

KTH Royal Institute of Technology

Richardson extrapolation and finite difference schemes for SPDEs

Center for Uncertainty Quantification Seminar KAUST · 5 March 2014

Eric Joseph Hall · ejhall@kth.se

Orientation

- We are interested in the strong solution to linear parabolic SPDEs arising in the nonlinear filtering theory
- Solutions are desired in real-time and the non-degeneracy of the parabolicity condition cannot be guaranteed
- Richardson's method has been used for SDEs and more recently for SPDEs to accelerate strong rate of convergence for a semi-discrete scheme [Gyöngy & Krylov 2010]
- Give sufficient conditions for accelerating the strong rate of convergence with respect to the spatial approximation to arbitrarily high order by Richardson's method (strong parabolicity [E.H. 2012] and degenerate parabolicity [E.H. 2013])

Outline

1 Richardson's Extrapolation

2 Equations, Schemes and Assumptions

3 Main Results

Outline

1 Richardson's Extrapolation

2 Equations, Schemes and Assumptions

3 Main Results

The setting

- Consider a continuous problem with true solution u
- Apply a discretization process with a mesh size h
- Obtain solution w(h) to the resulting discretized problem

Higher order accuracy

- Assume w(h) u = O(h) as $h \to 0^+$, that is, first order accuracy
- Halving the mesh size, one (hopes) to obtain an approximation w(h/2) that is twice as accurate as w(h)
- Refining the mesh size, one can theoretically improve the approximation to any order of accuracy
- However, decreasing mesh size to small values of h is not realistic

Richardson's observation

 Richardson (1911) observed that for a particular continuous problem a symmetric finite difference scheme lead to errors of form

$$w(h) - u = u^{(1)}h^2 + u^{(2)}h^4 + u^{(3)}h^6 + \cdots$$

where w(0) = u and the $u^{(i)}$ are independent of h

- Note: $w(h) u = O(h^2)$, as $h \to 0^+$
- Eliminate the h² term by combining approximations obtained at two different mesh widths, h₀, h₁:

$$w(h_0, h_1) := \frac{h_1^2 w(h_0) - h_0^2 w(h_1)}{h_1^2 - h_0^2}$$

Extrapolation: a simple example

$$w(h_0, h_1) := \frac{h_1^2 w(h_0) - h_0^2 w(h_1)}{h_1^2 - h_0^2}$$

For instance, take $h_0 := h$ and $h_1 := 2h$ for Richardson's problem

- Thus higher order convergence: $w(h, 2h) u = O(h^4)$
- Can be repeated to arbitrary order: $w(h_0, ..., h_k) u = O(h^k)$
- Doesn't require access to 'the code'
- Naive method would require quite a mesh refinement...

Outline

1 Richardson's Extrapolation

2 Equations, Schemes and Assumptions

3 Main Results

The SPDE

Let $(W^{\rho})_{\rho=0}^{d_1}$ be a sequence of Wiener processes. Consider the Cauchy problem for

$$\begin{split} d\mathfrak{u}(t,x) = & (\mathcal{L}\mathfrak{u}(t,x) + f(t,x))dt \\ & + \sum_{\rho=1}^{d_1} (\mathcal{M}^\rho\mathfrak{u}(t,x) + g^\rho(t,x))dW^\rho(t) \end{split} \tag{Eq)}$$

on $H_T := [0, T] \times I\!\!R^d$ with initial condition $u_0 = u(0, x)$

- $\mathcal{L}(t) := \alpha^{\alpha\beta}(t, x) D_{\alpha} D_{\beta}, \quad \alpha^{\alpha\beta} = \alpha^{\beta\alpha}$
- $\mathfrak{M}^{\rho}(t) := b^{\alpha \rho}(t, x) D_{\alpha}$ for $\alpha, \beta \in \{0, ..., d\}.$

Well-posedness

The behavior of

$$\begin{split} du(t,x) = & (\alpha^{\alpha\beta}D_{\alpha}D_{\beta}u(t,x) + f(t,x))dt \\ & + \sum_{\rho=1}^{d_1} (b^{\alpha\rho}D_{\alpha}u(t,x) + g^{\rho}(t,x))dW^{\rho}(t) \end{split} \tag{Eq}$$

is governed by the quadratic form:

$$(2a^{\alpha\beta}-b^{\alpha\rho}b^{\beta\rho})z_{\alpha}z_{\beta}$$

Well-posedness

The behavior of

$$\begin{split} du(t,x) = & (\alpha^{\alpha\beta}D_{\alpha}D_{\beta}u(t,x) + f(t,x))dt \\ & + \sum_{\rho=1}^{d_1} (b^{\alpha\rho}D_{\alpha}u(t,x) + g^{\rho}(t,x))dW^{\rho}(t) \end{split} \tag{Eq}$$

is governed by the quadratic form:

$$(2a^{\alpha\beta} - b^{\alpha\rho}b^{\beta\rho})z_{\alpha}z_{\beta} \geqslant \kappa|z|^2$$

for $\kappa > 0$ then strongly parabolic.

Well-posedness

The behavior of

$$du(t,x) = (\alpha^{\alpha\beta} D_{\alpha} D_{\beta} u(t,x) + f(t,x))dt$$

$$+ \sum_{\rho=1}^{d_1} (b^{\alpha\rho} D_{\alpha} u(t,x) + g^{\rho}(t,x))dW^{\rho}(t)$$
(Eq)

is governed by the quadratic form:

$$(2a^{\alpha\beta} - b^{\alpha\rho}b^{\beta\rho})z_{\alpha}z_{\beta} \geqslant 0$$

then degenerate parabolic.

Implicit Euler approximation

Together with (Eq) we consider for each fixed $\tau \in (0, 1)$

$$\begin{split} \nu_i(x) &= \nu_{i-1}(x) + (\mathcal{L}_i \nu_i(x) + f_i(x)) \tau \\ &+ \sum_{\rho=1}^{d_1} (\mathcal{M}_{i-1}^{\rho} \nu_{i-1}(x) + g_{i-1}^{\rho}(x)) \xi_i^{\rho} \end{split} \tag{Eq_{\tau}}$$

for $i \in \{1, ..., n\}$ and $x \in \mathbf{R}^d$ with initial condition $v_0(x) = u_0$ where $\xi_i^\rho := \Delta W^\rho(t_{i-1}) = W^\rho(t_i) - W^\rho(t_{i-1})$. Note: a continuous problem in x.

Discretizing in space

For $h\in R\backslash\{0\}$ and finite subset $\Lambda\subset R^d$ containing the origin, define the space-grid

$$G_{h}:=\left\{ \lambda_{1}h+\cdots+\lambda_{p}h;\lambda_{i}\in\Lambda\cup\left(-\Lambda\right),p=1,2,...\right\}$$

and spatial differences

$$\delta_{h,\lambda} \phi(x) := \frac{\phi(x + h\lambda) - \phi(x)}{h}$$

for $\lambda \in \Lambda_0 := \Lambda \setminus \{0\}$, and $\delta_{h,0} := I$.

Space-time difference approximation

Together with (Eq) and (Eq $_{\tau}$) we consider for each fixed τ

$$\begin{split} w_{i}(x) &= w_{i-1}(x) + (L_{i}^{h}w_{i}(x) + f_{i}(x))\tau \\ &+ \sum_{\rho=1}^{d_{1}} (M_{i-1}^{h\rho}w_{i-1}(x) + g_{i-1}^{\rho}(x))\xi_{i}^{\rho} \end{split} \tag{Eq^{h}}$$

for $i\in\{1,...,n\}$ and $x\in G_h$ with a given initial condition. Here $w_i(x)=w(h,t_i,x)$.

- $\blacksquare \ L_i^h := \mathfrak{a}_i^{\lambda\mu}(x) \delta_{h,\lambda} \delta_{-h,\mu}, \ \mathfrak{a}^{\lambda\mu} = \mathfrak{a}^{\mu\lambda}$
- $\mathbf{M}_{i}^{h\rho} := \mathfrak{b}_{i}^{\lambda\rho}(x)\delta_{h,\lambda}$ for $\lambda, \mu \in \Lambda$.

Choice of Λ , \mathfrak{a} , \mathfrak{b} : Example 1

Let $\Lambda=\{e_0,e_1,...,e_d\}$ where $e_0=0$ and e_α is α th basis vector in \mathbf{R}^d and let $\mathfrak{a}_i^{e_\alpha,e_\beta}=\mathfrak{a}_i^{\alpha\beta}$ and $\mathfrak{b}_i^{e_\alpha,\rho}=\mathfrak{b}_i^{\alpha\rho}$ for $\alpha,\beta\in\{0,1,...,d\}$. Then first order derivatives in (Eq) are approximated by usual first order finite differences and

$$\sum_{\lambda,\mu\in\Lambda_0}\mathfrak{a}_{i}^{\lambda\mu}\delta_{h,\lambda}\delta_{-h,\mu}\mathfrak{u}=-\mathfrak{a}_{i}^{\alpha\beta}\delta_{h,e_{\alpha}}\delta_{h,-e_{\beta}}$$

which is a standard finite-difference approximation for $a_i^{\alpha\beta}D_{\alpha}D_{\beta}u$.

Choice of Λ , \mathfrak{a} , \mathfrak{b} : Example 2

Let $\Lambda_0=\{\pm e_1,...\,,\pm e_d\}$ and for $\lambda,\mu\in\Lambda_0$ define $\mathfrak{a}_i^{\lambda\mu}$ and $\mathfrak{b}_i^{\lambda\rho}$ by

$$\begin{split} \mathfrak{a}_{i}^{\pm e_{\alpha},\pm e_{\beta}} &= \frac{1}{2} \mathfrak{a}_{i}^{\alpha\beta}, \qquad \mathfrak{a}_{i}^{\pm e_{\alpha},\mp e_{\beta}} = 0, \qquad \mathfrak{b}_{i}^{\pm e_{\alpha},\rho} = \pm \frac{1}{2} \mathfrak{b}_{i}^{\alpha\rho}, \\ \mathfrak{a}_{i}^{0,\pm e_{\alpha}} &= \mathfrak{a}_{i}^{\pm e_{\alpha},0} = \pm \frac{1}{4} (\mathfrak{a}_{i}^{0\alpha} + \mathfrak{a}_{i}^{\alpha0}), \\ \mathfrak{a}_{i}^{00} &= \mathfrak{a}_{i}^{00}, \quad \mathfrak{b}_{i}^{0\rho} = \mathfrak{b}_{i}^{0\rho}. \end{split}$$

This choice corresponds to using symmetric finite differences to approximate the first-order derivatives, e.g. :

$$\sum_{\lambda \in \Lambda_0} \mathfrak{b}_{i}^{\lambda \rho} \delta_{h,\lambda} \mathfrak{u}(x) = \sum_{\alpha=1}^{d} b_{i}^{\alpha \rho} \frac{\mathfrak{u}(x + he_{\alpha}) - \mathfrak{u}(x - he_{\alpha})}{2h}.$$

Summary of assumptions

We require:

- consistency condition
- stochastic parabolicity condition
- \blacksquare suitable regularity of \mathfrak{u}_0 , f, and g
- suitable regularity of α, b, α, and b

The assumptions I

Assumption (consistency)

$$\begin{split} &\textit{For}\ i\in\{0,...\,,n\}\quad \mathfrak{a}_{i}^{00}=\mathfrak{a}_{i}^{00},\\ &\sum_{\lambda\in\Lambda_{0}}\mathfrak{a}_{i}^{\lambda0}\lambda^{\alpha}+\sum_{\mu\in\Lambda_{0}}\mathfrak{a}_{i}^{0\mu}\mu^{\alpha}=\mathfrak{a}_{i}^{\alpha0}+\mathfrak{a}_{i}^{0\alpha},\\ &\sum_{\lambda,\mu\in\Lambda_{0}}\mathfrak{a}_{i}^{\lambda\mu}\lambda^{\alpha}\mu^{\beta}=\mathfrak{a}_{i}^{\alpha\beta},\ \mathfrak{b}_{i}^{0\rho}=b_{i}^{0\rho},\ \textit{and}\ \sum_{\lambda\in\Lambda_{0}}\mathfrak{b}_{i}^{\lambda\rho}\lambda^{\alpha}=b_{i}^{\alpha\rho} \\ &\textit{for all}\ \alpha,\beta\in\{1,...\,,d\}\ \textit{and}\ \rho\in\{1,...\,,d_{1}\}. \end{split}$$

Assumption (parabolicity)

There exists
$$\kappa > 0$$
 such that
$$\sum_{\alpha,\beta=0}^d (2\mathfrak{a}^{\alpha\beta} - b^{\alpha\rho}b^{\beta\rho})z^{\alpha}z^{\beta} \geqslant \kappa|z|^2 \text{ and } \\ \sum_{\lambda,\mu\in\Lambda_0} (2\mathfrak{a}^{\lambda\mu} - \mathfrak{b}^{\lambda\rho}b^{\mu\rho})z_{\lambda}z_{\mu} \geqslant \kappa \sum_{\lambda\in\Lambda_0} |z|^2.$$

The assumptions II

Assumption (regularity initial condition, free terms)

$$\begin{array}{l} u_0 \in L^2(\Omega, \mathcal{F}_0, W_2^{m+1}), \, f \in W_2^m, \, g^\rho \in W_2^{m+1} \, \, \text{and} \\ \mathcal{K}_m^2 := \mathbb{E} \int_0^T (\|f(t)\|_m^2 + \|g(t)\|_{m+1}^2) \, dt + \mathbb{E} \|u_0\|_{m+1}^2 < \infty. \end{array}$$

Assumption (regularity coefficients)

The $\alpha^{\alpha\beta}$, $\alpha^{\alpha\beta}$ and b^{α} , b^{α} and their derivatives are, respectively, m times and m+1 times continuously differentiable in x and bounded by K.

Outline

1 Richardson's Extrapolation

2 Equations, Schemes and Assumptions

3 Main Results

Summary of assumptions

We require:

- consistency condition;
- stochastic parabolicity condition;
- suitable regularity of u_0 , f, and g;
- suitable regularity of α, b, α, and b.

The assumptions I

Assumption (consistency)

$$\begin{split} &\textit{For} \ i \in \{0, \dots, n\} \quad \mathfrak{a}_i^{00} = \mathfrak{a}_i^{00}, \\ &\sum_{\lambda \in \Lambda_0} \mathfrak{a}_i^{\lambda 0} \lambda^\alpha + \sum_{\mu \in \Lambda_0} \mathfrak{a}_i^{0\mu} \mu^\alpha = \mathfrak{a}_i^{\alpha 0} + \mathfrak{a}_i^{0\alpha}, \\ &\sum_{\lambda, \mu \in \Lambda_0} \mathfrak{a}_i^{\lambda \mu} \lambda^\alpha \mu^\beta = \mathfrak{a}_i^{\alpha \beta}, \ \mathfrak{b}_i^{0\rho} = \mathfrak{b}_i^{0\rho}, \ \textit{and} \ \sum_{\lambda \in \Lambda_0} \mathfrak{b}_i^{\lambda \rho} \lambda^\alpha = \mathfrak{b}_i^{\alpha \rho} \\ &\textit{for all} \ \alpha, \beta \in \{1, \dots, d\} \ \textit{and} \ \rho \in \{1, \dots, d_1\}. \end{split}$$

Assumption (stoch. parabolicity)

There exists
$$\kappa>0$$
 such that
$$\sum_{\alpha,\beta=0}^d (2\mathfrak{a}^{\alpha\beta}-b^{\alpha\rho}b^{\beta\rho})z^{\alpha}z^{\beta}\geqslant \kappa|z|^2 \text{ and } \\ \sum_{\lambda,\mu\in\Lambda_0} (2\mathfrak{a}^{\lambda\mu}-\mathfrak{b}^{\lambda\rho}b^{\mu\rho})z_{\lambda}z_{\mu}\geqslant \kappa\sum_{\lambda\in\Lambda_0}|z|^2.$$

The assumptions II

Assumption (regularity initial condition, free terms)

$$\begin{split} &u_0 \in L^2(\Omega, \mathfrak{F}_0, W_2^{m+1}), \, f \in W_2^m, \, g^\rho \in W_2^{m+1} \, \, \text{and} \\ & \mathcal{K}_m^2 := I\!\!E \int_0^T (\|f(t)\|_m^2 + \|g(t)\|_{m+1}^2) \, dt + I\!\!E \|u_0\|_{m+1}^2 < \infty. \end{split}$$

Assumption (regularity coefficients)

The $\alpha^{\alpha\beta}$, $\alpha^{\alpha\beta}$ and b^{α} , b^{α} and their derivatives are, respectively, m times and m+1 times continuously differentiable in x and bounded by K.

The expansion

We would like that a.s.

$$w_i(x) = v_i(x) + \sum_{j=1}^k \frac{h^j}{j!} v_i^{(j)}(x) + R_i^{\tau,h}(x)$$
 (A)

holds for $i \in \{1,...\,,n\}$ and $x \in G_h$ where the $\nu^{(\mathfrak{j})}$ are independent of h and

$$\mathbb{E} \max_{i \leqslant n} \sup_{x \in G_h} \left| R_i^{\tau,h}(x) \right|^2 \leqslant N|h|^{2(k+1)} \mathcal{K}_m^2 \tag{B}$$

$$\begin{array}{l} \text{for } \mathcal{K}_{\mathfrak{m}}^{2} := \mathbb{E} \left\| u_{0} \right\|_{\mathfrak{m}+1}^{2} + \mathbb{E} \tau \sum_{i=0}^{n} \left(\left\| f_{i} \right\|_{\mathfrak{m}}^{2} + \left\| g_{i} \right\|_{\mathfrak{m}+1}^{2} \right) < \infty \text{ and a constant } N \text{ } \textit{independent} \text{ of } \tau \text{ and } h. \end{array}$$

The expansion result

Theorem (Expansion)

If the assumptions hold with m > k+1+d/2 for $k \geqslant 0$ then the error admits an expansion (A) with bound (B) for the remainder with a constant $N = N(d, d_1, m, \Lambda, K, \kappa, T)$.

Acceleration notation

Fix an integer $k \geqslant 0$ and let

$$\bar{w}(h) := \sum_{j=0}^{k} \beta_{j} w(2^{-j}h)$$

where $w(2^{-j}h)=w(2^{-j}h,t_i,x)$ solves the space-time scheme (Eq_{τ}^h) with $2^{-j}h$ in place of h. Here β is given by $(\beta_0,\beta_1,...,\beta_k):=(1,0,...,0)V^{-1}$ where V^{-1} is the inverse of the Vandermonde matrix with entries $V^{ij}:=2^{-(i-1)(j-1)}$ for $i,j\in\{1,...,k+1\}$.

The acceleration result

Theorem (Acceleration)

Under the assumptions of the Expansion Theorem,

$$\mathbb{E} \max\nolimits_{i\leqslant n} \sup\nolimits_{x\in G_h} |\bar{w}_i(x) - \nu_i(x)|^2 \leqslant N|h|^{2(k+1)} \mathcal{K}_m^2$$

for a constant
$$N = N(d, d_1, m, \Lambda, K, \kappa, T)$$
.

Proof of acceleration result I

From the expansion, we have that for each $j \in \{0, 1, ..., k\}$ the terms on the right hand side of \bar{w} :

$$w(2^{-j}h) = v + \sum_{i=1}^k \frac{h^i}{i! \, 2^{ij}} v^{(i)} + \tilde{R}h^{k+1}$$

where $\tilde{R} := h^{-(k+1)} R^{\tau,2^{-j}h}$.

Proof of acceleration result II

Then

$$\begin{split} \bar{w} &= \left(\sum_{j=0}^k \beta_j\right) \nu + \sum_{j=0}^k \sum_{i=1}^k \frac{\beta_j h^i}{i! \, 2^{ij}} \nu^{(i)} + \sum_{j=0}^k \beta_j \tilde{R} h^{k+1} \\ &= \nu + \sum_{i=1}^k \frac{h^i}{i!} \nu^{(i)} \sum_{j=0}^k \frac{\beta_j}{2^{ij}} + \sum_{j=0}^k \beta_j \tilde{R} h^{k+1} \\ &= \nu + \sum_{j=0}^k \beta_j \tilde{R} h^{k+1} \end{split}$$

since $\sum_{j=0}^k \beta_j = 1$ and $\sum_{j=0}^k \beta_j 2^{-ij} = 0$ for each $i \in \{1,2,\dots,k\}$ by the definition of (β_0,\dots,β_k) . Then use bound on $R^{\tau,h}$ from expansion Theorem.

Proof of expansion result (sketch)

- Although solutions to (Eq_{τ}^h) are *naturally* understood as ℓ^2 -valued functions on G_h , it will be advantageous to consider the scheme on the whole space and seek L^2 -valued solutions
- Obtain estimates in appropriate Sobolev spaces for the (L²-valued) solution of the space-time scheme and time scheme
- Taylor expansion with respect to the spatial mesh is constructed by formally taking derivative (with respect to h) of the space-time scheme (results in a system of time discretized SPDEs)
- Use Sobolev embedding and show that (under suitable regularity) the continuous modification restricted to the grid agrees almost surely with the natural definition of the approximate solution

Proof of expansion result (flavor of estimates)

■ For $f,g \in W_2^m$ such that $\mathbb{E}\tau \sum_{i=1}^n (\|f\|_m^2 + \|g\|_m^2) < \infty$ then for each $h \in \mathbf{R} \setminus \{0\}$ equation (Eq $_{\tau}^h$) admits a unique W_2^m valued solution for any $\mathfrak{u}_0 \in W_2^{m+1}$ and moreover

$$\begin{split} \mathbb{E} \max_{i \leqslant n} & \| w_i \|_m^2 + \mathbb{E} \tau \sum_{i=1}^n \sum_{\lambda \in \Lambda} \| \delta_{h,\lambda} w_i \|_m^2 \\ & \leq N \mathbb{E} \tau (\| u_0 \|_{m+1}^2 + \sum_{i=0}^n (\| f_i \|_m^2 + \| g_i \|_m^2)) \end{split}$$

for constant $N = N(d, d_1, m, \Lambda, K, \kappa, T)$

Proof of expansion result (Taylor expansion) I

- Define operators $\mathcal{L}^{(p)}$ and $\mathcal{M}^{(p)\rho}$ by formally taking the pth derivatives in h of L^h and $\mathcal{M}^{h\rho}$ at h = 0
- Consider a system of time discretized equations

$$\begin{split} \upsilon_{i}^{(p)} &= \upsilon_{i-1}^{(p)} + (\mathcal{L}_{i}\upsilon_{i}^{(p)} + \sum_{l=1}^{p} C_{p}^{l}\mathcal{L}_{i}^{(l)}\upsilon_{i}^{(p-l)})\tau \\ &+ (\mathcal{M}_{i-1}^{\rho}\upsilon_{i-1}^{(p)} + \sum_{l=1}^{p} C_{p}^{l}\mathcal{M}_{i-1}^{(l)\rho}\upsilon_{i-1}^{(p-l)})\xi_{i}^{\rho} \end{split} \tag{Sys}$$

for $p \in \{1, ..., k\}$ with zero initial conditions where $v^{(0)} := v$

Also obtain existence and uniqueness of solutions to (Sys) and similar estimates *independent of* τ

Proof of expansion result (Taylor expansion) II

Now consider $\mathbf{r}^{\tau,h} = w - v - \sum_{j=1}^k \frac{h^j}{j!} v^{(j)}$, which satisfies

$$\begin{split} r_{i}^{\tau,h}(x) &= r_{i-1}^{\tau,h}(x) + (L_{i}^{h}r_{i}^{\tau,h}(x) + F_{i}^{\tau,h}(x))\tau \\ &+ \sum_{\rho=1}^{d_{1}} (M_{i-1}^{h\rho}r_{i-1}^{\tau,h}(x) + G_{i-1}^{\tau,h,\rho}(x))\xi_{i}^{\rho} \end{split} \tag{rEq}$$

with
$$r_0^{\tau,h}(x) = 0$$

■ Where F and G are, respectively, certain combinations of differences between the L^h and $\mathcal{L}^{(j)}$ and the $M^{h\rho}$ and $\mathcal{M}^{(j)\rho}$ operators acting on certain $v^{(0)},...,v^{(k)}$

Proof of expansion result (Taylor expansion) III

- In particular, we know how F and G depend on h; then the estimate obtained for (Eq^h_τ) can be applied to (rEq) with zero initial condition to obtain appropriate bound on error
- Final step is to take Sobolev embedding and then to show that the restriction to the grid of the continuous modifications of w, v, $v^{(j)}$ agree almost surely with the ℓ^2 -valued notion of solution to the space-time scheme

Summary

- We considered finite difference approximations on uniform grids in time and space for a second order linear SPDEs of parabolic type
- Under suitable regularity conditions, the spatial approximation can be accelerated to an arbitrarily high order using Richardson's method
- This relied on obtaining estimates in appropriate Sobolev spaces for the solutions to the schemes

Final Remarks

- Using this program can: give estimates for accelerating the convergence of derivatives of solutions; consider symmetric differences (faster convergence)
- Results for degenerate parabolic equations are possible
- Future work: quantifying coefficients, truncation errors, other types of noise...

References

I. Gyöngy and N. V. Krylov.

Accelerated finite difference schemes for linear stochastic partial differential equations in the whole space.

SIAM J. Math. Anal., 42(5):2275-2296, 2010.

E. H.

Accelerated spatial approximations for time discretized stochastic partial differential equations.

SIAM J. Math. Anal., 44(5):3162-3185, 2012.

■ F. H.

Higher order spatial approximations for degenerate parabolic stochastic partial differential equations.

SIAM J. Math. Anal., 45(4):2071-2098, 2013.

L. F. Richardson.

The approximate arithmetical solution by finite differences of physical problems involving differential equations.

Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Engrg. Sci., 210:307–357, 1911.