Virtual Element Spaces and Applications

F. Brezzi

IUSS-Istituto Universitario di Studi Superiori, Pavia, Italy
(『) IMATI-C.N.R., Pavia, Italy

KAUST, April 28-th, 2014

Outline

(1) Generalities on Numerical Methods for PDE's
(2) Variational Formulations and Functional Spaces
(3) Classical F.E. Approximations
(4) Guidelines for VEM discretizations
(5) A Family of VEM Spaces
(6) Approximations of H (grad)
(7) Approximations of H (div)
(8) Approximations of H (curl)
(9) VEM Approximations of PDE's
(10) Some experiments (A. Russo)
(11) Conclusions

The simplest model problem

Find $u \in V \equiv H_{0}^{1}(\Omega)$ s. $t .-\Delta u=f$. That is:

$$
\int_{\Omega} \nabla u \cdot \nabla v d \Omega=\int_{\Omega} f v d \Omega \quad \forall v \in V
$$

where Ω is, say, a polygon in \mathbb{R}^{2} and $f \in L^{2}(\Omega)$ is given.
For $N \in \mathbb{N}$ we would like to construct an $N \times N$ nonsingular matrix Δ_{N} and a vector $F_{N} \in \mathbb{R}^{N}$ such that the solution $U_{N} \in \mathbb{R}^{N}$ of the linear system

$$
-\Delta_{N} U_{N}=F_{N}
$$

is an approximation (in a sense to be made precise!) of the exact solution u (better and better as N grows).

Two big classes of methods

Very roughly, the (zillions of) methods available on the market can be split in two categories:

- Every N-ple $V_{N} \in \mathbb{R}^{N}$ is uniquely associated to a function $v_{N}(x, y) \in H_{0}^{1}(\Omega)$, and u_{N} (corresponding to the discrete solution $U_{N} \in \mathbb{R}^{N}$) is an approximation of the exact solution u. (FEM, Spectral Methods, RBF, XFEM, etc. Now also VEM)
- We have a linear functional χ_{N} from $C^{0}(\bar{\Omega}) \cap H_{0}^{1}(\Omega)$ into \mathbb{R}^{N} (e.g. point values), and we require that $\left\|U_{N}-\chi_{N}(u)\right\| \rightarrow 0$ in some suitable norm. (FD, FV, MFD, Cochains, etc.)

Example: piecewise linear FEM

Given a triangulation \mathcal{T}_{h} of Ω, with N internal nodes, we set $V_{h}=$ continuous piecewise linear functions vanishing on $\partial \Omega$, and we look for u_{h} in V_{h} such that

$$
\int_{\Omega} \nabla u_{h} \cdot \nabla v_{h} d \Omega=\int_{\Omega} f v_{h} d \Omega \quad \forall v_{h} \in V_{h} .
$$

Here $U_{N}=$ values of u_{h} at the nodes.
Note: the final matrix is usually computed as the sum of the contributions of the single elements:

$$
A_{i, j} \equiv \int_{\Omega} \nabla v^{j} \cdot \nabla v^{i} d \Omega=\sum_{E \in \mathcal{T}_{h}} \int_{E} \nabla v^{j} \cdot \nabla v^{i} d E
$$

Generalities on Classic FEM

More generally, in FEM the degrees of freedom are used to reconstruct polynomials (or isoparametric images of polynomials) in each element.
Ingredients:

- the geometry of the element (e.g.: triangles)
- the degrees of freedom; say, n d.o.f. per element
- in each element, a space of polynomials of dim. n.

The ingredients must match

- Unisolvence n numbers \leftrightarrow one and only one polynomial
- Continuity

Traditional finite elements-Triangles

P_{1}

P_{2}

P_{3}

Nodal values. C^{0} continuity

Traditional finite elements-Quads

$\# P_{1}=3$

$\# \mathrm{P}_{2}=6$

$\# P_{3}=10$

Nodal values. C^{0} continuity

A flavor of VEMs

For a decomposition in more general sub-polygons, FEM face considerable difficulties. With VEM, instead, you can take a decomposition like

having four elements with 812 14, and 41 nodes, respectively.

Typical functional spaces (in 3 dimensions)

Let Ω be a Lipschitz continuous polyhedral domain. The following spaces are the most common bricks used to deal with PDEs.
$L^{2}(\Omega)$ and $\left(L^{2}(\Omega)\right)^{3}$, that we assume to be known. $H(\operatorname{div} ; \Omega):=\left\{\tau \in\left(L^{2}(\Omega)\right)^{3}\right.$ s.t. $\left.\operatorname{div} \tau \in L^{2}(\Omega)\right\}$ $H($ curl $; \Omega):=\left\{\varphi \in\left(L^{2}(\Omega)\right)^{3}\right.$ s.t. curl $\left.\varphi \in\left(L^{2}(\Omega)\right)^{3}\right\}$ $H(\operatorname{grad} ; \Omega):=\left\{v \in L^{2}(\Omega)\right.$ s.t. $\left.\operatorname{grad} v \in\left(L^{2}(\Omega)\right)^{3}\right\} \equiv H^{1}(\Omega)$

Strong formulation of Darcy's law

- $p=$ pressure
- $\mathbf{u}=$ velocities (volumetric flow per unit area)
- $f=$ source
- $\mathbb{K}=$ material-depending (full) tensor
- $\mathbf{u}=-\mathbb{K} \nabla p$ (Constitutive Equation)
- $\operatorname{div} \mathbf{u}=f$ (Conservation Equation)

$$
\begin{array}{cl}
-\operatorname{div}(\mathbb{K} \nabla p)=f & \text { in } \Omega, \\
p=0 & \text { on } \partial \Omega, \quad \text { for simplicity. }
\end{array}
$$

Variational formulation - Primal

We consider, as usual, the bilinear form

$$
a(p, q):=\int_{\Omega} \mathbb{K} \nabla p \cdot \nabla q \mathrm{~d} x
$$

and we formulate the problem as: find $p \in H_{0}^{1}(\Omega)$ such that:

$$
a(p, q):=\int_{\Omega} f q \mathrm{~d} x \quad \forall q \in H_{0}^{1}(\Omega) .
$$

Variational formulation - Mixed

The problem can also be written as: find $p \in L^{2}(\Omega)$ and $\mathbf{u} \in H(\operatorname{div} ; \Omega)$ such that

$$
\int_{\Omega} \mathbb{K}^{-1} \mathbf{u} \cdot \mathbf{v} \mathrm{~d} V=\int_{\Omega} p \operatorname{div} \mathbf{v} \mathrm{~d} V \quad \forall \mathbf{v} \in H(\operatorname{div} ; \Omega)
$$

and

$$
\int_{\Omega} \operatorname{div} \mathbf{u} q \mathrm{~d} V=\int_{\Omega} f q \mathrm{~d} V \quad \forall q \in L^{2}(\Omega)
$$

Strong formulation of Magnetostatic problem

- $\mathbf{j}=$ divergence free current density
- $\mu=$ magnetic permeability
- $\mathbf{u}=$ vector potential with the gauge $\operatorname{div} \mathbf{u}=0$
- $\mathbf{B}=\mathbf{c u r l} \mathbf{u}=$ magnetic induction
- $\mathbf{H}=\mu^{-1} \mathbf{B}=\mu^{-1} \mathbf{c u r l} \mathbf{u}=$ magnetic field
- curl $\mathrm{H}=\mathbf{j}$

The classical magnetostatic equations become now

$$
\operatorname{curl} \mu^{-1} \mathbf{c u r l} \mathbf{u}=\mathbf{j} \text { in } \Omega,
$$

$$
\mathbf{u} \times \mathbf{n}=0 \text { on } \partial \Omega
$$

Variational formulation of the magnetostatic problem

Variational formulation of the magnetostatic problem:
\int Find $\mathbf{u} \in H_{0}($ curl,$\Omega)$ and $p \in H_{0}^{1}(\Omega)$ such that:

$$
\begin{aligned}
\left(\mu^{-1} \text { curl } \mathbf{u}, \text { curl } \mathbf{v}\right)-(\nabla p, \mathbf{v}) & =(\mathbf{j}, \mathbf{v}) \forall \mathbf{v} \in H_{0}(\text { curl; } \Omega) \\
(\mathbf{u}, \nabla q) & =0 \quad \forall q \in H_{0}^{1}(\Omega) .
\end{aligned}
$$

Continuity requirements

For a piecewise smooth vector valued function, at the common boundary between two elements,
in order to belong to

$$
\begin{aligned}
& \left(L^{2}(\Omega)\right)^{d} \\
& H(\operatorname{div} ; \Omega) \\
& H(\text { curl } ; \Omega) \\
& H(\text { grad } ; \Omega)
\end{aligned}
$$

you need to match
nothing
normal component
tangential components
all the components

Polynomial spaces

The following polynomial spaces are typically used, element by element, in order to approximate the above spaces:
$\mathbb{P}_{0}:=\{$ constants $\}$ (1d.o.f.)
$R T_{0}:=\{\boldsymbol{\tau}=\mathbf{a}+c \mathbf{x}\}$ with $\mathbf{a} \in \mathbb{R}^{3}$ and $c \in \mathbb{R}$ (4d.o.f.)
$N_{0}:=\{\varphi=\mathbf{a}+\mathbf{c} \wedge \mathbf{x}\}$ with $\mathbf{a} \in \mathbb{R}^{3}$ and $\mathbf{c} \in \mathbb{R}^{3}$ (6d.o.f.)
$\mathbb{P}_{1}:=\{v=a+\mathbf{c} \cdot \mathbf{x}\}$ with $a \in \mathbb{R}$ and $\mathbf{c} \in \mathbb{R}^{3}$ (4d.o.f.)

Finite Element Spaces in 3 dimensions

Let \mathcal{T}_{h} be a decomposition of Ω in tetrahedra. We consider the following finite element approximations.
$L^{2}(\Omega) \sim\left\{q \in L^{2}(\Omega)\right.$ such that $\left.q_{\mid T} \in \mathbb{P}_{0} \quad \forall T \in \mathcal{T}_{h}\right\}$ $H(\operatorname{div} ; \Omega) \sim\left\{\tau \in H(\operatorname{div} ; \Omega)\right.$ s.t. $\left.\tau_{\mid T} \in R T_{0} \quad \forall T \in \mathcal{T}_{h}\right\}$ $H($ curl; $\Omega) \sim\left\{\varphi \in H(\right.$ curl; $\Omega)$ s.t. $\left.\varphi_{\mid T} \in N_{0} \quad \forall T \in \mathcal{T}_{h}\right\}$ $H($ grad $; \Omega) \sim\left\{v \in H(\right.$ grad $; \Omega)$ s.t. $\left.v_{\mid T} \in \mathbb{P}_{1} \quad \forall T \in \mathcal{T}_{h}\right\}$

Loss of beauty of FEM

Polynomial spaces for edge elements of degree k on cubes

$$
\begin{aligned}
& \operatorname{span}\left\{y z\left(w_{2}(x, z)-w_{3}(x, y)\right)\right. \text {, } \\
& z x\left(w_{3}(x, y)-w_{1}(y, z)\right), \\
& \left.x y\left(w_{1}(y, z)-w_{2}(x, z)\right)\right\} \\
& +\left(\mathbb{P}_{k}\right)^{3}+\operatorname{grad} s(x, y, z)
\end{aligned}
$$

where each $w_{i}(i=1,2,3)$ ranges over all polynomials (of 2 variables) of degree $\leq k$ and s ranges over all polynomials of superlinear degree $\leq k+1$.
N.B. Superlinear degree: " ordinary degree ignoring variables that appear linearly"

What do we have have in mind

We want to use decompositions in polygons or polyhedra.
As for other methods on polyhedral elements, we will accept the trial and test functions inside each element to be rather complicated (e.g. solutions of suitable PDE's or systems of PDE's).

Contrary to other methods on polyhedral elements,

- we will not require the approximate evaluation of trial and test functions at the integration points.
- If possible, we would like to satisfy the patch test.

Guidelines for constructing a discretization

We consider a continuous problem; for instance Find $u \in V \equiv H_{0}^{1}(\Omega)$ such that

$$
a(u, v) \equiv \int_{\Omega} \nabla u \cdot \nabla v d \Omega=\int_{\Omega} f v d \Omega \quad \forall v \in V
$$

and we want to construct a discretized version: Find $u_{h} \in V_{h}$ such that

$$
a_{h}\left(u_{h}, v_{h}\right)=\left(f_{h}, v_{h}\right) \quad \forall v_{h} \in V_{h} \subset V .
$$

Hence we look for sufficient conditions on a_{h} and V_{h} that ensure all the good properties that you would have with standard Finite Elements.

The two basic properties

H1 $\forall E \exists$ a set of polynomials $P_{E} \subset V_{h}^{E} \equiv V_{h \mid E}$ such that

$$
a_{h}^{E}(p, v)=a^{E}(p, v) \quad \forall v \in V^{E}, \forall p \in P_{E}
$$

H2 $\exists \alpha^{*}, \alpha_{*}>0$ such that $\forall E, \forall v \in V_{h}^{E}$:

$$
\alpha_{*} a^{E}(v, v) \leq a_{h}^{E}(v, v) \leq \alpha^{*} a^{E}(v, v) .
$$

Under Assumptions $\mathbf{H 1}$ and $\mathbf{H} 2$ the discrete problem has a unique solution u_{h}, and: $\forall u_{l} \in V_{h}, \forall u_{\pi} \in \prod P_{E}$

$$
\left\|u-u_{h}\right\|_{1} \leq C\left(\left\|u-u_{l}\right\|_{1}+\left\|u-u_{\pi}\right\|_{1, h}+\left\|f-f_{h}\right\|_{V_{h}^{\prime}}\right)
$$

with C independent of h. And we have the Patch Test...

How to satisfy $\mathbf{H 1}$ and $\mathbf{H} \mathbf{2}$

We assume that we know how to compute $a^{E}(u, v)$

 whenever one of the two entries is a polynomial in P_{E}. Hence, for every element E and for every $v \in V_{h}^{E}$ we can compute its projection $\Pi^{a} v \in P_{E}$ defined by$$
a^{E}\left(v-\Pi^{a} v, q\right)=0 \forall q \in P_{E}, \text { and } \pi_{K_{E}^{a}}\left(v-\Pi^{a} v\right)=0
$$

where K_{E}^{a} is the kernel of a^{E}. Note that $\Pi^{a} p=p$ for all p in P_{E}. Then we set, for all u and v in V_{h}^{E}

$$
a_{h}^{E}(u, v):=a^{E}\left(\Pi^{a} u, \Pi_{v}^{a}\right)+S\left(u-\Pi^{a} u, v-\Pi^{a} v\right)
$$

where the stabilizing bilinear form S is (for instance) the Euclidean inner product in \mathbb{R}^{n} (where n is the dimension of V_{h}^{E}).

Structure of the Local Matrix in a different basis

Polynomials Others

The main features of VEM

The main features of VEM's are:
As for other methods on polyhedral elements, the trial and test functions inside each element are rather complicated (e.g. solutions of suitable PDE's or systems of PDE's).

Contrary to other methods on polyhedral elements,

- they do not require the approximate evaluation of trial and test functions at the integration points.
- In most cases they satisfy the patch test exactly (up to the computer accuracy).
Moreover:
- We have now a full family of spaces (for the approximation of the main functional spaces)

Example: Laplace operator in 2d

We take, for every integer $k \geq 1$

$$
V_{h}^{E}=\left\{v \mid v_{l e} \in \mathbb{P}_{k}(e) \forall \text { edge } e \text { and } \Delta v \in \mathbb{P}_{k-2}(E)\right\}
$$

It is easy to see that the local space will contain all \mathbb{P}_{k}.
As degrees of freedom we take:
i) the values of v at the vertices,
ii) the moments $\int_{e} v p_{k-2}$ de on each edge,
iii) the moments $\int_{E} v p_{k-2} \mathrm{~d} E$ inside.

It is easy to see that these d.o.f. are unisolvent.
Then for every $v \in V_{h}^{E}$ and for every $p_{k} \in \mathbb{P}_{k}$

$$
a^{E}\left(p_{k}, v\right)=\int_{E} \nabla p_{k} \cdot \nabla v d E=\int_{\partial E} \frac{\partial p_{k}}{\partial n} v d \ell-\int_{E} v \Delta p_{k} d E
$$ and we see that the contribution is computable.

The general philosophy

In every element, to define the trial/test function v you start from the boundary degrees of freedom, and use a 1D edge-by edge reconstruction to define the function on the whole boundary. Then you show existence and uniqueness of the reconstruction inside, using the internal moments.
On the other hand, to compute the local stiffness matrix, you use the boundary values and the internal moments to compute $a^{E}\left(v, p_{k}\right)$ for all polynomials p_{k}. Then you compute the operator Π^{a} and use it to compute a_{h}^{E} :

$$
a_{h}^{E}(u, v):=a^{E}\left(\Pi^{a} u, \Pi^{a} v\right)+S\left(u-\Pi^{a} u, v-\Pi^{a} v\right) .
$$

The L^{2}-projection

A fantastic trick (sometimes called The Three Card Monte trick), allows the exact computation of the moments of order $k-1$ and k of every $v \in V_{h}^{E}$.

This is very useful for dealing with the 3D case.

Example: Degrees of freedom of nodal VEM's in 2D

Approximations of $H^{1}(\Omega)$ in 3D

For a given integer $k \geq 1$, and for every element E, we set

$$
\begin{aligned}
& V_{h}^{E}=\left\{v \in H^{1}(E) \mid v_{l e} \in \mathbb{P}_{k}(e) \forall \text { edge } e,\right. \\
& \left.\quad v_{\mid f} \in V_{h}^{f} \forall \text { face } f, \text { and } \Delta v \in \mathbb{P}_{k-2}(E)\right\}
\end{aligned}
$$

with the degrees of freedom:
i) values of v at the vertices,
ii) moments $\int_{e} v p_{k-2}(e)$ on each edge e, iii) moments $\int_{f} v p_{k-2}(f)$ on each face f, and iv) moments $\int_{E} v p_{k-2}(E)$ on E.

Ex: for $k=3$ the number of degrees of freedom would be: the number of vertices, plus $2 \times$ the number of edges, $3 \times$ the number of faces, plus 4 . On a cube this makes $8+24+18+4=54$ against 64 for \mathbb{Q}_{3}.

Use of the degrees of freedom in 3d

For every $v \in V_{h}^{E}$ and for every polynomial p_{k} of degree k

$$
a^{E}\left(p_{k}, v\right)=\int_{E} \nabla p_{k} \cdot \nabla v \mathrm{~d} E=\int_{\partial E} \frac{\partial p_{k}}{\partial n} v \mathrm{~d} S-\int_{E} v \Delta p_{k} \mathrm{~d} E
$$

$$
=\sum_{f \in \partial E} \int_{f} \frac{\partial p_{k}}{\partial n} v \mathrm{~d} f-\int_{E} v \Delta p_{k} \mathrm{~d} E
$$

The term $\int_{E} v \Delta p_{k} d E$ is easy. Indeed we have that $\Delta p_{k} \in \mathbb{P}_{k-2}$ allowing a direct use of the degrees of freedom of v. On the contrary, on each face f we have that $\frac{\partial p_{k}}{\partial n}$ is in \mathbb{P}_{k-1} and we need the Three Card Monte trick to upgrade the moments on f from $k-2$ to $k-1$

VEM approximations of $H(\operatorname{div} ; \Omega)$

In each element E, and for each integer k, we define

$$
\begin{aligned}
& \mathcal{B}_{k}(\partial E):=\left\{g \mid g_{e} \in \mathbb{P}_{k} \forall \text { edge } e \in \partial E\right\} \text { in 2d } \\
& \mathcal{B}_{k}(\partial E):=\left\{g \mid g_{\mid f} \in \mathbb{P}_{k} \forall \text { face } f \in \partial E\right\} \text { in 3d }
\end{aligned}
$$

$$
V_{k}(E)=\left\{\boldsymbol{\tau} \mid \boldsymbol{\tau} \cdot \mathbf{n} \in \mathcal{B}_{k}(\partial E), \operatorname{div} \boldsymbol{\tau} \in \mathbb{P}_{k-1}, \operatorname{rot} \boldsymbol{\tau} \in \mathbb{P}_{k-1}\right\}
$$

and in 3 dimensions
$V_{k}(E)=\left\{\boldsymbol{\tau} \mid \boldsymbol{\tau} \cdot \mathbf{n} \in \mathcal{B}_{k}(\partial E), \operatorname{div} \boldsymbol{\tau} \in \mathbb{P}_{k-1}, \operatorname{curl} \boldsymbol{\tau} \in\left(\mathbb{P}_{k-1}\right)^{3}\right\}$

Degrees of freedom in $V_{k}(E)$ in $2 d$

- $\int_{e} \boldsymbol{\tau} \cdot \mathbf{n} q_{k} \mathrm{~d} e$
$\forall q_{k} \in \mathbb{P}_{k}(e) \forall$ edge e
- $\int_{E} \boldsymbol{\tau} \cdot \boldsymbol{\operatorname { g r a d }} q_{k-1} \mathrm{~d} E$
$\forall q_{k-1} \in \mathbb{P}_{k-1}$
- $\int_{E} \tau \cdot \mathrm{~g}_{k}^{1} \mathrm{~d} E$
$\forall \mathbf{g}_{k}^{\perp} \in \mathcal{G}_{k}^{\perp}$
where \mathcal{G}_{k}^{\perp} is the subset of the $\mathrm{g} \in\left(\mathbb{P}_{k}(E)\right)^{3}$ such that

$$
\int_{E} \mathrm{~g} \cdot \operatorname{grad} q_{k+1} \mathrm{~d} E=0 \quad \forall q_{k+1} \in \mathbb{P}_{k+1}(E)
$$

Degrees of freedom in $V_{k}(E)$ in $3 d$

- $\int_{f} \tau \cdot \mathbf{n} q_{k} \mathrm{~d} f$

$$
\forall q_{k} \in \mathbb{P}_{k}(f) \forall \text { face } f
$$

- $\int_{E} \boldsymbol{\tau} \cdot \operatorname{grad} q_{k-1} \mathrm{~d} E$
$\forall q_{k-1} \in \mathbb{P}_{k-1}$
- $\int_{E} \tau \cdot \mathrm{~g}_{k}^{1} \mathrm{~d} E$
$\forall \mathrm{g}_{k}^{\perp} \in \mathcal{G}_{k}^{\perp}$
where \mathcal{G}_{k}^{\perp} is the subset of the $\mathbf{g} \in\left(\mathbb{P}_{k}(E)\right)^{3}$ such that

$$
\int_{E} \mathrm{~g} \cdot \operatorname{grad} q_{k+1} \mathrm{~d} E=0 \quad \forall q_{k+1} \in \mathbb{P}_{k+1}(E)
$$

VEM approximations of $H($ rot $; \Omega)$ in $2 d$

In each element E, and for each integer k, we recall

$$
\mathcal{B}_{k}(\partial E):=\left\{g \mid g_{\mid e} \in \mathbb{P}_{k} \forall \text { edge } e \in \partial E\right\} \text { in } 2 \mathrm{~d}
$$

Then we set
$V_{k}(E)=\left\{\varphi \mid \varphi \cdot \mathbf{t} \in \mathcal{B}_{k}(\partial E), \operatorname{div} \varphi \in \mathbb{P}_{k-1}, \operatorname{rot} \varphi \in \mathbb{P}_{k-1}\right\}$

Degrees of freedom in $V_{k}(E)$ in $2 d$

- $\int_{e} \varphi \cdot \mathbf{t} q_{k} \mathrm{~d} e$

$$
\forall q_{k} \in \mathbb{P}_{k}(e) \forall \text { edge } e
$$

- $\int_{E} \varphi \cdot \boldsymbol{\operatorname { r o t }} q_{k-1} \mathrm{~d} E$

$$
\begin{aligned}
& \forall q_{k-1} \in \mathbb{P}_{k-1} \\
& \forall \mathbf{r}_{k}^{\perp} \in \mathcal{R}_{k}^{\perp}
\end{aligned}
$$

where \mathcal{R}_{k}^{\perp} is the subset of the $r \in\left(\mathbb{P}_{k}(E)\right)^{3}$ such that

$$
\int_{E} \mathbf{r} \cdot \boldsymbol{\operatorname { r o t }} q_{k+1} \mathrm{~d} E=0 \quad \forall q_{k+1} \in \mathbb{P}_{k+1}(E)
$$

VEM approximations of $H($ curl $; \Omega)$ in $3 d$

In each element E, and for each integer k, we set

$$
\begin{aligned}
\mathcal{B}_{k}(\partial E):= & \left\{\varphi \mid \varphi_{\mid f} \in V_{k}(f) \forall \text { face } f \in \partial E\right. \text { and } \\
& \left.\varphi \cdot \mathbf{t}_{e} \text { is single valued at each edge } e \in \partial E\right\}
\end{aligned}
$$

Then we set
$V_{k}(E)=\left\{\varphi \mid\right.$ such that $\varphi \cdot \mathbf{t} \in \mathcal{B}_{k}(\partial E)$,

$$
\left.\operatorname{div} \varphi \in \mathbb{P}_{k-1}, \text { curlcurl } \varphi \in\left(\mathbb{P}_{k-1}\right)^{3}\right\}
$$

Degrees of freedom in $V_{k}(E)$ in $3 d$

- for every edge $e \int_{e} \varphi \cdot \mathbf{t} q_{k} \mathrm{~d} e \quad \forall q_{k} \in \mathbb{P}_{k}(e)$
- for every face f

$$
\begin{aligned}
\int_{f} \varphi \cdot \operatorname{rot} q_{k-1} \mathrm{~d} f & \forall q_{k-1} \in \mathbb{P}_{k-1}(f) \\
\int_{f} \varphi \cdot \mathbf{r}_{k}^{\perp} \mathrm{d} f & \forall \mathbf{r}_{k}^{\perp} \in \mathcal{R}_{k}^{\perp}(f)
\end{aligned}
$$

- and inside E

$$
\begin{aligned}
\int_{E} \varphi \cdot \operatorname{curl}_{q_{k-1}} \mathrm{~d} E & \forall q_{k-1} \in\left(\mathbb{P}_{k-1}(E)\right)^{3} \\
\int_{E} \varphi \cdot \mathbf{r}_{k}^{\perp} \mathrm{d} E & \forall \mathbf{r}_{k}^{\perp} \in \mathcal{R}_{k}^{\perp}(E)
\end{aligned}
$$

A very useful property

We observe that the classical differential operators grad, curl, and div send these VEM spaces one into the other (up to the obvious adjustments for the polynomial degree). Indeed:

$$
\begin{aligned}
\operatorname{grad}(V E M, \text { noda } l) \subseteq V E M, ~ e d g e ~ \\
\operatorname{curl}(V E M, \text { edge }) \subseteq V E M, \text { face } \\
\operatorname{div}(V E M, \text { face }) \subseteq V E M, \text { volume }
\end{aligned}
$$

where
VEM, volume $=$ piecewise polynomials, discontinuous.

The crucial feature

The crucial feature common to all these choices is the possibility to construct (starting from the degrees of freedom, and without solving approximate problems in the element) a symmetric bilinear form $[\mathbf{u}, \mathbf{v}]_{h}$ such that, on each element E, we have
$\left[\mathbf{p}_{k}, \mathbf{v}\right]_{h}^{E}=\int_{E} \mathbf{p}_{k} \cdot \mathbf{v} \mathrm{~d} E \forall \mathbf{p}_{k} \in\left(\mathbb{P}_{k}(E)\right)^{d}, \forall \mathbf{v}$ in the VEM space and $\exists \alpha^{*} \geq \alpha_{*}>0$ independent of h such that
$\alpha_{*}\|\mathbf{v}\|_{L^{2}(E)}^{2} \leq[\mathbf{v}, \mathbf{v}]_{h}^{E} \leq \alpha^{*}\|\mathbf{v}\|_{L^{2}(E)}^{2}, \quad \forall \mathbf{v}$ in the VEM space

The crucial feature - 2

In other words: In each VEM space (nodal, edge, face, volume) we have a corresponding inner product
$[\cdot, \cdot]_{\text {VEM , nodal }},[\cdot, \cdot]_{\text {VEM,edge }},[\cdot, \cdot]_{\text {VEM,face }},[\cdot, \cdot]_{\text {VEM }, \text { volume }}$
that reproduces exactly the L^{2} inner product whenever at least one of the two entries is a polynomial of degree $\leq k$.

Approximation of Darcy - Primal

Remember that

$$
a(p, q):=\int_{\Omega} \mathbb{K} \nabla p \cdot \nabla q \mathrm{~d} x
$$

Then we can formulate the approximate problem as:
find $p_{h} \in V E M$, nodal such that:
$\left[\mathbb{K} \mathbf{g r a d} p_{h}, \operatorname{grad} q_{h}\right]_{V E M, e d g e}=\left[f, q_{h}\right]_{V E M, \text { nodal }}$
for all $q_{h} \in \mathrm{VEM}$,nodal.

Approximation of Darcy - Mixed

The approximate mixed formulation can be written as: find $p_{h} \in V E M$, volume and $\mathbf{u}_{h} \in V E M$, face such that

$$
\left[\mathbb{K}^{-1} \mathbf{u}_{h}, \mathbf{v}_{h}\right]_{\text {VEM,face }}=\left[p_{h}, \operatorname{div} \mathbf{v}_{h}\right]_{\text {VEM, volume }}
$$

for all $\mathbf{v}_{h} \in V E M$, face, and

$$
\left[\operatorname{div} \mathbf{u}_{h}, q_{h}\right]_{\text {VEM, volume }}=\left[f, q_{h}\right]_{\text {VEM, volume }}
$$

for all $q_{h} \in V E M$, volume.

Approximation of the magnetostatic problem

The VEM approximation of the magnetostatic problem can be chosen as: Find $\mathbf{u}_{h} \in V E M$, edges and $p_{h} \in V E M$, nodal such that:

$$
\begin{aligned}
& {\left[\mu^{-1} \text { curl }_{h}, \text { curl } \mathbf{v}_{h}\right]_{V E M, f a c e}-\left[\nabla p_{h}, \mathbf{v}_{h}\right]_{V E M, \text { edge }}} \\
& =\left[\mathbf{j}, \mathbf{v}_{h}\right]_{V E M, \text { edge }} \forall \mathbf{v}_{h} \in V E M, \text { edge } \\
& {\left[\mathbf{u}, \nabla q_{h}\right]_{V E M, \text { edge }}=0 \quad \forall q_{h} \in V E M, \text { nodal } .}
\end{aligned}
$$

Effects of distortion

To measure the effects of distortion of quadrilaterals, we solve $-\Delta u+u=f$ on the unit square, with increasingly distorted grids. The exact solution is always $u e(x, y)=\sin (2 x+0.5) * \cos (y+0.3)+\log (1+x y)$.

Distortion $=0 \%$

Distortion $=100 \%$

Distortion factors $0,60,80,100$. MESHES

Distortion factors 0,60, 80, 100. SOLUTIONS

Jeddah, April 28-th, 2014

Errors for various distortion factors

Starting from a uniform grid

Distortion 0\%
50\%
60\%
70\%
80\%
90\%
99\%
100\%

Error in 1^{2}
$1.0437 \mathrm{e}-07$
$1.6338 \mathrm{e}-06$
$2.0469 \mathrm{e}-06$
$2.5287 \mathrm{e}-06$
3.1152e-06
3.8700e-06
$4.7784 \mathrm{e}-06$
4.8968e-06

Distortion factors $0,60,80,100$. MESHES

Distortion factors $0,60,80,100$. SOLUTIONS

Errors for various distortion factors

Starting from a distorted grid

Distortion	Average h	Error in I^{2}
0%	$7.8609 \mathrm{e}-02$	$4.1678 \mathrm{e}-07$
50%	$7.9075 \mathrm{e}-02$	$2.3726 \mathrm{e}-06$
60%	$7.9388 \mathrm{e}-02$	$3.0113 \mathrm{e}-06$
70%	$7.9858 \mathrm{e}-02$	$3.7681 \mathrm{e}-06$
80%	$8.0562 \mathrm{e}-02$	$4.6884 \mathrm{e}-06$
90%	$8.1537 \mathrm{e}-02$	$5.8525 \mathrm{e}-06$
99%	$8.2599 \mathrm{e}-02$	$7.2161 \mathrm{e}-06$
100%	$8.2729 \mathrm{e}-02$	$7.3908 \mathrm{e}-06$

Voronoi Meshes

Solution

More crazy meshes

512 polygons, 2849 vertices

More crazy meshes

Note that the pink element is a polygon with 9 edges, while the blue element is a polygon (not simply connected) with 13 edges. We are exact on linears...

More crazy meshes

$$
\max \left|u-u_{h}\right|=0.008783
$$

For reasons of "glastnost", we take as exact solution

$$
w=x(x-0.3)^{3}(2-y)^{2} \sin (2 \pi x) \sin (2 \pi y)+\sin (10 x y)
$$

More crazy meshes

$$
\max \left|u-u_{h}\right|=0.074424
$$

This is on a mesh of $512(16 \times 16$ little squares $)$ elements.

More crazy meshes

$$
\max \left|u-u_{h}\right|=0.019380
$$

This is on a mesh of 2048 (32×32 little squares) elements.

More crazy meshes

$$
\max \left|u-u_{h}\right|=0.005035
$$

And this is on a mesh of 8192 (64×64 little squares) elements. Note the $O\left(h^{2}\right)$ convergence in L^{∞}.

The 3-2 element for plates

Exact and approximate solution

Exact solution (left): $w=x^{2}(1-x)^{2} y^{2}(1-y)^{2}$ on the unit square $] 0,1[\times] 0,1[$. The approximate solution is computed with the $r=3, s=2, k=3$ element on a grid of uniform 32×32 square (BLUSH!) elements.

Behaviour of the L^{2} error

Behaviour of the H^{1} error

Behaviour of the H^{2} error

Going berserk?

Could one use an element like this one, with 82 vertices?

Going berserk ?

And possibly make a mesh out of it ??.

Going totally berserk ??

And solve PDE's on a grid like this?

Come at tomorrow's lecture, and see....

Conclusions

- Virtual Elements are a new method, and a lot of work is needed to assess their pros and cons.
- Their major interest is on polygonal and polyhedral elements, but their use on distorted quads, hexa, and the like, is also quite promising.
- For triangles and tetrahedra the interest seems to be concentrated in higher order continuity (e.g. plates).
- The use of VEM mixed methods seems to be quite interesting, in particular for their connections with Finite Volumes and Mimetic Finite Differences.

