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OUTLINE OF THE TALK

• Origin of the work

• Statement of the problem and aim of the work

• Past related works

• Experiment

• Heat equation

• Results

• Work ahead
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ORIGIN OF THE WORK

• Hiring of Ettore (Ph.D. in Bioengineering) in November 2011

• Start of my cooperation with Ettore

• Previous work with Sara on Bayesian analysis of SDE applied to predator-prey sys-
tems

• My involvement in SAMSI programme on Uncertainty Quantification, where Bayesian
methods were widely presented in association with PDE (inverse problems)

• ⇒ Bayesian analysis of parameter(s) in the heat equation

• Mixed team: Ettore (Engineer), Fabrizio (Bayesian statistician), Sara (Applied prob-
abilist) and Valerio (Experimental engineer)
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STATEMENT OF THE PROBLEM

• Thermal processes adopted in many industrial applications, with components heated
or cooled to obtain a desired behavior

• Knowledge of thermal properties of a body, especially thermal conductivity, important
in many applications (e.g., thermal insulation or thermal exchanger dimensioning)

• Information on thermal properties not always known ⇒ needs for estimation

– polymers: range of thermal conductivity known, but not actual value

– metals: thermal conductivity tabulated for pure metals but unknown, in general,
for alloys

• ISO (International Organization for Standardization) standards propose different meth-
ods for measuring the thermal conductivity, which require complex and expensive
experimental layouts, while other simpler but accurate methods are not widespread

• ISO standards take into account only marginally uncertainty of measurement and
estimation procedure
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AIM OF THE WORK

• Bayesian (and frequentist) estimation procedure coupled with simple experimental
layout to estimate thermal conductivity of a homogeneous body and to reproduce
the entire temperature profile evolution over time by means of the determination of
latent temperature data

• Measurement of temperature evolution over time in a limited number of (internal and
surface) points

• Estimation of evolution of temperatures in latent points where no measurement is
taken

• Estimation of thermal conductivity (MLE, posterior mean and posterior distribution)
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PAST: PREDATOR-PREY (LOTKA-VOLTERRA)

{
dxt = [rxtG (xt)− ytF (xt, yt; q)] dt x(0) = x0
dyt = [cytF (xt, yt; q)− uyt] dt y(0) = y0

• xt (yt) normalised biomass of prey (predator)

• r = specific growth rate of the prey

• c = specific production rate of the predator

• u = specific loss rate of predator

• q = efficiency of the predation process

• G(x) = prey growth in absence of predators
(G(x) = 1− x to penalize overcrowding)

• F (x, y; q) = functional response of predator to prey abundance (F (x, y; q) = qx)
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PAST: PREDATOR-PREY (LOTKA-VOLTERRA)

• Functional response q subject to noise and dependent on time
⇒ qt = q0 + σξt

• Introduction of two Wiener processes to model demographic and environmental
stochasticities
(the first acting on xtyt and the second on xt and yt separately)

• Introduction of an adhoc, continuously differentiable and Lipschitz function to keep
xt and yt in [0,1]

{
dxt = [rxt(1− xt)− q0xtyt]χ(xt)dt− σxtytχ(xt)dw

(1)
t + εxtχ(xt)dw

(2)
t

dyt = [cq0xtyt − uyt]χ(yt)dt+ cσxtytχ(yt)dw
(1)
t + ηytχ(yt)dw

(2)
t
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EULER-MARUYAMA APPROXIMATION

• SDE: dXt = µ(t,Xt)dt+ β(t,Xt)dWt

• In general, SDE solved by numerical method (see Kloeden and Platen, 1999)

– Interest in solving the SDE in [0, T ]

– Consider 0 = t0 < t1 < . . . < tn = T
(e.g. equispaced: ti − ti−1 = T/n, i = 1, . . . , n)

– ⇒ Euler-Maruyama approximation given by the Markov chain {Xt}, with

Xti = Xti−1
+ µ (ti−1, Xti−1)∆i + β (ti−1, Xti) (Wti+1

−Wti),

for i = 1, . . . , n and ∆i = ti − ti−1

– ∆Wi = Wti −Wti−1
independent N (0,∆i)
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PAST: PREDATOR-PREY (LOTKA-VOLTERRA)

• Euler-Maruyama approximation good for small intervals; o.w. there are biases

• Introduction of latent data between actual ones

– improvement in the use of Euler-Maruyama approximation

– errors due to use of unobserved data

– ⇒ need to find a proper balance between sources of error and an optimal num-
ber of latent data

• Latent data treated as parameters in Bayesian estimation through MCMC

– generation of latent data (all together, one at the time, random number, etc.)

– optimal choice of number of latent data (rule of thumb: visual inspection, sensi-
tivity, spread of estimates, etc.)
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PREDATOR-PREY DYNAMICS (MLE)
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Continuous line: mean of 1000 trajectories of prey and predator for q0 = 2.6218. Aster-

isks: field observations
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PREDATOR-PREY DYNAMICS (BAYES - LATENT DATA)
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MCMC estimate with 7 latent data between two observations. Continuous line: mean of

1000 trajectories of prey and predator for q0 = 1.8008. Asterisks: field observations
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PAST: PREDATOR-PREY (IVLEV MODEL)
{

dxt =
[
rxt(1− xt)− byt

(
1− e−q0xt

)]
dt+ bσyte−xtdw(1)

t + εxtdw
(2)
t

dyt = yt
[
b′
(
1− e−q0xt

)
− u

]
dt− b′σyte−xtdw(1)

t + ηytdw
(2)
t

• Initial conditions: (x(0), y(0)) = (x0, y0)

• xt and yt: biomass of prey and predator at time t per habitat unit (plant) normalised
w.r.t. prey carrying capacity per habitat unit

• r: maximum specific growth rate of the prey

• b: maximum specific predation rate

• b′: maximum specific predator production rate

• u: specific predator loss rate due to natural mortality

• q0: measure of the efficiency of the predation process
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IVLEV MODEL: FORECASTS FOR DATA IN A FIELD
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Prey and predator biomass as function of time, for different values of latent data. Tra-

jectories as mean over 100 simulations and 50 values of q0, σ, ε and η from posterior

distributions. Asterisks denote field data

13



ISO NORMATIVE

• Normative ISO 22007 (Plastics – Determination of thermal conductivity and thermal
diffusivity) as reference for estimation of thermal conductivity in polymers

• ISO 22007 describes some methods for estimation of thermal conductivity and ther-
mal diffusivity, including results of tests conducted in parallel in different laboratories

• Methods divided into

– steady-state methods, where a specimen of simple geometry, in contact with a
heat source and temperature sensors, is maintained at a given temperature to
obtain the coefficients based on the supplied heat

– temperature-transient methods, where temperature, recorded by sensors, changes
over time and coefficients are determined considering specimen geometry and
boundary conditions
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ISO NORMATIVE

• Transient methods proposed for estimation of thermal conductivity

– hot-wire, where a wire heater is placed in a specimen or between two specimens.
Temperature measured over time, once the heater is turned on, either by the wire
itself or by a thermocouple placed close to the wire

– line-source, where a line source is located at the specimen center, with both kept
at a constant initial temperature. During measurement, a known amount of heat
produced by the line source results in a heat wave radially propagating into the
specimen

– plane-heat-source, using thin, plane, electrically insulated resistive element as
both heat source and temperature sensor, bringing it into thermal contact with
two halves of the specimen. Thermal conductivity measured from resistance
increase over time, when supplying constant electrical power to the sensor

• Proposed approach as a temperature-transient method, differing from normative

– temperature measured in more than one point, and not just a single point close
to the heat source

– statistical approach for estimating thermal conductivity and its uncertainty
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EXPERIMENT

• Identification, search and purchase of material

• Search of a laboratory with interest in the experiment, proper oven and instruments,
and willing to do for free

• Planning of the experiment (insulation, thermocouples, experimental conditions like
initial conditions, heating and cooling, repeated trials)

• Thermocouples calibrated at another laboratory (free, for friendship)

• Actual experiment in laboratory with data acquisition from repeated trials

• Check of data for quality and consistency
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EXPERIMENT

• Bayesian approach suitable for estimation of thermal conductivity of polymers

– prior knowledge given by range of variability of the thermal conductivity assigned
to each polymer family

– specific value within the range usually unknown and dependent on other vari-
ables such as molecular weight, crystal structure and temperature values at
which test is performed

• Choice of polymethyl methacrylate (PMMA) (known also as plexiglas)

– family of polymers considered in ISO standards

– used in many applications, from low cost objects, furniture and building to more
complex applications like bone cement used for the insertion of prostheses

• Plate of PMMA with square faces (side of 20 cm) and thickness of 15 cm

• Homogeneous and isotropic material to apply heat equation

• Specimen externally heated and cooled in forced convection so no internal thermal
power generation is present (affecting term in heat equation)
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EXPERIMENT

• Seven thermocouples installed in the center of the square section and lateral rectan-
gular faces covered with thermal insulator to guarantee unidirectionality of heat flow
and avoid border effects

• Two thermocouples placed on surface of square faces and five internally

• Thermocouples placed on a line at 2.5 cm one from the other

• Internal thermocouples positioned in the specimen by piercing the plate and refilling
with new polymer (the polymerization reaction took place in the holes in order to
restore the material continuity)

• Diameter of holes kept as small as possible and re-polymerization reaction carefully
conducted to avoid alterations due to possible discontinuity of the material

• Superficial thermocouples positioned to obtain initial surface conditions
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EXPERIMENT

Positioning of thermocouples A, B, C, D, E, F e G and holes for positioning of internal
thermocouples
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EXPERIMENT

PMMA being drilled to get holes for thermocouples
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EXPERIMENT

PMMA after drilling with holes for thermocouples
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EXPERIMENT

PMMA plate with with thermocouples in the center
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EXPERIMENT

PMMA plate equipped with thermocouples, with cables ready for interface with condition-
ing circuit and lateral thermal insulator
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EXPERIMENT
• Cycle of heating and cooling given to the specimen

– specimen starts at homogeneous ambient temperature of about 25oC, heated
in oven in forced ventilation until it reaches homogeneous temperature of about
88-90oC

– specimen taken out from oven and cooled until it reaches a quite homogeneous
ambient temperature. Cooling process carried out in forced convection, placing
two fans in front of the square faces, and maintaining the laboratory temperature
as constant as possible

• Forced convection adopted for two main reasons

– finer control of temperature values along with the process, with more regular and
homogeneous temperature profiles at the specimen surfaces

– associated with higher convection coefficients, resulting into more rapid heat
exchanges between specimen and air and, consequently, lower times to reach
the final temperature of the heating or cooling process

• Minimum and maximum temperatures chosen to get quite constant thermal conduc-
tivity (ISO 22007), unlike for lower or higher temperatures
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EXPERIMENTAL LAYOUT

PMMA with one fan (other behind PMMA), with oven inlet on the right and PC for data

acquisition on the left. PMMA with handling tool, to insert and extract from oven without

direct contact with operator
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HEAT EQUATION
Temperature evolution in a body described by

ρc
∂T (x, y, z, t)

∂t
− λ∇2T (x, y, z, t) = q̇ (x, y, z, t)

• t: time, expressed in [s]

• x, y and z: spatial coordinates, expressed in [m]

• T (x, y, z, t): temperature, expressed in [K]

• q̇ (x, y, z, t): internal thermal power generation (i.e. derivative of generated heat
w.r.t. time), in [W

m3]

• ρ: density of the material, expressed in [ kg
m3]

• c: specific heat of the material (amount of heat required to change its temperature
by a given amount), expressed in [ J

kgK
]

• λ: thermal conductivity of the material, expressed in [ W
mK

]
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HEAT EQUATION

ρc
∂T (x, y, z, t)

∂t
− λ∇2T (x, y, z, t) = q̇ (x, y, z, t)

The formulation refers to a homogeneous material

⇒ physical properties (i.e., ρ, c and λ)

• uniform in space

• constant over time

• constant over variation of other quantities (e.g., the temperature)
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HEAT EQUATION
Unidirectional heat flow

ρc
∂T (x, t)

∂t
− λ

∂2T (x, t)

∂x2
= q̇ (x, t)

Plate with thickness L

• Coordinate x varies from x = 0 to x = L

• Time t evolves from t = 0 until t = tf

Two Dirichlet conditions and one initial condition:




T (0, t) = ga (t) t ∈
[
0, tf

]

T (L, t) = gb (t) t ∈
[
0, tf

]

T (x,0) = T0 (x) x ∈ [0, L]
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HEAT EQUATION - INVERSE PROBLEM

• Compute the heat flux q(x, y, z, t) on part of the boundary given appropriate bound-
ary conditions on the remaining boundary and temperature measurements at some
points within the domain

• q(·) approximated by basis expansion and parameters estimated with

– deterministic procedures (e.g. least squares)

– stochastic methods (e.g. Bayesian with priors on parameters)
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DISCRETIZATION AND STOCHASTICITY

Statistical estimation ⇒ tractable likelihood

• spatial discretization for coordinate x

• introduction of stochastic coefficients

• further discretization in time t

• Euler-Maruyama approach
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SPATIAL DISCRETIZATION

• (N +2) equispaced points {x0, . . . , xN+1} in [0, L]

– xi = ih, i = 0, . . . , N +1

– h = L
N+1

– Choice of h discussed later

• Corresponding temperature values: Ti (t) = T (xi, t) , i = 0, . . . , N +1

Finite differences for second derivative of temperature w.r.t. x

∂2T (x, t)

∂x2
=

Ti+1 (t)− Ti (t)

h
−

Ti (t)− Ti−1 (t)

h
h

=
Ti+1 (t)− 2Ti (t) + Ti−1 (t)

h2
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SPATIAL DISCRETIZATION

Heat equation split into system of N equations, one for each Ti (t), i =

1, . . . , N

ρc
dTi (t)

dt
− λ

Ti+1 (t)− 2Ti (t) + Ti−1 (t)

h2
= q̇ (xi, t)

The N differential equations rewritten in a vectorial form:

dT (t)

dt
= λL (T (t)) + q̇ (t)
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SPATIAL DISCRETIZATION

dT (t)

dt
= λL (T (t)) + q̇ (t)

T (t) = [T1 (t) · · ·Ti (t) · · ·TN (t)]T L (T (t)) = AT (t) + b (t)

A = −
1

ρch2




2 −1 0 · · · · · · 0
−1 2 −1 0 · · · 0

...
0 · · · 0 −1 2 −1
0 · · · · · · 0 −1 2


 b (t) =

1

ρch2




ga (t)
0
...
0

gb (t)




q̇ (t) =
1

ρc
[q̇ (x1, t) · · · q̇ (xi, t) · · · q̇ (xN , t)]T

Temperatures T0 (t) and TN+1 (t) not described by a differential equation, but associated
to Dirichlet conditions {

T0 (t) = ga (t)

TN+1 (t) = gb (t)
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STOCHASTIC COEFFICIENTS

Thermal conductivity λ subject to small variation over time and space

• λ = λ0 + ηξit

• λ0 true value to be estimated

• Independent Gaussian white noises ξit, function of both space i and
time t

• positive η
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STOCHASTIC COEFFICIENTS

dT (t)

dt
= λ0L (T (t)) + q̇ (t) + ηdiagL(T(t))Ξ1

Ξ1 =




ξ1t
...
ξit
...

ξNt




diagL(T(t)) =




L1 (T (t)) 0 0
...
0 Li (T (t)) 0
...
0 0 LN (T (t))




Multiplying by dt ⇒ ξitdt Wiener process, denoted dω(1)
it

dT (t) = [λ0L (T (t)) + q̇ (t)] dt+ ηdiagL(T(t))dW1

dW1 =
[
dω(1)

1t · · · dω(1)
it · · · dω(1)

Nt

]T
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STOCHASTIC COEFFICIENTS
Measurement errors in recording temperature

• introduction of second Wiener process εTi (t) dω
(2)
it

• error assumed additive and proportional to Ti (t)

• errors are assumed independent

• no measurement errors related to surface points in x = 0 and x = L because of no
differential equation for corresponding points i = 0 and i = N +1

dT (t) = [λ0L (T (t)) + q̇ (t)] dt+ ηdiagL(T(t))dW1 + εdiagT(t)dW2

dW2 =




dω(2)
1t...

dω(2)
it...

dω(2)
Nt




diagT(t) =




T1 (t) 0 0
...
0 Ti (t) 0
...
0 0 TN (t)
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TEMPORAL DISCRETIZATION

• Time t considered at discrete values, j, separated by ∆j

• Temperature at time j = 0 given by initial condition T0 (x), while the temperature
evolves for j > 0

• Temperature Ti (t) discretized into values Ti,j and, consequently, vector T (t) dis-
cretized into Tj

Finite-difference equation:

Tj = Tj−1 + [λ0L (Tj−1) + q̇j−1]∆j + ηdiagL(Tj−1)∆W1 + εdiagTj−1
∆W2

• L (Tj−1) = ATj−1 + bj−1

• coherent modifications for diagL(Tj−1) and diagTj−1

• bj−1 obtained considering the corresponding time instant from ga (t) and gb (t)
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TEMPORAL DISCRETIZATION

• Introduction of a finite difference scheme could cause stability problems when the
errors made at one step of the calculation would increase in the next steps

• Von Neumann stability criterion used to check stability of finite difference schemes
applied to linear partial differential equations

• For one-dimensional heat equation Von Neumann stability criterion imposes

0 ≤
λ

ρc

∆j

h2
≤

1

2

• Condition fulfilled in our case

– temporal discretization ∆j highly dense with respect to spatial discretization
(continuous analogical signal acquired, then sampled with a high frequency)

– large value of h used because of few points acquired in the specimen
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LIKELIHOOD FUNCTION

• Likelihood f
(
T̂|λ0

)
=
∏m

j=1 f (Tj|Tj−1, λ0) for T̂, set of observations Tj

• Finite-difference equation

Tj = Tj−1 + [λ0L (Tj−1) + q̇j−1]∆j + ηdiagL(Tj−1)∆W1 + εdiagTj−1
∆W2

⇒ Tj|Tj−1, λ0 ∼ MVN (µj (Tj−1λ0) ;Σj (Tj−1)) with

µj (Tj−1, λ0) = Tj−1 + [λ0L (Tj−1) + q̇j−1]∆j

Σj (Tj−1) =
[
η2diagL(Tj−1)diag

T
L(Tj−1) + ε2diagTj−1

diagT
Tj−1

]
∆j

=
[
η2diag2

L(Tj−1)
+ ε2diag2

Tj−1

]
∆j

•

f (Tj|Tj−1, λ0) = (2π)−
N

2 |Σj (Tj−1) |
−1

2

= exp

{
−
1

2
[Tj − µj (Tj−1, λ0)]

T Σj (Tj−1)
−1 [Tj − µj (Tj−1, λ0)]

}

• Inverse of Σj (Tj−1) easily computed since diagonal matrix
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LIKELIHOOD FUNCTION

f
(
T̂|λ0

)
=

m∏

j=1

f (Tj|Tj−1, λ0) =

m∏

j=1

(2π)−
N

2 |Σj (Tj−1) |
−1

2

exp



−

1

2

m∑

j=1

(
[Tj − µj (Tj−1, λ0)]

T Σj (Tj−1)
−1 [Tj − µj (Tj−1, λ0)]

)




Summation in exponential term of likelihood written as function of λ0:

(
λ0 − λl

0

)2

σ2
l

with

λl
0 =

∑m
j=1∆j

[
(Tj −Tj−1 − q̇j−1∆j)

T Σj (Tj−1)
−1L (Tj−1)

+L (Tj−1)
T Σj (Tj−1)

−1 (Tj −Tj−1 − q̇j−1∆j)

]

2
∑m

j=1∆
2
j

[
L (Tj−1)

T Σj (Tj−1)
−1L (Tj−1)

]

σ2
l =





m∑

j=1

∆2
j

[
L (Tj−1)

T Σj (Tj−1)
−1L (Tj−1)

]




−1
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MLE ESTIMATION
Loglikelihood

L
(
λ0, T̂

)
= log

[
f
(
T̂|λ0

)]

= log





m∏

j=1

(2π)−
N

2 |Σj (Tj−1) |
−1

2



−

1

2

(
λ0 − λl

0

)2

σ2
l

⇒ MLE λ̂ = λl
0

=

∑m
j=1∆j

[
(Tj −Tj−1 − q̇j−1∆j)

T Σj (Tj−1)
−1L (Tj−1)

+L (Tj−1)
T Σj (Tj−1)

−1 (Tj −Tj−1 − q̇j−1∆j)

]

2
∑m

j=1∆
2
j

[
L (Tj−1)

T Σj (Tj−1)
−1L (Tj−1)

]
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BAYESIAN ESTIMATION: PRIOR CHOICE
Many choices, dictated by mathematical convenience or physical properties

• Gaussian prior ⇒ Gaussian posterior

λ0 ∼ N
(
λp
0, σ

2
p

)
⇒ λ0|T̂ ∼ N

(
λp
0σ

2
l + λl

0σ
2
p

σ2
l + σ2

p

,
σ2
l σ

2
p

σ2
l + σ2

p

)

• Improper prior ⇒ Gaussian posterior

π(λ0) ∝ c ⇒ λ0|T̂ ∼ N
(
λl
0, σ

2
l

)

• Improper prior, positive values ⇒ truncated Gaussian posterior

π(λ0) ∝ cI(0,∞)(λ0) ⇒ π(λ0T̂) =
e
− 1

2σ2
l

(λ0−λl
0)

2

√
2πσ2

l

[
1−Φ

(
−λl

0

σl

)]I(0,∞)(λ0)
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BAYESIAN ESTIMATION: PRIOR CHOICE

• Uniform distribution on interval ⇒ truncated Gaussian posterior

• Truncated Gaussian prior ⇒ truncated Gaussian posterior

prior π(λ0) =
e
− 1

2σ̃2p
(λ0−λ̃p

0)
2

√
2πσ̃2

p

[
1−Φ

(
− λ̃p

0

σ̃p

)]I(0,∞)(λ0)

posterior π(λ0|T̂) =
e
− 1

2σ̃2
P
(λ0−λ̃P

0)
2

√
2πσ̃2

P

[
1−Φ

(
− λ̃P

0

σ̃P

)]I(0,∞)(λ0), with

λ̃P
0 =

λ̃p
0σ

2
l + λl

0σ̃
2
p

σ2
l + σ̃2

p

and σ̃2
p =

σ2
l σ̃

2
p

σ2
l + σ̃2

p

• Gamma prior ⇒ posterior with MCMC
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(BAD) GENERATION OF LATENT TEMPERATURES

• Latent values T ∗ introduced in new internal points x where temperature is not ac-
quired, at the same time instants j of the acquired temperatures T̂

• Iterative procedure

– set initial values of λ0 and temperatures at time t = 0 in new internal points x

– draw T ∗ recursively, based on λ0, T̂

– get posterior distribution and mean of λ0 from uniform prior distribution and like-
lihood depending on current values of T̂ and T ∗

– compute the average of the posterior means of λ0 after a sufficient number of
iterations
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(BAD) GENERATION OF LATENT TEMPERATURES

• Tj vector of both acquired and latent data

• T ∗
i,j denotes components of Tj with latent temperature

• Introduction of latent temperature T ∗
i,j between two points with acquired temperature

⇒ Tj =
[
· · ·Ti−1,jT ∗

i,jTi+1,j · · ·
]T

• Generation of latent temperatures very critical
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(BAD) GENERATION OF LATENT TEMPERATURES

Latent value T ∗
i,j generated based on three values at the previous time instant j − 1: two

acquired values (Ti−1,j−1; Ti+1,j−1) and a generated one (T ∗
i,j−1)
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(BAD) GENERATION OF LATENT TEMPERATURES

• Proposal value T p
i,j for temperature T ∗

i,j generated from finite-difference equation
Tj = Tj−1 + [λ0L (Tj−1) + q̇j−1]∆j + ηdiagL(Tj−1)∆W1 + εdiagTj−1

∆W2, i.e.

T p
i,j = T ∗

i,j−1 +
λ0∆j

ρch2

(
Ti−1,j−1 − 2T ∗

i,j−1 + Ti+1,j−1

)
+

+
η

ρch2

(
Ti−1,j−1 − 2T ∗

i,j−1 + Ti+1,j−1

)√
∆jZ1 + εTi,j−1

√
∆jZ2

– Z1 and Z2 independent draws from standard Gaussian distribution

– discretization step h properly dimensioned considering actual distance between
generated and acquired points

• Proposed value T p
i,j checked for consistency w.r.t. other acquired points

• If accepted, T ∗
i,j = T p

i,j taken as the latent value; o.w. previous T ∗
i,j kept

• For the first iteration, T ∗
i,0 = 1

2

(
Ti−1,0 + Ti+1,0

)
, i.e. average of neighboring ac-

quired temperatures at same time instant 0 (⇒ no influence on likelihood)
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(BAD) GENERATION OF LATENT TEMPERATURES

• Proposed point T p
i,j checked to avoid irregular temperature profiles, like going up and

down in neighboring points

– underestimation of thermal conductivity

∗ amplification of irregularities in drawing T p
i,j because of term Ti−1,j−1−2T ∗

i,j−1+
Ti+1,j−1

∗ changes of slope would decrease the numerator of λl
0

– against physical laws

• Various attempts to generate points

– as seen before, based on 3 points at previous time

– full time series at each point x

– None of them fully satisfactory

• Extension to more than one latent vector generated between two acquired points
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(BETTER?) GENERATION OF LATENT TEMPERATURES

• Latent values T∗ introduced in new internal points x where temperature is not ac-
quired, at the same time instants j of the acquired temperatures T

• In a Bayesian framework T∗ treated as parameters

• At each step of MCMC algorithm

– draw λ0 from distribution depending on T, T∗ and past values of λ0 (possibly
with acceptance/rejection sampling)

– draw T∗ from distribution depending on λ0, T and past values of T∗ (with ac-
ceptance/rejection sampling)
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(BETTER?) GENERATION OF LATENT TEMPERATURES

• For each time instant j: vector Yj denotes both acquired Tj and generated T∗
j

• Matrix of all temperatures, up to final time tf : Y =
[
Y1 Y2 . . . . . . Ytf

]

• Introduce latent T ∗
i,j in the middle between two points with acquired temperatures

Ti−1,j and Ti+1,j

• ⇒ Yj =
[
· · ·Ti−1,jT ∗

i,jTi+1,j · · ·
]T

• MCMC (currently under implementation)

– Conditional on λ0 exactly known or not, depending on the choice of the prior

– Conditional on T∗ known apart from a constant
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(BETTER?) GENERATION OF LATENT TEMPERATURES

• π
(
T

∗(n)
j |Y(n)

j−1,Y
(n−1)
j+1 ,Tj, λ0

)
∝ π

(
Y

(n−1)
j+1 |Y(n−1)

j , λ0

)
π
(
Y

(n−1)
j |Y(n)

j−1, λ0

)

– π
(
Yj+1|Yj, λ0

)
= N

(
Yj + [λ0L(Yj) + q̇j]∆,

[
η2diag2

L(Tj)
+ ε2diag2

Tj

]
∆
)

– π (Yj|Yj−1, λ0) = N
(
Yj−1 + [λ0L(Yj−1) + q̇j−1]∆,

[
η2diag2

L(Tj−1)
+ ε2diag2

Tj−1

]
∆
)

• Gaussian proposal distribution for T ∗
i,j|... : N

(
µpropi,jσ

2
propi,j

)

– µpropi,j =
Ti+1,j + Ti−1,j

2
−

[
Ti+1,j−1 + Ti−1,j−1

2
− Ti,j−1

]

(mean of nearby points corrected by bias at previous time)

– σ2
propi,j

= 1
2

[
η2

ρ2c2h4

(
Ti−1,j−1 − 2T ∗

i,j−1 + Ti+1,j−1

)2
+ ε2T 2

i,j−1

]
∆

(half variance of Euler-Maruyama for Yj conditioned on the past)

• Usual acceptance probability
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KNOWLEDGE ABOUT PHYSICAL PARAMETERS

• Fixed values of density ρ and specific heat c and range for thermal conductivity λ0

• Choice of density ρ

– range, but not a unique value, available in literature for PMMA

– stochastic model on ρ as well?

– sample of material extracted during processing, and ρ as ratio of weight and
volume ⇒ 1185 kg

m3 (in the range found in literature)

• Choice of specific heat c of PMMA

– Unique value, 1466 J
kgK

, from literature (e.g. MIT material property database
and MATBASE)
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KNOWLEDGE ABOUT PHYSICAL PARAMETERS
Ranges on thermal conductivity λ0 of PMMA family available in literature

Reported value Value in
[

W
mK

]
Reference

0.167-0.25
[

W
mK

]
0.167-0.25 MIT material property db

0.167-0.25
[

W
mK

]
0.167-0.25 MATBASE

0.17-0.19
[

W
mK

]
0.17-0.19 TU DELFT

0.1922 - 0.1986
[

W
mK

]
0.1922 - 0.1986 Assael et al.

0.21 (with reference 0.20-0.24)
[

W
mK

]
0.21 Hu et al

4.0-6.0 10−4
[
cal/s
cmK

]
0.167-0.25 maropolymeronline

0.0012
[
cal/s
cmK

]
0.502 hybridsnow

• Range equal to 0.167-0.25 W
mK

is considered, based on two worldwide used polymer
databases (first two rows of table)

• Results obtained in the ISO normative (ISO 22007) reflect this range
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KNOWLEDGE ABOUT PHYSICAL PARAMETERS
Knowledge of range on λ0 reflected in the choice of the prior distribution

• Noninformative proper prior ⇒ uniform on [0.167,0.25]

• Gaussian distribution N (λp
0, σ

2
p)

– suppose [0.167,0.25] to be given 0.997 prior probability

– ⇒ λp
0 = 0.2085 σ2

p = 1.914 · 10−4

• Gamma prior with 0.997 prior probability to [0.167,0.25]
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KNOWLEDGE ABOUT PHYSICAL PARAMETERS

• Critical choice of errors η (related to coefficient stochasticity) and ε (related to tem-
perature measurement)

• Regarding η, results available in the ISO normative (ISO 22007) show a maximum
error of 10%
⇒ we take 10% of the mean value of the assumed range [0.167,0.25], i.e. η =
0.02085 W

mK
, as upper limit

• Errors when using thermocouples should not exceed the 0.75% of the measurement,
so ε = 0.00751

s
is taken as upper limit (ǫTi,j < 0.0075 ∗ 100 = 0.75)

• In our experiments we took η = 10−3 W
mK

and ε = 10−31
s

• Need to calibrate those values
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ACQUIRED DATA

• Experiment repeated three times

• Each experiment lasted about 40 hours

• Detailed temperature trends reported in next slides

• In some cases, oscillations found in the superficial temperatures, due to sudden
regulatory mechanisms of the oven control

• Oscillation confined to specimen surface and thermal conductivity not affected by
them, being no problem for the experiment

• Regular trends are found over time, with reduced electrical and environment noises

• For those reason, no signal treatment required before applying the proposed method-
ology (e.g., moving average)
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TEMPERATURE TRENDS

Temperature trends acquired in the first repetition
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TEMPERATURE TRENDS

Temperature trends acquired in the second repetition
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TEMPERATURE TRENDS

Temperature trends acquired in the third repetition
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SIMULATED DATA

• A period of one hour (second hour of heating phase) extracted from second experi-
mental dataset, since the superficial temperatures do not show alterations

• Initial values at beginning of the hour and superficial temperatures in points A and G
are taken from the experimental dataset as boundary and Dirichlet conditions, while
the internal points are generated considering an imposed thermal conductivity λ0gen

• Points are generated according to the heat equation (and discretizations)

Ti,j = Ti,j−1 +
λ0gen∆j

ρch2

(
Ti−1,j−1 − 2Ti,j−1 + Ti+1,j−1

)
+

+
η

ρch2

(
Ti−1,j−1 − 2T ∗

i,j−1 + Ti+1,j−1

)√
∆jZ1 + εTi,j−1

√
∆jZ2

• Generation independently repeated 30 times and values averaged among them

• Iterative approach (with improper uniform prior) applied to this simulated dataset

• Validation performed with λ0gen = 0.1 W
mK

, λ0gen = 0.2 W
mK

and λ0gen = 0.3 W
mK
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SIMULATED DATA

• Dataset generation procedure repeated 1000 times for each λ0gen

• Estimates of λ0gen given by averaging posterior means over 1000 repetitions

• λ0gen estimated pretty well (despite of some variability in Gaussian posterior distri-
bution, as given by E

[
σ2
l

]
, i.e. averaging σ2

l )

• Very similar outcomes in repetitions because of small SD
[
λl
0

]

λ0gen λ0gen λ0gen

0.1 W
mK

0.2 W
mK

0.3 W
mK

E
[
λl
0

]
0.1031 0.2052 0.3046

SD
[
λl
0

]
0.0153 0.0298 0.0169

E
[
σ2
l

]
4.34 10−4 6.03 10−4 7.72 10−4

SD
[
σ2
l

]
8.58 10−6 1.07 10−5 1.04 10−5
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REAL DATA

• Three experiments separately analyzed, with different subsets: one hour during
heating, one hour during cooling, and entire dataset from beginning of heating phase
to end of cooling one

• High variability among subsets in estimation, some variability among experiment,
despite the same specimen

• Estimates,with no latent data, are far from thermal conductivity range of PMMA,
[0.176,0.25]

• Need for (proper) Bayesian approach, latent data generation (maybe a good one)

Heating Cooling Entire
phase phase dataset

First λl
0 0.7804 0.4133 1.3898

experiment σ2
l 5.89 10−4 7.99 10−4 4.81 10−5

Second λl
0 0.6809 2.0480 1.2835

experiment σ2
l 4.39 10−4 2.39 10−3 4.32 10−5

Third λl
0 0.7042 0.7402 1.1660

experiment σ2
l 4.14 10−4 1.12 10−3 4.16 10−5
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WORK AHEAD

• A proper Bayesian analysis

– prior choice

– efficient method to generate latent data

– optimal number of latent data

– estimation of thermal conductivity

• Stochasticity for density ρ

• Estimation of quantities related to heating and cooling process, e.g. time required
for all points of specimen to go above or below a given temperature

• Inference on process at different, but comparable, initial and final temperature

• Heat equation in ℜ3
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WORK AHEAD
A more classical approach

• Observed temperatures Ti,j at point i and time j, i = 1, N , j = 1,m

• Parameter θ drawn from prior π(θ)

• Numerical solution of PDE ⇒ T̂i,j(θ)

• Likelihood L(θ) from Ti,j = T̂i,j(θ) + σǫi,j

• ǫi,j: independent? Markov random fields? Gaussian?

• Posterior distribution of θ: Metropolis-Hastings? Evaluated on a grid?

• Estimation at unobserved points?
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