inf

{
g(ψ(0)) +

∫ t

0

L(ψ(s), ψ̇(s)ds, ψ abs. cont. ψ(t) = x

}
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For c ∈ R, we consider the ’viscosity’ (sub)-solution of the stationary HJ
equation (weak KAM theory by Fathi)

H(y ,DS(y)) = c, y ∈ Rn. (3)

Fathi’s weak KAM theory suggests that:

• There is one value cH (Mañé critical value) which depends on the Hamiltonian
H for which there is a ’viscosity’ solution of the stationary HJ equation

H(y ,DS(y , cH)) = cH .

• For c ≥ cH , there is a viscosity’ subsolution of H(y ,DS(y)) = c.

• For c < cH , there is no viscosity’ subsolution of H(y ,DS(y)) = c.

The Mañé critical value cH is the smallest c for which (3) admits a viscosity
subsolution.

We have
cH ≥ supx inf

p
H(x , p).

But, in a few cases it holds that cH = supx infp H(x , p).
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Examples of Mañé critical values

Critical diffusion process. Let U : Rn −→ R be a potential function and
b(x) = −DU(x). The infinitesimal generator of the critical diffusion is

Af (x) =
1

2
∆f (x)+ < b(x),Df (x) >

and the Hamiltonian is

H(x , p) := e−<x,p>Ae<x,p> =< b(x), p > +
1

2
|p|2.

Then, since H(x ,Du) = H(x ,−b) = − 1
2
|b(x)|2, x ∈ Rn,

cH = supx inf
p

H(x , p) = −1

2
inf
x
|b(x)|2.

In particular, if DU(x) = 0 for some x , then cH = 0.
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Birth-and-Death process. The infinitesimal generator of the Birth-and-Death
process defined over an interval (a, b) ⊂ R is

Af (x) = λ(x)(f (x + 1)− f (x)) + µ(x)(f (x − 1)− f (x))

and the Hamiltonian is

H(x , p) := e−xpAexp = λ(x)(ep − 1) + µ(x)(e−p − 1).

In this case

cH = supx inf
p

H(x , p) = − inf
x

(
√
µ(x)−

√
λ(x))2,

provided that the strictly positive intensities λ and µ satisfy∫ b

a

log (µ(x)/λ(x)) dx <∞.

Because, the function U(x) :=
∫ x

a
log (µ(z)/λ(z)) dz satisfies

H(x ,DU(x)) = −(
√
µ(x)−

√
λ(x))2 ≤ − inf

x
(
√
µ(x)−

√
λ(x))2.
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Pure birth process.

Let λ : [0,∞)n −→ [0,∞)n. The Hamiltonian of the pure birth process defined
over Rn is

H(x , p) =
n∑

j=1

λj(x)(ep
j − 1).

In this case

cH = supx inf
p

H(x , p) = − inf
x

n∑
j=1

λj(x) := −λ∗.

This is due to the fact that for any c > −λ∗ and α ≤ log(1 + c/λ∗), the
function α

∑n
i=1 xi is a subsolution to H(x ,DS(x)) = c.
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Properties of the Mañé potential

To each c ∈ R we associate the Mañé potential at x associated with L:

Sc(x , y) = inf

{∫ t

0

(
c + L(ψ(s), ψ̇(s))

)
ds, ψ abs. cont. ψ(0) = x , ψ(t) = y , t > 0

}
.

Sc(x , y) enjoys the following properties:

I For each x ∈ Rn, Sc(x , x) = 0,

I c −→ Sc(x , y) is nondecreasing and satisfies the triangle inequality:

Sc(x , y) ≤ Sc(y , z) + Sc(y , z), x , y , z ∈ Rn.
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Let Sc
x be the collection of all viscosity subsolutions of H(y ,DS(y)) = c that

vanish at x .

The following result summarizes the relationship between the Mañé critical
value and Mañé potential.

Proposition Suppose c ≥ cH and x ∈ Rn.

• Suppose Sc > −∞. Then for each x ∈ Rn the function y 7−→ Sc(x , y) is a
viscosity subsolution to H(y ,DS(y)) = c on Rn and a viscosity solution on
Rn\{x}.
• For each y ∈ Rn

Sc(x , y) = sup
S∈Sc

x

S(y),

• For each x ∈ Rn,

U(t, y ; x) := sup
c≥cH

{Sc(x , y)− ct}

is a viscosity solution of the HJB equation

Vt(t, y) + H(y ,DV (t, y)) = 0, on (0,∞)× Rn\{x}.
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A duality result

Duality (in time) Theorem For every x , y ∈ Rn,

Sc(x , y) = inf
t>0
{U(t, y ; x) + ct}, c ≥ cH

and
U(t, y ; x) = supc≥cH {S

c(x , y)− ct}.
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A min-max representation of the solution of the HJB equation

Theorem. For all (t, y) ∈ [0,∞)× Rn

V (t, y) = inf
x

sup
c≥cH

{g(x) + Sc(x , y)− ct} . (4)

Remark In general it is not possible to interchange the inf and sup in the
min-max representation.
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The Hopf-Lax-Oleinik formula as special case

The classical ’Hopf-Lax-Oleinik’ formula

V (t, y) = inf
x

{
g(x) + tL

(y − x

t

)}
.

when the Hamiltonian H is ’state independent’ i.e. H(x , q) := H(q) is a special
case our result. Indeed, this follows from the fact that

Lemma. For all x , y ∈ Rn, it holds that

sup
c≥cH

{Sc(x , y)− ct} = tL
(y − x

t

)
.

Hence,

V (t, y) = inf
x

{
g(x) + tL

(y − x

t

)}
= inf

x
sup
c≥cH

{g(x) + Sc(x , y)− ct} .
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An algorithm to construct a subsolution

(i) For arbitrary c, find a conservative vector field α(·, c) that solves

H(x , α(x ; c)) = c.

(ii) Find a potential function u(·; c), i.e.,

Du(·; c) = α(·; c).

(iii) That the function

W (t, x ; c) = 2 inf
y
{g(y) + u(y ; c)− u(x ; c)− c(1− t)}

satisfies W̄t(t, x)− 2H(x ,− 1
2
DW̄ (t, x)) ≥ 0, W̄ (1, x) ≤ 2g(x).

i.e. a subsolution of
Wt(t, x)− 2H(x ,− 1

2
DW̄ (t, x)) = 0, W (1, x) = 2g(x).

(iv) The parameter c∗ := arg max W̄ (0, 0; c) satisfies

W̄ (0, 0; c∗) = 2γ. (Asymptotic efficiency)
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Application to a simple credit risk model with contagion

• A credit portfolio consisting of n obligors is divided into d groups.

• Let w1, . . . ,wd be the fraction of obligors in each group, wj > 0,
∑d

i=1 wi = 1.

• Let Qn(t) = (Qn
1 (t), . . . ,Qn

d (t)) be the number of defaults in each group, at
time t ∈ [0,T ]. Qn is modeled as a continuous time pure birth process with
intensity nλ(Qn(t)/n) where

λ(x) = (λ1(x), . . . , λd(x)) , λj(x) = a(wj − xj)eb
∑d

k=1 xk ,

where, b > 0 measures the ’strength’ of the contagion from the rest of the
population.

let X n(t) := Qn(t)/n.

• The objective is to compute the probability that at least a fraction z has
defaulted by time t = 1:

pn := P

(
d∑

j=1

Qn(1) ≥ nz

)
= P

(
d∑

j=1

X n(1) ≥ z

)
.
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• This model has been studied by R. Carmona and S. Crépey (Int. J. Theor.
Appl. Finance, 2010).

• They apply a state-independent change of measure and show by numerical
experiments that importance sampling performs poorly in the presence of
contagion (b > 0).

• We will solve the problem by means of the subsolution approach. We will
show that an appropriate change of measure which leads to an asymptotically
efficient algorithm is in fact state-dependent and strongly related to the way
the subsolution is constructed, in particular c∗.
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Large Deviations

The process X n satisfies an LDP (see the book by Dembo and Zeitouni)

lim
n→∞

−1

n
log Px (X n ∈ A) ∼ inf

{∫ T

0

L(ψ(t), ψ̇(t))dt, ψ abs. cont.ψ(0) = x , ψ ∈ A

}
,

where,

L(x , β) =< β, log
β

λ(x)
> − < β − λ(x), 11 > .

In particular, for A := {x ,
∑d

i=1 xi < z},

limn→∞− 1
n

log pn = limn→∞− 1
n

log P
(∑d

j=1 X n(1) ≥ z
)

= inf
{∫ 1

0
L(ψ(t), ψ̇(t))dt, ψ absol. cont. ψ(0) = 0, ψ(1) /∈ A

}
:= γ.
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• For this problem the associated Hamilton-Jacobi equation reads:

Wt(t, x)− 2H(x ,−DW (t, x)/2) = 0, W (1, x) = 0 for
d∑

i=1

xi ≥ z .

where, the Hamiltonian is

H(x , q) := sup
β
{< β, q > −L(x , β)} =

d∑
i=1

λj(x)(eqj − 1).

Clearly, W̄ (x , t; c∗) is the appropriate subsolution where,

c∗ := arg max W̄ (0, 0; c)

satisfies
W̄ (0, 0; c∗) = 2γ.

• The corresponding importance sampling algorithm uses the intensity

λ̃(t, x) := λ(x) exp {−DW̄ (t, x ; c∗)/2}.
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The one dimensional case: Finding a subsolution

• Given c, find u(x , c) which solves Du(x , c) = α, where

H(x , α) := λ(x)(eα − 1) = c.

A solution is u(x , c) =
∫ z

x
log
(

1 + c
λ(y)

)
dy .

• The function
W̄ (t, x ; c) := u(x , c)− c(1− t)

is a subsolution of our HJ equation:

W̄t(t, x)− 2H(x ,−DW̄ (t, x)/2) ≤ 0, W̄ (1, x) ≥ 0, for x ≥ z .

• (to be solved numerically, for concrete cases)

c∗ = arg max W̄ (0, 0; c) = arg max

∫ z

0

log

(
1 +

c

λ(y)

)
dy − c.

• The importance sampling intensity

λ̃(t, x) := λ(x) exp {−DW̄ (t, x ; c∗)} = λ(x) + c∗.
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Illustration - Monte Carlo: a = 0.01, b = 5, d = 2, z = 0.25, N = 10000
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Figure : Location of the outcomes- Using Monte Carlo
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Illustration - Importance sampling: a = 0.01, b = 5, d = 2, z = 0.25, N =
10000
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Figure : Location of outcomes- adhoc weighted empirical measure (Carmona and
Crépy (2010))

Boualem Djehiche KTH Royal Institute of Technology, Stockholm On the subsolution approach to efficient importance sampling



Importance sampling
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Figure : Location of outcomes- Optimally weighted empirical measure
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Summary

• Optimal importance sampling can be viewed as a control problem.

• A (good) subsolution to an associated limiting PDE leads to an efficient
importance sampling algorithm.

• We demonstrate how to find a good subsolutions in a credit risk model with
contagion.
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