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Orientation

m We are interested in the strong solution to linear parabolic SPDEs
arising in the nonlinear filtering theory

m Solutions are desired in real-time and the non-degeneracy of the
parabolicity condition cannot be guaranteed

m Richardson’s method has been used for SDEs and more recently
for SPDEs to accelerate strong rate of convergence for a
semi-discrete scheme [Gydéngy & Krylov 2010]

m Give sufficient conditions for accelerating the strong rate of
convergence with respect to the spatial approximation to arbitrarily
high order by Richardson’s method (strong parabolicity [E.H. 2012]
and degenerate parabolicity [E.H. 2013])
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Outline

Richardson’s Extrapolation
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The setting

m Consider a continuous problem with true solution u
m Apply a discretization process with a mesh size h
m Obtain solution w(h) to the resulting discretized problem
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Higher order accuracy

m Assume w(h) —u = O(h)ash — 07, that is, first order accuracy

m Halving the mesh size, one (hopes) to obtain an approximation
w(h/2) that is twice as accurate as w(h)

m Refining the mesh size, one can theoretically improve the
approximation to any order of accuracy

= However, decreasing mesh size to small values of h is not realistic
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Richardson’s observation

m Richardson (1911) observed that for a particular continuous
problem a symmetric finite difference scheme lead to errors of form

w(h) —u=uVh? + u@h? + uh® + ..

where w(0) = u and the u(%) are independent of h

m Note: wh) —u = 0O(h?),ash — 0+

= Eliminate the h? term by combining approximations obtained at two
different mesh widths, hy, hy:

hiw(ho) — hw(h)
ho,hy) == — .
W( 0y 1) h%—h%
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Extrapolation: a simple example

h2w(ho) — h2w(h;)
W(ho h]) = ! 9
’ k=13

For instance, take hg := h and h; := 2h for Richardson’s problem

4MPwh) = 4h2u + 4h*ull + 4nSul?) 4
—(h?w(2h) = h?u + 4h*u 4+ 16houl?) + .
3h?w(h,2h) = 3h%u + 0 + O(h®)

= Thus higher order convergence: w(h, 2h) —u = O(h*)

m Can be repeated to arbitrary order: w(ho, ..., hi) —u = O(h¥)

m Doesn’t require access to ‘the code’

= Naive method would require quite a mesh refinement...
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Equations, Schemes and Assumptions
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The SPDE

Let (Wp)g‘:O be a sequence of Wiener processes. Consider the
Cauchy problem for

du(t,x) =(Lu(t,x) + f(t,x))dt

d;
+ Z(Mpu(t,x) +gP(t,x))dWP(t) (Eq)

p=1

on Ht := [0, T] x R< with initial condition 1o = 1(0, x)
m L(t):= a“B(t,x)DaDB, a*P = gbx

m MP(t) :=b*P(t,x)Dy

for «, 3 € {0, ..., d}.
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Well-posedness

The behavior of

du(t,x) =(a*FD4Dpu(t,x) + f(t,x))dt

d;
+ ) (b*PDou(t, x) + g°(t, x))dW®(t)
p=1

is governed by the quadratic form:

(2a%B — b*PHPP)z, 2z
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Well-posedness

The behavior of

du(t,x) =(a*FD4Dpu(t,x) + f(t,x))dt

d;
+ ) (b*PDou(t, x) + g°(t, x))dW®(t)
p=1

is governed by the quadratic form:
(2a%F — b*PHBP)z 20 > Kz|?

for kK > 0 then strongly parabolic.
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Well-posedness

The behavior of

du(t,x) =(a*FD4Dpu(t,x) + f(t,x))dt

d;
+ ) (b*PDou(t, x) + g°(t, x))dW®(t)
p=1

is governed by the quadratic form:
(2a%B —b*PbPP)z,zp > 0

then degenerate parabolic.

Richardson extrapolation for SPDEs - E.H.

(Eq)

11/37



Implicit Euler approximation

Together with (Eq) we consider for each fixed T € (0, 1)
vi(x) :Vi—1(x)+([4ivi( )+ fi(x))T
Eq
+Z l1\)11 +911( ))E,f (q)

fori € {1,...,n}and x € R4 with initial condition vo(x) = 1o where
£ = AWP(ti_1) = WP(t;) — WP(t;_q).
Note: a continuous problem in x.
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Discretizing in space

For h € R\{0} and finite subset A C R¢ containing the origin, define
the space-grid

Gh = {}\1h+ A AL EAU(-A),p=1,2, }
and spatial differences

@(x+hA) —@(x)
h

dhaa@(x) ==

forA € Ay = /\\{0}, and (Sh)o =L
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Space-time difference approximation

Together with (Eq) and (Eq) we consider for each fixed T

wi(x) = wi1(x)+ (U‘Wi( )+ filx))T

Eq¥
+Z ]Wl ] )+gf_](x))£f ( 9 )

fori € {1,...,n}and x € Gy, with a given initial condition.
Here wi(x) = w(h, ti, x).

m L= ai‘”(x)éh,;\éfh,w M = gt
| M?p = bz\p(X)éh,}\
for A, u € A.
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Choice of /A, a, b: Example 1

Let A ={eg,€1,..., €4} Where ep = 0 and e is th basis vector in
R% and let a;*** = a®P and bS*° = b for «, B € {0, 1, ..., d}.
Then first order derivatives in (Eq) are approximated by usual first
order finite differences and

Ap o o
> alM b nuu=—a{Pon e, On, e,
A)HEAO

which is a standard finite-difference approximation for af‘ D «Dpu.
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Choice of A, a, b: Example 2

Let Ag ={+e1,...,+eq}andfor A, u € Ay define a * and b7‘p by

tex,tep ] (Xﬁ *ex,Fep O b:l:eomp 1bo‘p
i 2% 4 7 ' =20
Oten _ 4+ea0 _ 1/ ou o0
a’ "t =a —iZ(ai + ai™),
00 _ 00 Op _1,0p
a;” =a;°, b =b".

This choice corresponds to using symmetric finite differences to
approximate the first-order derivatives, e.g. :

d
woWx +hey) —u(x —he
Z bz\P&h’}\u(x) _ Zbip ( oc)Zh ( oc).
AEA, a=1
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Summary of assumptions

We require:

m consistency condition

m stochastic parabolicity condition

m suitable regularity of up, f, and g
m suitable regularity of a, b, a, and b
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The assumptions |

Assumption (consistency)
Fori€{0,..,n} af° =af

A0y x — ~x0 Ooc
S nens RN+ T en, 0710 = af® + aof

1 1

Zx,ue/\o C‘MNXHB = a{XB, b?p = bop andz)\e/\0 pIPAX = b

forall o, 3 € {1,...,d}andp € {1, ... d1}

Assumption (parabolicity)

There exists k > 0 such that
>4 o _o(2a%PF — bPbBR)zzB > |22 and

Z%,ue/\o (20 — bApbup)Z?\Zu Z K ZAE/\O |z|2.
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The assumptions Il

Assumption (regularity initial condition, free terms)
o € L2(Q, Fo, W), £ € Wi, g° € W and
K = E [o (013 + lg(0)I2,, ) dt + Eluol?, ,; < oo.

Assumption (regularity coefficients)

The a*P, a®*P and b, b* and their derivatives are, respectively, m
times and m + 1 times continuously differentiable in x and bounded
by K.
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Outline

Main Results
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Summary of assumptions

We require:

m consistency condition;

m stochastic parabolicity condition;

m suitable regularity of up, f, and g;
m suitable regularity of a, b, a, and b.

Richardson extrapolation for SPDEs - E.H. 21/37



The assumptions |

Assumption (consistency)
Fori€{0,..,n} af° =af

A0y x — ~x0 Ooc
S nens RN+ T en, 0710 = af® + aof

1

forall o, 3 € {1,...,d}andp € {1, ... d1}

i

A 0 0 A
Zx,ue/\o oy HNXHB = a{XB, bip =b; e andz)\e/\0 b PAX =

Assumption (stoch. parabolicity)

There exists k > 0 such that
>4 o _o(2a%PF — bPbBR)zzB > |22 and

Z%,ue/\o (20 — bApbup)Z?\Zu Z K ZAE/\O |z|2.
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The assumptions Il

Assumption (regularity initial condition, free terms)
o € L2(Q, Fo, W), £ € Wi, g° € W and
K = E [o (013 + lg(0)I2,, ) dt + Eluol?, ,; < oo.

Assumption (regularity coefficients)

The a*P, a®*P and b, b* and their derivatives are, respectively, m
times and m + 1 times continuously differentiable in x and bounded
by K.
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The expansion

We would like that a.s.
_ W) Th
Wi(X) = vi(x) + § - Vi (X) + Ri (X) (A)

holds for i € {1,...,n} and x € G}, where the vUJ) are independent
of h and

2
REM(x)|” < NP, ()

i

Emaxicnsup,cg,

2 2 2
for K = E [tollpy .1 + ET X1 (Ifills +11gill3ns1 ) < oo and
a constant N independent of T and h.

Richardson extrapolation for SPDEs - E.H. 24/37



The expansion result

Theorem (Expansion)

If the assumptions hold withm > k + 1+ d/2 fork > 0 then the
error admits an expansion (A) with bound (B) for the remainder with
aconstantN = N(d, dy, m, A, K, k, T).
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Acceleration notation

Fix an integer k > 0 and let

k

w(h) =) Bw(277h)

j=0

where w(277h) = w(277h, t;, x) solves the space-time scheme
(EqR) with 277h in place of h. Here 3 is given by

(Bo, B1y .y Pr) == (1,0, ...,0)V~! where V™! is the inverse of the
Vandermonde matrix with entries VY := 2= (i=1)G=1) for

,je{l, .., k+ 1}
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The acceleration result

Theorem (Acceleration)
Under the assumptions of the Expansion Theorem,

Emaxicnsup, g, wil(x) —vi(x)]2 < N2+ g2,

for a constantN = N(d, dy, m, A, K, k, T).
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Proof of acceleration result |

From the expansion, we have that for each j € {0, 1, ..., k} the terms

on the right hand side of w:

i

K
. h . ~
w(27h) =v + E ] zi].v“) + RhKk+1
i v

where R := h—(k+1)R®27"h
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Proof of acceleration result Il

Then

k hi
> f, L E Z By R

B k
2_ Z th—l—]
j=0

since Z};O B; =1and Z;(:o B;27Y =0foreachic {1,2,..

by the definition of (B, ..., Bx). Then use bound on R™" from
expansion Theorem.
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Proof of expansion result (sketch)

m Although solutions to (Eq?) are naturally understood as ¢2-valued
functions on Gy, it will be advantageous to consider the scheme on
the whole space and seek [ %-valued solutions

m Obtain estimates in appropriate Sobolev spaces for the (L%-valued)
solution of the space-time scheme and time scheme

m Taylor expansion with respect to the spatial mesh is constructed by
formally taking derivative (with respect to h) of the space-time
scheme (results in a system of time discretized SPDESs)

m Use Sobolev embedding and show that (under suitable regularity)
the continuous modification restricted to the grid agrees almost
surely with the natural definition of the approximate solution
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Proof of expansion result (flavor of estimates)

m Forf,g € Wit such that ETY_ " ([Ifll% + llgll#) < oo then for
each h € R\{0} equation (EqZ?) admits a unique W valued
solution for any 1 € W}“H and moreover

n
Emaxi<nlwilld + ]ETZ Z 180 AWillZ
i1 AcA

< NEv(huolZ, 4 + Y (Ifilld + llgill)
i=0

for constant N = N(d, d7, m, A, K, k, T)
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Proof of expansion result (Taylor expansion) |

m Define operators £(P) and M (P)° by formally taking the pth

derivatives in h of LM and M"P ath = 0
m Consider a system of time discretized equations

forp € {1, ..., k} with zero initial conditions where v(®)

(Sys)

=V

m Also obtain existence and uniqueness of solutions to (Sys) and

similar estimates independent of T
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Proof of expansion result (Taylor expansion) I

= Now consider TN =w —v — Zk () which satisfies

j=17T

M) =T () + (L) + FRM ()
d;
+ 3 (MP TN () + GPIYP (x))ED
p=1

with 73" (x) = 0

m Where F and G are, respectively, certain combinations of

differences between the L™ and £U) and the M"P and MU

0) k)

operators acting on certain v(°), ..., v
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Proof of expansion result (Taylor expansion) Il

m In particular, we know how F and G depend on h; then the estimate
obtained for (Eq?) can be applied to (rEq) with zero initial
condition to obtain appropriate bound on error

m Final step is to take Sobolev embedding and then to show that the
restriction to the grid of the continuous modifications of w, v, v0)
agree almost surely with the ¢2-valued notion of solution to the
space-time scheme O
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Summary

m We considered finite difference approximations on uniform grids in
time and space for a second order linear SPDEs of parabolic type

m Under suitable regularity conditions, the spatial approximation can
be accelerated to an arbitrarily high order using Richardson’s
method

m This relied on obtaining estimates in appropriate Sobolev spaces
for the solutions to the schemes
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Final Remarks

m Using this program can: give estimates for accelerating the
convergence of derivatives of solutions; consider symmetric
differences (faster convergence)

m Results for degenerate parabolic equations are possible

m Future work: quantifying coefficients, truncation errors, other types
of noise...

Richardson extrapolation for SPDEs - E.H. 36/37



References

@ I. Gyongy and N. V. Krylov.
Accelerated finite difference schemes for linear stochastic partial differential
equations in the whole space.

@ E H.
Accelerated spatial approximations for time discretized stochastic partial
differential equations.

A E.H.

Higher order spatial approximations for degenerate parabolic stochastic
partial differential equations.

E L. F. Richardson.
The approximate arithmetical solution by finite differences of physical
problems involving differential equations.

Richardson extrapolation for SPDEs - E.H. 37/37



	Richardson's Extrapolation
	Equations, Schemes and Assumptions
	Main Results

