
Bayesian Analysis of Stochastic Process Models
(AMCS xxx)

INSTRUCTOR: Dr. Fabrizio Ruggeri

Email Address: fabrizio@mi.imati.cnr.it
Office Phone: TBA
Office Location: Building 1, Room TAB

Course Web Page: http://www.mi.imati.cnr.it/˜fabrizio/kaust13.html

CLASS SCHEDULE: The course will start on Monday March, 25th and
end on Saturday April, 20th with 90 minutes classes on Mondays, Wednesdays and
Saturdays. Two extra classes, devoted to discussion of the students’ projects are
planned on April 22nd and April 24th. Room and Building will be announced in
due time.

OFFICE HOURS:

• Two hours per week at a time decided by students and instructor during the
first class.

Special appointments with the instructor may be arranged by mutual agreement.

ELIGIBILITY:

The course is organized by AMCS KAUST. It is the student’s responsibility to check
and prove eligibility.

PREREQUISITES:

The course is designed for students who have completed one or more introductory-
level courses in statistics and probability. An introductory course on stochastic
processes (especially Markov chains and Poisson processes) is not required but it
could be helpful. Earlier exposure to Bayesian methods could be helpful as well, but
the basics of the Bayesian approach will be presented in the course. Some experi-
ence of computer programming and the use of UNIX/LINUX/WINDOWS/MacOS
systems or personal computers is assumed. The assigned project will require pro-
gramming; the use of R (http://www.r-project.org/) is strongly suggested, although
other programmes could be used. Students are supposed to know already how to
programme in R or other software. Enrolled students will have access to computer
facilities with R at KAUST if needed.

TEXT:

The course largely follows the book [1]. Examples with real data sets will be bor-
rowed, mostly, from papers written by the instructor. Additional specific materials
will be recommended during the course. The project to be developed during the
course will be based on data (real or realistic) provided by the instructor.

COURSE OBJECTIVES:

The student who follows this course will be introduced to Bayesian modeling in
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selected, but relevant, stochastic processes and their applications: Markov chains,
Poisson processes, reliability and queues. The use of real examples will be helpful
in understanding why and how perform a Bayesian analysis, from the elicitation of
prior opinion from experts, its use in the choice of the prior distribution and the
study of the consequences of such choice to the final estimations, forecasts, and
decisions. Examples like gas escapes, train doors’ failures, earthquake occurrences,
allocation of hospital in beds and few others from engineering and telecommunica-
tions will help in going beyond the usual textbook choice of prior, through a critical
illustration of the steps taken in analyzing those data. For the same reasons, stu-
dents will be asked to analyze some data, from the elicitation of priors and modeling
to (numerical) computation of estimates and forecasts and interpretation of findings.

COURSE OUTLINE:

• Bayesian Analysis (approx. 1 class)

– Basics (prior, posterior, estimation, forecast, decision)

– Prior elicitation in practice

– Sensitivity to the choice of the prior

• Markov chains (approx. 3 classes)

– Inference and prediction for discrete time Markov chains

– Inference and prediction for continuous time Markov chains

– Examples (TBA)

• Poisson processes (approx. 3 classes)

– Homogeneous Poisson processes

– Nonhomogeneous Poisson processes

– Example (earthquake data)

• Reliability (approx. 4 classes)

– Basic notions

– Models for repairable and non repairable systems

– Examples (gas escapes, train doors’ failures and others)

• Queues (approx. 1 class)

– Inference for M/M/1 queues

– Other queues

– Examples (Bed occupancy in hospital, TBA)

GRADING:

There will be a final examination consisting in the presentation of the data analysis
performed, during the April 22nd and 24th classes.
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The grading consists of two parts: two short written interim reports on the de-
velopment of the project, and the final oral presentation of the project. The reports
and the presentations are carried out by groups of students. Each group hands in a
report for each of the assignments, and makes the final presentation.

Concerning Presentations: Final projects are presented by groups of students
according to a certain schedule. Prepare a presentation of at most 30 minutes with
overhead material including the formulation of the problem, theoretical analysis, R
code to implement the statistical techniques, conclusions, open questions etc. Take
the presentation seriously and use it as an opportunity of getting some practical
training in the difficult art of oral presentation. Remember that presenting a mate-
rial in a clear and convincing way requires quite a bit of preparation and training
to be successful. We all need practice and positive criticism in this respect, both
teachers and students. Practice before presenting the material! Make sure you will
fit into the allocated time slot and be ready to answer probing questions!

Concerning Reports: Reports on the development of the project will be
asked twice during the course (approximately every two weeks), and will generally
involve mainly data analysis and some theoretical developments. The first report
will be probably more focused on modeling and the second on computations. Each
group should hand in a written report. The report has two purposes: it shows
the level of progress in modeling and analyzing the data and gives the opportunity
to practice written presentations of solutions. This means that a report with just
formulas and/or figures is not acceptable. The report should allow the reader to
understand what has been done, the problems addressed and the open ones, and
the findings so far of the analysis. The presentation shall be prepared in such a
way that fellow students who know nothing about the problem should be able to
understand and be satisfied with it. Describe the formulation of the problem, the
theoretical background, the results and the conclusions.

Numerical course grades will be based on a composite score:

- Active participation to the course (e.g. comments, extra reading): 10%

- First report: 20%

- Second report: 20%

- Final project presentation: 50%

SPECIAL ACCOMMODATIONS:

If you a have personal activity, a family, or a religious conflict with the course sched-
ule, you may announce it to the instructor. Please contact the instructor during the
first week of the course to discuss appropriate accommodations for any conflicts that
can be foreseen. For illness-related absences, there are standard procedures to follow.

EXAM POLICY:

No quizzes or tests other than the final exam will normally be given. Acceptable
medical excuses must state explicitly that the student should be excused from class.
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COURSE OUTLINE

• Bayesian Analysis (1 class)

– Basics (prior, posterior, estimation, forecast, decision)

– Prior elicitation in practice

– Sensitivity to the choice of the prior

• Markov chains (approx. 3 classes)

– Inference and prediction for discrete time Markov chains

– Inference and prediction for continuous time Markov chains

– Examples (TBA)

• Poisson processes (approx. 3 classes)

– Homogeneous Poisson processes

– Nonhomogeneous Poisson processes

– Example (earthquake data)
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COURSE OUTLINE

• Reliability (approx. 4 classes)

– Basic notions

– Models for repairable and non repairable systems

– Examples (gas escapes, train doors’ failures and others)

• Queues (approx. 1 class)

– Inference for M/M/1 queues

– Other queues

– Examples (Bed occupancy in hospital, TBA)
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GRADING
Grade based on a composite score:

• Active participation to the course (e.g. comments, extra reading): 10%

• Data analysis (performed in groups)

– First short interim (mostly on modeling) written report (due 6/4): 20%

– Second short interim (mostly on computations) written report (due 17/4): 20%

– Final oral project presentation (22 and 24/4): 50%

∗ 30 minutes presentation with overhead material

∗ formulation of the problem

∗ modeling

∗ R code to implement the statistical techniques

∗ conclusions

∗ open problems
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SCHEDULE - OFFICE HOURS

• Sat. 15.00-16.30

• Mon. 10.30-12.00

• Wed. 15.00-16.30

• Office hours: open to suggestions, possibly same day as classes

5



TODAY’S CLASS

• Basics on Bayesian statistics

– prior

– posterior

– estimation

– forecast

– decision

• Prior elicitation in practice

• Sensitivity to the choice of the prior
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ALL BAYESIANS IN DAILY LIFE?
Visit Milano or not?

• Prior knowledge

– Where is Milano? What is it?

– Fashion, football, business and nothing else

• Data collection

– Scuba diving association website

– City of Milano official website

• Posterior knowledge

– Probably not a good place for scuba divers

– Fashion, football, business, art, music, scenic locations nearby (e.g. Lake Como)

• Forecast: Will I enjoy Milano or not?

• Decision: To go or not to go? GO!
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BAYES THEOREM

• Patient subject to medical diagnostic test (P or N ) for a disease D

• Sensitivity .95, i.e. P(P |D) = .95

• Specificity .9, i.e. P(PC |DC) = .1

• Physician’s belief on patient having the disease 1%, i.e. P(D) = .01

• Positive test ⇒ P(D|P)?
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BAYES THEOREM

P(D|P) =
P(D

⋂

P)

P(P)
=

P(P |D)P(D)

P(P |D)P(D) + P(P |DC)P(DC)

=
.95 · .01

.95 · .01 + .1 · .99 = .0875

Positive test updates belief on patient having the disease:
from 1% to 8.75%

Prior opinion updated into posterior one
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BAYES THEOREM

• Partition {A1, . . . , An} of Ω and B ⊂ Ω : P(B) > 0

P(Ai|B) =
P(B|Ai)P(Ai)

∑n
j=1 P(B|Aj)P(Aj)

• X r.v. with density f(x|λ), prior π(λ)

⇒ posterior π(λ|x) =
f(x|λ)π(λ)

∫

f(x|ω)π(ω)dω
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BAYESIAN STATISTICS

Bayesian statistics is . . .

• . . . another way to make inference and forecast on population features
(practitioner’s view)

• . . . a way to learn from experience and improve own knowledge
(educated layman’s view)

• . . . a formal tool to combine prior knowledge and experiments
(mathematician’s view)

• . . . cheating
(hardcore frequentist statistician’s view)

• . . .
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NOTIONS OF PROBABILITY

• Classical (random choice, equally likely events)

• Frequentist (probability as asymptotic limit of frequency)

• Subjective/Bayesian

• Axiomatic (Kolmogorov), which contains the other three

Bayesian ⇒ need to specify subjective P in (Ω,F , P)
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ASSESSMENT OF PRIOR PROBABILITIES

T= person having a tumor in his/her life
I= person having an infarction in his/her life

P(T
⋃

I) = .2, P(T) = .3, P(I) = .05, P(T
⋂

I) = .1
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ASSESSMENT OF PRIOR PROBABILITIES

T= person having a tumor in his/her life
I= person having an infarction in his/her life

P(T
⋃

I) = .2, P(T) = .3, P(I) = .05, P(T
⋂

I) = .1

• P(T
⋃

I) ≥ P(T)

• P(I) ≥ P(T
⋂

I)
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ASSESSMENT OF PRIOR PROBABILITIES

T= person having a tumor in his/her life
I= person having an infarction in his/her life

P(T
⋃

I) = .3, P(T) = .2, P(I) = .2, P(T
⋂

I) = .15
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ASSESSMENT OF PRIOR PROBABILITIES

T= person having a tumor in his/her life
I= person having an infarction in his/her life

P(T
⋃

I) = .3, P(T) = .2, P(I) = .2, P(T
⋂

I) = .15

• .3 = P(T
⋃

I) = P(T) + P(I)− P(T
⋂

I) = .25

• P(T
⋃

I) = .3, P(T) = .2, P(I) = .2, P(T
⋂

I) = .1

⇒ assessments should comply with probability rules
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ASSESSING DISCRETE DISTRIBUTIONS: BETS
Probability Italy will win next FIFA World Cup

1. I bet Y = 10$ on the Italian victory. How much are you willing to bet with me against
the victory? (Say 10$ the first time, then 15$ and 20$)

2. Now let’s reverse. You bet Y = 10$ on the victory and you suggest my fair bet on
the loss (Say 30$ the first time, then 25$ and 20$)

3. Let’s repeat 1 and 2 until it is indifferent for you to bet either on the loss or the victory
(i.e. 20$)

4. Let X be the amount you bet on the loss of Italy

5. Fair bet ⇒ Y P (loss) = XP (victory)

6. P (victory) = 1− P (loss) ⇒ P (loss) =
X

X + Y
=

20

20+ 10
=

2

3
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ASSESSING DISCRETE DISTRIBUTIONS: BETS

Problems

• Many people do not like to bet

• Most people dislike the idea of losing money

• I was talking about a 10$ bet, but would you have bet 1000X if I had
bet 10,000$?

• Reaching convergence to a fair bet might be a long process
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REFERENCE LOTTERIES

1. Lottery 1

• Get a trip to Italy if Italy wins

• Get a trip to Cyprus if Italy looses

2. Lottery 2

• Get a trip to Italy with probability p, e.g. if a random number generated from a
uniform distribution on [0,1] is ≤ p

• Get a trip to Cyprus with probability 1 − p, e.g. if a random number generated
from a uniform distribution on [0,1] is > p

3. Specify p1. Which lottery do you prefer?

4. If Lottery 1 is preferred offer change pi to pi+1 > pi.

5. If Lottery 2 is preferred offer change pi to pi+1 < pi.

6. When indifference point is reached ⇒ P (victory) = pi, else Goto 4.
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ASSESSING CONTINUOUS DISTRIBUTIONS
X continuous random variable (e.g. light bulb lifetime)

• Choose x1, . . . , xn

• Assess F (xi) = P (X ≤ xi), i = 1, n

• Draw F (x)

• Look at F (x) at some points for consistency

or

• Choose probabilities p1, . . . , pn

• Find xi’s s.t. F (xi) = P (X ≤ xi) = p1, i = 1, n

• Draw F (x)

• Look at F (x) at some points for consistency
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ILLUSTRATIVE EXAMPLE: FREQUENTIST APPROACH

Light bulb lifetime ⇒ X ∼ E(λ) & f(x;λ) = λe−λx x, λ > 0

• Sample X = (X1, . . . , Xn), i.i.d. E(λ)

• Likelihood lx(λ) =
∏n
i=1 f(Xi;λ) = λne−λ

∑n
i=1Xi

• MLE: λ̂ = n/
∑n

i=1Xi, C.I., UMVUE, consistency, etc.

What about available prior information on light bulbs behavior?
How can we translate it? ⇒ model and parameter
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ILLUSTRATIVE EXAMPLE: BAYESIAN APPROACH

Light bulb lifetime ⇒ X ∼ E(λ) & f(x;λ) = λe−λx x, λ > 0

• Sample X = (X1, . . . , Xn), i.i.d. E(λ)

• Likelihood lx(λ) =
∏n
i=1 f(Xi;λ) = λne−λ

∑n
i=1Xi

• Prior λ ∼ G(α, β), π(λ) =
βα

Γ(α)
λα−1e−βλ

• Posterior π(λ|X) ∝ λne−λ
∑n

i=1Xi · λα−1e−βλ

⇒ λ|X ∼ G(α+ n, β +
∑n

i=1Xi)

Posterior distribution fundamental in Bayesian analysis
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PARAMETER ESTIMATION - DECISION ANALYSIS

• Loss function L(λ, a), a ∈ A action space

• Minimize Eπ(λ|X)L(λ, a) =
∫

L(λ, a)π(λ|X)dλ w.r.t. a
⇒ λ̂ Bayesian optimal estimator of λ

– λ̂ posterior median if L(λ, a) = |λ− a|

– λ̂ posterior mean Eπ(λ|X)λ if L(λ, a) = (λ− a)2

Eπ(λ|X)L(λ, a) =

∫

(λ− a)2π(λ|X)dλ

=
∫

λ2π(λ|X)dλ− 2a
∫

λπ(λ|X)dλ+ a2 · 1

=

∫

λ2π(λ|X)dλ− 2aEπ(λ|X)λ+ a2
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PARAMETER ESTIMATION

• Light bulb: posterior mean λ̂ = (α+ n)/(β +
∑n

i=1Xi)

⇒ compare with
– prior mean α/β

– MLE n/
∑n

i=1Xi

• MAP (Maximum a posteriori)

⇒ λ̂ =
α+ n− 1

β +
∑

Xi

• LPM (Largest posterior mode)
⇒ here it coincides with MAP (unique posterior mode)
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PARAMETER ESTIMATION

Prior influence

• Posterior mean: µ∗ =
α+ n

β +
∑

Xi

• Prior mean: µ̃ =
α

β
(and variance σ2 =

α

β2
)

• MLE:
n

∑

Xi

• α1 = kα and β1 = kβ ⇒ µ1 = µ and σ2
1 = σ2/k

• k → 0 ⇒ µ∗ → MLE

• k → ∞ ⇒ µ∗ → µ̃
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PARAMETER ESTIMATION

Prior influence (multinomial data and Dirichlet prior)

(n1, . . . , nk) ∼ MN (n, p1, . . . , pk)

(p1, . . . , pk) ∼ Dir(sα1, . . . , sαk),
∑

αi = 1, s > 0

• Posterior mean: p∗i =
sαi + ni

s+ n

• Prior mean: p̃i = αi

• MLE:
ni

n

• s → 0 ⇒ p∗i → MLE

• s → ∞ ⇒ p∗i → p̃i
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CREDIBLE INTERVALS

• P(λ ∈ A|X), credible (and Highest Posterior Density) intervals

• Compare with confidence intervals

• Light bulb:

P(λ ≤ z|X) =

∫ z

0

(β +
∑

Xi)
α+n

Γ(α+ n)
λα+n−1e−(β+

∑

Xi)λdλ
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HYPOTHESIS TESTING

• One sided test: H0 : λ ≤ λ0 vs. H1 : λ > λ0

⇒ Reject H0 iff P(λ ≤ λ0|X) ≤ α, α significance level

• Two sided test: H0 : λ = λ0 vs. H1 : λ 6= λ0

– Do not reject if λ0 ∈ A, A 100(1− α)% credible interval

– Consider P([λ0 − ǫ, λ0 + ǫ]|X)

– Dirac measure: P(λ0) > 0 and consider P(λ0|X)
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PREDICTION

• Prediction P(Xn+1|X) =
∫

P(Xn+1|λ)π(λ|X)dλ

• Light bulb: Xn+1|λ ∼ E(λ), λ|X ∼ G(α+ n, β +
∑

Xi)

• fXn+1
(x|X) = (α+ n)

(β +
∑

Xi)
α+n

(β +
∑

Xi + x)α+n+1
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MODEL SELECTION
Compare M1 = {f1(x|θ1), π(θ1)} and M2 = {f2(x|θ2), π(θ2)}

• Bayes factor

⇒ BF =

∫

f1(x|θ1)π(θ1)dθ1
∫

f2(x|θ2)π(θ2)dθ2

BF 2 log10BF Evidence in favor of M1

1 to 3 0 to 2 Hardly worth commenting
3 to 20 2 to 6 Positive

20 to 150 6 to 10 Strong
> 150 > 10 Very strong

• Posterior odds

⇒ P (M1|data)
P (M2|data)

=
P (data|M1)

P (data|M2)
· P (M1)

P (M2)
= BF · P (M1)

P (M2)
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WHY BAYESIAN? (A BIASED VIEW )

• a) P(Head) = θ vs. b) P (someone passing a given exam)= θ

– Frequentist interpretation only for a)

– Subjective opinion on θ in both cases

• Bayesian approach follows from rationality axioms

– Actions a � b (b at least as good as a)
⇒ a � b ⇔ ∃L, π :

∫

L(θ, b)π(θ)dθ ≤ ∫

L(θ, a)π(θ)dθ
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WHY BAYESIAN? (A BIASED VIEW )

• X ∼ Bern(θ) & sample X1 = X2 = 0
⇒ θ̂ = 0 MLE (reasonable?)

• In decision analysis, frequentist procedures average over all possible
(unobserved) outcomes, unlike Bayesian ones

• Nuisance parameters, like σ2 in N (µ, σ2), removed by integrating
them out

• Predictions: very easy

• Few data and lot of expertise
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WHY BAYESIAN? (A BIASED VIEW )

• p-value vs. Bayes factor
⇒ many issues (e.g. p-value depends only on distribution under H0,
unlike Bayes factor), comparisons and attempts to reconcile

• No need for asymptotics, but estimation for any sample size

• MCMC (and its implementation in, e.g., WinBugs) allows for (relatively)
straightforward computations in complex models
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PRIOR CHOICE

Where to start from?

• X ∼ E(λ)

• f(x|λ) = λ exp{−λx}

• P (X ≤ x) = F (x) = 1− S(x) = 1− exp{−λx}

⇒ Physical properties of λ

• EX = 1/λ

• V arX = 1/λ2

• h(x) =
f(x)

S(x)
=

λ exp{−λx}
exp{−λx} = λ (hazard function)
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PRIOR CHOICE

Possible available information

• Exact prior π(λ) (???)

• Quantiles of Xi, i.e. P (Xi ≤ xq) = q

• Quantiles of λ, i.e. P (λ ≤ λq) = q

• Moments Eλk of λ, i.e.
∫

λkπ(λ)dλ = ak ⇔
∫

(λk − ak)π(λ)dλ = 0

• Generalised moments of λ, i.e.
∫

h(λ)π(λ)dλ = 0

• Most likely value and upper and lower bounds

• . . .

• None of them
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PRIOR CHOICE

How to get information?

• Results from previous experiments (e.g. 75% of light bulbs had failed after 2 years
of operation ⇒ 2 years is the 75% quantile of Xi)

• Split of possible values of λ or Xi into equally likely intervals ⇒ quantiles

• Most likely value and upper and lower bounds

• Expected value of λ and confidence on such value (mean and variance)

• . . .
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PRIOR CHOICE

How to combine information from n experts?

• Individual analyses and comparison a posteriori

• Opinions (λ1, . . . , λn) as sample from π(λ|ω)

– Statements on quantiles Gq of X ∼ E(λ)

– q = 1− exp{−λGq}

⇒ sample mean and sample variance to fit π(λ|ω̂)

• Class of priors (n priors or their convex combination)
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SEQUENTIAL PRIOR UPDATE

Data arriving altogether or one at the time

• Altogether: λ ∼ G(α, β) → G(α+ n, β +
∑

Xi)

• One at the time:
λ ∼ G(α, β) → G(α+1, β +X1) → . . .G(α+ n, β +

∑

Xi)
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SEQUENTIAL UPDATE: POWER PRIOR

Data from past experiments ⇒ likelihood l(λ) ∝ λne−λ
∑

Xi

• Prior π(λ)(l(λ))α

• 0 ≤ α ≤ 1

• Possible prior on α
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PRIOR CHOICE
Which prior?

• λ ∼ G(α, β) ⇒ f(λ|α, β) = βαλα−1 exp{−βλ}/Γ(α) (conjugate)

• λ ∼ LN (µ, σ2) ⇒ f(λ|µ, σ2) = {λσ
√
2Π}−1 exp{−(logλ− µ)2/(2σ2)}

• λ ∼ GEV(µ, σ, θ) ⇒ f(λ) = 1
σ

[

1+ θ
(

λ−µ
σ

)]−1/θ−1

+
exp

{

−
[

1+ θ
(

λ−µ
σ

)]−1/θ

+

}

• λ ∼ T (l,m, u) (triangular)

• λ ∼ U(l, u)

• λ ∼ W(µ, α, β) ⇒ f(λ) = β
α

(

λ−µ
α

)β−1

exp{−
(

λ−µ
α

)β
}

• . . .
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PRIOR CHOICE

Choice of a prior

• Defined on suitable set (interval vs. positive real)

• Suitable functional form (monotone/unimodal, heavy/light tails, etc.)

• Mathematical convenience

• Tradition (e.g. lognormal for engineers)
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PRIOR CHOICE

Gamma prior - choice of hyperparameters

• X1, . . . , Xn ∼ E(λ)

• f(X1, . . . , Xn|λ) = λn exp{−λ
∑

Xi}

• λ ∼ G(α, β) ⇒ f(λ|α, β) = βαλα−1 exp{−βλ}/Γ(α)

• ⇒ λ|X1, . . . , Xn ∼ G(α+ n, β +
∑

Xi)
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PRIOR CHOICE

Gamma prior - choice of hyperparameters

• Eλ = µ = α/β and V arλ = σ2 = α/β2

⇒ α = µ2/σ2 and β = µ/σ2

• Two quantiles ⇒ (α, β) using, say, Wilson-Hilferty approximation. Third
quantile specified to check consistency

• Hypothetical experiment : posterior G(α+ n, β +
∑

Xi)

⇒ α sample size and β sample sum
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PRIOR CHOICE
Using data to choose hyperparameters

• choose a prior π(λ|ω) of given functional form and use data to fit ω, i.e. look for
ω̂ = argmax

∫

f(data|λ)π(λ|ω)dλ
(empirical Bayes)

Typical example

• i batches of ni light bulbs each

• light bulbs in same batch with same properties

• light bulbs in different batches with similar properties
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PRIOR CHOICE
Hierarchical model

• Xiji|λi ∼ E(λi), i = 1, n, ji = 1, ni

• λi|β ∼ G(αeZT
i β, α), α known, s.t. Eλi = eZ

T
i β

• π(β)

• Improper priors, numerical approximation (Albert, 1988)

• Empirical Bayes

– λi|β, d ∼ G(αeZT
i β + ni, α+

∑

xiji), λi ⊥ λj|d

– f(d|β) =
∫

f(d|λ)π(λ|β)dλ maximized by β̂

⇒ λi|β̂, d ∼ G(αeZT
i β̂ + ni, α+

∑

xiji),∀i

• “Pure” Bayesian approach ⇒ prior on (α, β)
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BAYESIAN SIMULATIONS
Alternative choice: λ ∼ LN (α, β)

• no posterior in closed form ⇒ numerical simulation

Markov Chain Monte Carlo (MCMC):

• draw(∗) a sample λ(1), λ(2), . . . (Monte Carlo) . . .

• . . . from a Markov Chain whose stationary distribution is . . .

• . . . the posterior π(λ|X) and compute . . .

• E(λ|X) ≈ ∑n
i=m+1 λ

(i)/(n−m), etc.

(*) For λ = (θ, µ) ⇒ Gibbs sampler:

• draw θ(i) from θ|µ(i−1), X

• draw µ(i) from µ|θ(i), X

• repeat until convergence
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MCMC: REGRESSION

• y = β0 + β1x+ ǫ, ǫ ∼ N (0, σ2)

• (y1, x1), . . . , (yn, xn)

• Likelihood ∝ (σ2)−n/2 exp{ 1
σ2

∑n
i=1(yi − β0 − β1xi)

2}

• Priors: β0 ∼ N , β1 ∼ N , σ2 ∼ IG

• Full posterior conditionals:
β0|β1, σ2 ∼ N , β1|β0, σ2 ∼ N , σ2|β0, β1 ∼ IG
⇒ MCMC
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PRIOR CHOICE
Other approaches

• use information to choose parameters of a random distribution on the space of prob-
ability measures, e.g. parameter η of Dirichlet process (P ∼ DP(η)), defined by
finite dimensional distributions: for any partition (A1, . . . , Am),
⇒ (P (A1), . . . , P (Am)) ∼ D(η(A1), . . . , η(Am))

(Bayesian nonparametrics)

• use Jeffreys’/reference/improper priors

(objective Bayes)

• use a class of priors

(Bayesian robustness)
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PRIOR CHOICE
Inflows to a reservoir in a given month (Rı́os Insua et al,1997)

• Logarithm of inflows: X1, . . . , Xn i.i.d. N (θ, σ2), with σ2 known

• Improper prior π(θ) ∝ 1 ⇒ posterior N (

∑

xi

n
, σ

2

n
)

• Proper prior N (µ0, σ2
0) ⇒ posterior N (

nx̄/σ2+µ0/σ2
0

n/σ2+1/σ2
0

,
(

n
σ2 +

1
σ2

0

)−1

)

• Jeffreys prior π(θ) ∝
√

I(θ)

– Expected Fisher information I(θ) = −EX

[

d2

dθ2 log f(X|θ)
]

– Here d2

dθ2 log f(X|θ) = − 1
σ2 ⇒ π(θ) ∝ 1
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BAYESIAN ROBUSTNESS
Gamma prior π(λ)

• excellent for computations but ...

• ... not matching all and only the prior knowledge

Impossibility of specifying a unique prior ⇒ class Γ of priors
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ROBUSTNESS: ILLUSTRATIVE EXAMPLE

Influence of prior choice (Berger, 1985)

• X ∼ N (θ,1)

• Expert’s opinion on prior P :
median at 0, quartiles at ±1, symmetric and unimodal

• ⇒ Possible priors include C(0,1) or N (0,2.19)

• Posterior mean

x 0 1 2 4.5 10

µC(x) 0 0.52 1.27 4.09 9.80
µN(x) 0 0.69 1.37 3.09 6.87

• Posterior median w.r.t. posterior mean
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CONCERNS ON BAYES

Motivations for Bayesian robustness

• Arbitrariness in the choice of π(θ) et al.
⇒ inferences and decisions heavily affected

• Expert unable to provide, in a reasonable time, an exact prior reflecting
his/her beliefs ⇒ huge amount of information (e.g. choice of the func-
tional form of the prior) added by analyst, although not corresponding
to actual knowledge
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NEED FOR BAYESIAN ROBUSTNESS

• partially specified priors

• conflicting loss functions

• opinions (priors and/or losses) expressed by a group of people instead
of one person

• . . .
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BAYESIAN ROBUSTNESS

Mathematical tools and philosophical approach

• to model uncertainty through classes of priors/models/losses

• to measure uncertainty and its effect

• to avoid arbitrary assumptions

• to favor acceptance of Bayesian approach

54



BAYESIAN ROBUSTNESS

• An helpful tool to convince agencies (e.g. FDA) to accept Bayesian
methods? An old, but still unsolved, problem ...

• Bayesian robustness applied to efficacy of drug: is the drug efficient
for all the priors in a class?

• Backward Bayesian robustness: what are the priors leading to state
the efficacy of the drug (or its inefficacy)?
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BAYESIAN ROBUSTNESS
A more formal statement about model and prior sensitivity

• M = {Qθ; θ ∈ Θ} , Qθ probability on (X ,FX)

• Sample x = (x1, . . . , xn) ⇒ likelihood lx(θ) ≡ lx(θ|x1, . . . , xn)

• Prior P su (Θ,F) ⇒ posterior P ∗

• Uncertainty about M and/or P ⇒ changes in

– EP ∗[h(θ)] =

∫

Θ

h(θ)l(θ)P (dθ)
∫

Θ

l(θ)P (dθ)

– P ∗

Bayesian robustness studies these changes
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ROBUST BAYESIAN ANALYSIS

• Need for robustness analysis recognized by many Bayesians but ...

• ... almost nobody considers classes as entertained by robust Bayesians,
...

• ... preferring comparison among few priors (informal sensitivity )

• I keep advocating a proper robust Bayesian approach
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ROBUST BAYESIAN ANALYSIS

Interest in robustness w.r.t. to changes in prior/model/loss but most work
concentrated on priors since

• controversial aspect of Bayesian approach

• easier (w.r.t. model) computations

• problems with interpretation of classes of models/likelihood

• often interest in posterior mean (corresponding to optimal Bayesian
action under squared loss function) and no need for classes of losses
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ROBUST BAYESIAN ANALYSIS

Three major approaches

• Informal sensitivity : comparison among few priors

• Global sensitivity : study over a class of priors specified by some fea-
tures

• Local sensitivity : infinitesimal changes w.r.t. elicited prior
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ROBUST BAYESIAN ANALYSIS

We concentrate mostly on sensitivity to changes in the prior

• Choice of a class Γ of priors

• Computation of a robustness measure, e.g. range δ = ρ− ρ

(ρ = sup
P∈Γ

EP ∗[h(θ)] and ρ = inf
P∈Γ

EP ∗[h(θ)])

– δ “small” ⇒ robustness

– δ “large”, Γ1 ⊂ Γ and/or new data

– δ “large”, Γ and same data
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ROBUST BAYESIAN ANALYSIS

Relaxing the unique prior assumption (Berger and O’Hagan, 1988)

• X ∼ N (θ,1)

• Prior θ ∼ N (0,2)

• Data x = 1.5 ⇒ posterior θ|x ∼ N (1,2/3)

• Split ℜ in intervals with same probability pi as prior N (0,2)
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ROBUST BAYESIAN ANALYSIS

Refining the class of priors (Berger and O’Hagan, 1988)

Ii pi p∗i ΓQ ΓQU

(-∞,-2) 0.08 .0001 (0,0.001) (0,0.0002)
(-2,-1) 0.16 .007 (0.001,0.029) (0.006,0.011)
(-1,0) 0.26 .103 (0.024,0.272) (0.095,0.166)
(0,1) 0.26 .390 (0.208,0.600) (0.322,0.447)
(1,2) 0.16 .390 (0.265,0.625) (0.353,0.473)
(2,+∞,) 0.08 .110 (0,0.229) (0,0.156)

• ΓQ quantile class and ΓQU unimodal quantile class

• Robustness in ΓQU

• Huge reduction of δ from ΓQ to ΓQU
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CLASSES OF PRIORS

Desirable features of classes of priors

• Easy elicitation and interpretation (e.g. moments, quantiles, symmetry,
unimodality)

• Compatible with prior knowledge (e.g. quantile class)

• Simple computations

• Without unreasonable priors (e.g. unimodal quantile class, ruling out
discrete distributions)
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CLASSES OF PRIORS

• ΓP = {P : p(θ;ω), ω ∈ Ω} (Parametric class)

– ΓP = {G(α, β) : α/β = µ}

– ΓP = {G(α, β) : l1 ≤ α ≤ u1, l2 ≤ β ≤ u2}

– ΓP = {G(α, β) : l1 ≤ α/β ≤ u1, l2 ≤ α/β2 ≤ u2}
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CLASSES OF PRIORS

• ΓQ = {P : αi ≤ P(Ii) ≤ βi, i = 1, . . . ,m} (Quantile class)

– ΓQ = {P : θ0 median}

– ΓQ = {P : P(A) = α}

– ΓQ = {P : q1, . . . , qn quantiles of order α1, . . . , αn}

• ΓQU = {P ∈ ΓQ, unimodal} (Unimodal quantile class)

• ΓQUS = {P ∈ ΓQU , symmetric} (Symmetric, unimodal quantile
class)
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CLASSES OF PRIORS

• ΓGM = {P :
∫

hi(θ)dP(θ) = αi, i = 1, . . . ,m} (Generalized mo-
ments class)

– hi(θ) = θi (Moments class)

– hi(θ) = IAi
(θ) (Quantile class)

– h(θ) =
∫ x
−∞ f(t|θ)dt ⇒ ∫

h(θ)dP(θ) =
∫ x
−∞ f(t)dt

(Prior predictive distribution)
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CLASSES OF PRIORS

• ΓDR = {P : L(θ) ≤ αp(θ) ≤ U(θ), α > 0} (Density ratio class)

• ΓB = {P : L(θ) ≤ p(θ) ≤ U(θ)} (Density bounded class)

• ΓDB = {F c.d.f. : Fl(θ) ≤ F(θ) ≤ Fu(θ),∀θ} (Distribution bounded
class)
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CLASSES OF PRIORS

• Classes introduced so far are defined through some features (e.g.
quantiles) ...

• ... whereas now we introduce others (Neighborhood classes) which
represent perturbations of an elicited prior
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CLASSES OF PRIORS

Neighborhood classes

• Γε = {P : P = (1− ε)P0 + εQ,Q ∈ Q} (ε–contaminations)

– Proposed by Huber in classical robustness to model outliers

– Q: all, all symmetric, all symmetric unimodal, generalized mo-
ments constraints class, etc.

– ǫ = ǫ(θ) (need to normalize!)
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CLASSES OF PRIORS

Neighborhood classes

• ΓDB = {F c.d.f. : F0(θ)− ǫ ≤ F(θ) ≤ F0(θ) + ǫ,∀θ} (Distribution
bounded class)

• ΓT
ε = {P : sup

A∈F
|P(A)− P0(A)| ≤ ε} (Total variation)

• Kg = {P : ϕP (x) ≥ g(x),∀x ∈ [0,1]}
g nondecreasing, continuous, convex: g(0) = 0 and g(1) ≤ 1

(Concentration function class)
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CLASSES OF PRIORS

Some critical issues

• Many classes driven more by mathematical convenience rather than
ease of elicitation

• Range easily computed for some useless classes (e.g. ǫ-contaminations
with all probability measures) but ...

• ... hard to compute for some meaningful classes (e.g. unimodal gen-
eralized moments constrained class)
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NEAR IGNORANCE

• Improper priors

• Uniform distribution on large interval (for unbounded Θ)

• Neighborhood of uniform distribution

• Bayesian nonparametrics (e.g. Dirichlet process) centered at a uniform distribution

• Imprecise probabilities

• Frequentist approach
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CLASSES OF MODELS

Finite classes (Shyamalkumar, 2000)

• Class M = {N (θ,1), C(θ,0.675)}
(same median and interquartile range)

• π0(θ) ∼ N (0,1) baseline prior

• ΓA
0.1 = {π : π = 0.9π0 +0.1q, q arbitrary}

• ΓSU
0.1 = {π : π = 0.9π0 +0.1q, q symmetric unimodal around zero}

• Interest in E(θ|x)
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CLASSES OF MODELS

Finite classes (Shyamalkumar, 2000)

ΓA
0.1 ΓSU

0.1Data Likelihood
inf E(θ|x) supE(θ|x) inf E(θ|x) supE(θ|x)

Normal 0.93 1.45 0.97 1.12x = 2
Cauchy 0.86 1.38 0.86 1.02
Normal 1.85 4.48 1.96 3.34x = 4
Cauchy 0.52 3.30 0.57 1.62
Normal 2.61 8.48 2.87 5.87x = 6
Cauchy 0.20 5.54 0.33 2.88
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CLASSES OF MODELS

Parametric models

Box-Tiao, 1962

ΛBT =























f(y|θ, σ, β) =

exp

{

−1
2

∣

∣

∣

y−θ
σ

∣

∣

∣

2
1+β

}

σ2(1.5+0.5β)Γ(1.5 + 0.5β)























for any θ, σ > 0, β ∈ (−1,1]
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CLASSES OF MODELS

Neighborhood classes

0 ≤ M(·) ≤ U(·) given and l likelihood

• Γǫ = {f : f(x|θ) = (1− ǫ)f0(x|θ) + (1− ǫ)g(x|θ), g ∈ G}
(ǫ–contaminations)

• ΓDR = {f : ∃α s.t. M(x− θ0) ≤ αf(x|θ0) ≤ U(x− θ0)∀x}
(density ratio class)

• ΓL = {l : M(θ) ≤ l(θ) ≤ U(θ)}
(likelihood neighborhood)

Critical aspects: parameter and probabilistic interpretation
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CLASSES OF MODELS

Weighted distribution classes

• f(x|θ) ∝ ω(x)f0(x|θ), ω ∈ Ω

• Ω1 = {ω : ω1(x) ≤ ω(x) ≤ ω2(x)}

• Ω2 = {nondecreasing ω1(x) ≤ ω(x) ≤ ω2(x)}

Critical aspect: need to normalize f(x|θ)
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CLASSES OF LOSSES

Interest in behavior of

• Bayesian estimator

• posterior expected loss
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CLASSES OF LOSSES

Parametric classes Lω = {L = Lω, ω ∈ Ω}
L(∆) = β(exp{α∆} − α∆− 1), α 6= 0, β > 0

• ∆1 = (a− θ) ⇒ L(∆1) LINEX (Varian, 1975)

– α = 1 ⇒ L(∆1) asymmetric
(overestimation worse than underestimation)

– α < 0
⇒ L(∆1) ≈ exponential for ∆1 < 0
⇒ L(∆1) ≈ linear for ∆1 > 0

– |α| ≈ 0 ⇒ L(∆1) ≈ βα2∆2
1/2 (i.e. squared loss)

• ∆2 = (a/θ − 1) (Basu and Ebrahimi, 1991)
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CLASSES OF LOSSES

• LU = {L : L(θ, a) = L(|θ − a|), L(·) any nondecreasing function}
(Hwang’s universal class)

• Lǫ = {L : L(θ, a) = (1− ǫ)L0(θ, a) + ǫM(θ, a), M ∈ W}
(ǫ–contamination class)

• LK = {L : vi−1 ≤ L(c) ≤ vi, ∀c ∈ Ci, i = 1, . . . , n}
– (θ, a) → c ∈ C (consequence), e.g. c = |θ − a|
– {C1, . . . , Cn} partition of C

(Partially known class)

L,L+ k ∈ LU give same Bayesian estimator minimizing the posterior expected loss, but

very different posterior expected loss ⇒ robustness calibration
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SENSITIVITY MEASURES
Global sensitivity

• Class of priors sharing some features (e.g. quantiles, moments)

• No prior plays a relevant role w.r.t. others

Measures

• Range: δ = ρ− ρ, with ρ = sup
P∈Γ

EP ∗[h(θ)] and ρ = inf
P∈Γ

EP ∗[h(θ)]

Simple interpretation

• Relative sensitivity supπ Rπ, with Rπ =
(ρπ − ρ0)2

V π
, ρ0 = EΠ∗

0
[h(θ)], ρπ = EΠ∗[h(θ)]

and V π = V arΠ∗[h(θ)]
Scale invariant, decision theoretic interpretation, asymptotic behavior
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SENSITIVITY MEASURES
Local sensitivity

• Small changes in one elicited prior

• Most influential x

• Approximating bounds for global sensitivity

Measures

• Derivatives of extrema in {Kε}, ε ≥ 0, neighborhood of K0 = {P0}

Eε(h|x) =

∫

h(θ)l(θ)P (dθ)
∫

l(θ)P (dθ)

and D∗(h) =

{

∂Eε(h|x)
∂ε

}

ε=0

• Gatêaux differential
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SENSITIVITY MEASURES
Measures

• Fréchet derivative

– ∆ = {δ : δ(Θ) = 0}
– Γδ = {π : π = P + δ, δ ∈ ∆} and Γε = {π : π = (1− ε)P + εQ}
– P = {δ ∈ ∆ : δ = ε(Q− P )} ⇒ Γε ⊂ Γδ

– ||δ|| = d(δ,0)

– d(P,Q) = supA∈B(Θ) |P (A)−Q(A)|

– Th(P + 0) ≡ Th(P ) ≡

∫

h(θ)l(θ)P (dθ)
∫

l(θ)P (dθ)
=

NP

DP

– ΛP
h (δ) = Th(P + δ)− Th(P ) + o(||δ||) =

Dδ

DP
(Th(δ)− Th(P ))
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SENSITIVITY MEASURES

Loss robustness

ρL(π, x, a) = Eπ(·|x)L(θ, a) =
∫

L(θ, a)π(θ|x)dθ
posterior expected loss minimized by aLπ

• supL∈L ρL(π, x, a)− infL∈L ρL(π, x, a)

• supL∈L aLπ − infL∈L aLπ

• supx

∣

∣

∣

∂
∂xρL(π, x, a

L
π)

∣

∣

∣ − infx
∣

∣

∣

∂
∂xρL(π, x, a

L
π)

∣

∣

∣
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COMPUTATIONAL TECHNIQUES
Bayesian inference ⇒ complex computations
Robust Bayesian inference ⇒ more complex computations

sup
P

∫

Θ

f(θ)P (dθ)
∫

Θ

g(θ)P (dθ)

= sup
θ∈Θ

f(θ)

g(θ)

⇒ ρ = sup
P ∈ Γ

EP ∗[h(θ)]

Probability measures as mixture of extremal ones

• Γε = {P : P = (1− ε)P0 + εQ,Q ∈ QA} → Dirac

• ΓQ = {P : P (Ii) = pi, i = 1, . . . ,m} → Discrete

• ΓSU = {P : symmetric, unimodal} → Uniform
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COMPUTATIONAL TECHNIQUES

• Linearization technique to compute supP∈Γ

∫

Θ
h(θ)l(θ)P (dθ)
∫

Θ
l(θ)P (dθ)

– ρ = inf{q|c(q) = 0} where

– c(q) = sup
P∈Γ

∫

Θ

c(θ, q)P (dθ)

– c(θ, q) = l(θ) (h(θ)− q)

– Compute c(qi), i = 1, . . . ,m ⇒ solve c(q) = 0

• Discretization of Θ ⇒ Linear programming

• Linear Semi-infinite Programming (for Generalized moments constrained classes)

• Importance sampling
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QUEST FOR ROBUSTNESS

Range δ “large” and possible refinement of Γ

• Further elicitation by experts

– Software (currently unavailable) for interactive sensitivity analysis

– Ad-hoc tools, e.g. Fréchet derivatives to determine intervals to split
in quantile classes

• Acquisition of new data
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QUEST FOR ROBUSTNESS

Inherently robust procedures

• Robust priors (e.g. flat-tailed)

• Robust models (e.g. Box-Tiao class)

• Robust estimators

• Hierarchical models

• Bayesian nonparametrics
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LACK OF ROBUSTNESS

Range δ “large” and no further possible refinement of Γ

• Choice of a convenient prior in Γ, e.g. a Gaussian in the symmetric,
unimodal quantile class, or

• Choice of an estimate of EP ∗[h(θ)] according to an optimality crite-
rion, e.g.

– Γ–minimax posterior expected loss

– Γ–minimax posterior regret

• Report the range of EP ∗[h(θ)] besides the entertained value
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GAMMA-MINIMAX

ρ(π, a) = Eπ∗
L(θ, a) posterior expected loss, minimized by aπ

• ρC = infa∈A supπ∈Γ ρ(π, a)

(Posterior Γ-minimax expected loss)

Optimal action by interchanging inf and sup for convex losses

• ρR = infa∈A supπ∈Γ[ρ(π, a)− ρ(π, aπ)]

(Posterior Γ-minimax regret)

Optimal action: aM = 1
2(a + ā), for finite a = infπ∈Γ aπx and ā =

supπ∈Γ aπx, A interval and L(θ, a) = (θ − a)2
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OUTLINE

• Basics on Stochastic Processes

• Discrete Time Markov Chains

• Bayesian Inference for DTMC

• Approximation through DTMC
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BASICS ON STOCHASTIC PROCESSES

• A stochastic process {Xt, t ∈ T} is a collection of random variables Xt, indexed
by a set T , defined on a sample space Ω, endowed with a σ-algebra F and a
base probability measure P, and taking values in a common measurable space S
endowed with an appropriate σ-algebra

• T set of

– times ⇒ temporal stochastic process
(major focus of the course, with T space of times)

– spatial coordinates ⇒ spatial process

– both time and spatial coordinates ⇒ spatio-temporal process

• T discrete ⇒ process in discrete time, represented through {Xn, n = 0,1,2, ..}

• T continuous ⇒ process in continuous time, with T = [0,∞) usually in the next

• Values taken by process ⇒ states of the process, belonging to the state space S,
which may be either discrete or continuous
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BASICS ON STOCHASTIC PROCESSES

• At least two visions of a stochastic process

– For each ω ∈ Ω, Xt(ω), function of t as realization or sample function of the
stochastic process, describes a possible evolution of the process through time

– For any given t, Xt is a random variable

• Kolmogorov extension theorem ⇒ stochastic process completely described provid-
ing joint distribution P (Xt1 ≤ x1, ...,Xtn ≤ xn) for any {t1, ..., tn} with t1 < · · · < tn,
and for any {x1, . . . , xn}

• Let T ⊆ [0,∞). Suppose that, for any {t1, ..., tn} with t1 < · · · < tn,, the random
variables Xt1, ...,Xtn satisfy the following consistency conditions:

1. For all permutations π of 1, . . . , n and x1, . . . , xn, we have
P (Xt1 ≤ x1, . . . , Xtn ≤ xn) = P (Xtπ(1) ≤ xπ(1), . . . , Xtπ(n) ≤ xπ(n))

2. For all x1, . . . , xn and tn+1, . . . , tn+m, we have P (Xt1 ≤ x1, . . . , Xtn ≤ xn) =
P (Xt1 ≤ x1, . . . , Xtn ≤ xn, Xtn+1

< ∞, ...,Xtn+m
< ∞)

Then, there exists a probability space (Ω,F ,P) and a stochastic process Xt : T ×
Ω → Rn having the families Xt1, ...,Xtn as finite-dimensional distributions
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BASICS ON STOCHASTIC PROCESSES
{Xt, t ∈ T} stochastic process

• Mean function: µX(t) = E[Xt]

• Autocorrelation function: RX(t1, t2) = E[Xt1Xt2]

• Autocovariance function: CX(t1, t2) = E[(Xt1 − µX(t1))(Xt2 − µX(t2))]

• {Xt, t ∈ T} strictly stationary if (Xt1, . . . , Xtn) has the same distribution as (Xt1+τ , . . . , Xtn+τ)
for any n, t1, t2, . . . , tn and τ

– Stationarity typical feature of a system which stabilized its behavior after running
for a long time

• Strict stationarity holds, in particular, for

– n = 1 ⇒ Xt’s have the same distribution

– n = 2 ⇒ joint distribution depends on difference between times and not the
times themselves, i.e. FXt1

,Xt2
(x1, x2) = FX0,Xt2−t1

(x1, x2)
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BASICS ON STOCHASTIC PROCESSES

• {Xt, t ∈ T} strictly stationary stochastic process

1. Constant mean function: µX(t) = µX,∀t
2. Autocorrelation function depends on time differences: RX(t1, t2) = R(t2 − t1)

3. Autocovariance function: CX(t1, t2) = R(t2 − t1)− µ2
X (if all moments exist)

• Process fulfilling 1) and 2) ⇒ weakly stationary process

• Weak stationarity 6⇒ strict stationarity, in general

• Strict stationarity ⇒ weak stationarity, if first and second moments exist

6



BASICS ON STOCHASTIC PROCESSES
Transition behavior ⇒ forecasting at future times given past observations

• Conditional transition distribution function defined, for t0 ≤ t1, by
F (x0, x1; t0, t1) = P (Xt1 ≤ x1 | Xt0 ≤ x0)

• Process discrete in time and space
⇒ transition probabilities P (m,n)

ij = P (Xn = j | Xm = i) for m ≤ n

• Stationary process ⇒ transition distribution function depends on time differences
t = t1 − t0, i.e. F (x0, x; t0, t0 + t) = F (x0, x; 0, t) , ∀t0 ∈ T

• For convenience, we will use the notation as F (x0, x; t) and P (n)
ij for stationary

processes

• Letting t → ∞, we may consider the long term limiting behavior of the process,
typically associated with the stationary distribution. When this distribution exists,
computations are usually much simpler than doing short term predictions based on
the use of the transition functions.

7



MARKOVIAN PROCESSES
Except for the case of independence, the simplest dependence form among the random
variables in a stochastic process is the Markovian one

• Consider a set of time instants {t0, t1, . . . , tn, t} with t0 < t1 < · · · < tn < t
and t, ti ∈ T . A stochastic process {Xt, t ∈ T} is Markovian if the distribution of
Xt conditional on the values of Xt1, . . . , Xtn depends only on Xtn, that is, the most
recent known value of the process

P (Xt ≤ x | Xtn ≤ xn, Xtn−1
≤ xn−1, ...,Xt0 ≤ x0) =

= P (Xt ≤ x | Xtn ≤ xn) = F (xn, x; tn, t)

• As a consequence of the previous relation, we have

F (x0, x; t0, t0 + t) =

∫

y∈S
F (y, x; τ, t) dF (x0, y; t0, τ) (1)

with t0 < τ < t.

8



MARKOVIAN PROCESSES

• If the stochastic process is discrete in both time and space, then, for n > n1 > · · · >
nk, we have

P (Xn = j | Xn1
= i1, Xn2

= i2, ...,Xnk = ink) =

P (Xn = j | Xn1
= i1) = p(n1,n)

i1j
.

• Using this property and taking r such that m < r < n, we have

p(m,n)
ij = P (Xn = j | Xm = i) (2)

=
∑

k∈S
P (Xn = j | Xr = k)P (Xr = k | Xm = i) .

• Equations (1) and (2) are called the Chapman-Kolmogorov equations for the contin-
uous and discrete cases, respectively

• We refer to discrete state space Markov processes as Markov chains and will use
the term Markov process to refer to processes with continuous state spaces and the
Markovian property

9



DISCRETE TIME MARKOV CHAINS

• One step transition probability: p(m,m+1)
ij = P (Xm+1 = j | Xm = i)

• p(m,m+1)
ij independent of m ⇒ stationary process and time homogeneous chain

• Using pij = P (Xm+1 = j | Xm = i) and pnij = P (Xm+n = j | Xm = i) ,∀m
⇒ Chapman-Kolmogorov equations pn+m

ij =
∑

k∈S p
n
ikp

m
kj∀n,m ≥ 0 and i, j

• n-step transition probability matrix defined as P(n), with elements pnij
⇒ Chapman-Kolmogorov equations written P(n+m) = P(n) ·P(m)

• Matrices P(n) fully characterize the transition behavior of an homogeneous Markov
chain

• When n = 1, we refer to the transition matrix instead of the one step transition
matrix and write P instead of P(1)

10



GAMBLER’S RUIN PROBLEM

A gambler with an initial stake, x0 ∈ N, plays a coin tossing game where at each turn, if

the coin comes up heads, she wins a unit and if the coin comes up tails, she loses a unit.

The gambler continues to play until she either is bankrupted or her current holdings reach

some fixed amount m. Let Xn represent the amount of money held by the gambler after

n steps. Assume that the coin tosses are independent and identically distributed with

probability of heads p at each turn. Then, {Xn} is a time homogeneous Markov chain

with p00 = pmm = 1, pii+1 = p and pii−1 = 1− p, for i = 1, . . . ,m− 1 and pij = 0 for

i ∈ {1, . . . ,m− 1} and j 6= i− 1, i+ 1.

11



DISCRETE TIME MARKOV CHAINS
The analysis of the stationary behavior of an homogeneous Markov chain requires study-
ing the relations among states as follows

• A state j is reachable from a state i if pnij > 0, for some n. We say that two states
that are mutually reachable communicate and belong to the same communication
class.

• If all states in a chain communicate among themselves, so that there is just one
communication class, we shall say that the Markov chain is irreducible

• In the case of the Gambler’s ruin problem, we can see that there are three commu-
nication classes: {0}, {1, . . . ,m− 1} and {m}.

• Given a state i, let pi be the probability that, starting from state i, the process returns
to such state. We say that state i is recurrent if pi = 1 and transient if pi < 1.

• We may easily see that if state i is recurrent and communicates with another state
j, then j is recurrent.

• In the case of Gambler’s ruin, only the states {0} and {m} are recurrent.

12



DISCRETE TIME MARKOV CHAINS

• A state i has period k if pnii = 0 whenever n is not divisible by k and k is the biggest
integer with this property. A state with period 1 is aperiodic.

• If i has period k and states i and j communicate, then state jhas period k. In the
Gambler’s problem, states {0,m} are aperiodic and the others have period 2.

• State i positive recurrent if, starting at i, the expected time until return to i is finite

• Positive recurrence is also a class property in the sense that, if i is positively recur-
rent and states i and j communicate, then state j is also positively recurrent

• In a Markov chain with a finite number of states all recurrent states are positive
recurrent

• A positive recurrent, aperiodic state is called ergodic

• Ergodic and irreducible Markov chain ⇒ πj = lim
n→∞

pnij independent of i and unique

nonnegative solution of πj =
∑

i πipij, j ≥ 0, with
∑∞

i=0 πi = 1

13



INFERENCE FOR FINITE, TIME HOMOGENEOUS
MARKOV CHAINS

• Transition matrix P = (pij) where pij = P (Xn = j|Xn−1 = i), for states i, j ∈
{1, . . . ,K}

• If it exists, stationary distribution π unique solution of π = πP, πi ≥ 0,
∑

πi = 1

• Initially, we consider the simple experiment of observing m successive transitions of
the Markov chain, say X1 = x1, . . . , Xm = xm, given a known initial state X0 = x0

• Likelihood function l(P|x) =
∏K

i=1

∏K
j=1 p

nij

ij with nij ≥ 0 number of observed

transitions from state i to state j and
∑K

i=1

∑K
j=1 nij = m

• P̂ MLE for P, with p̂ij =
nij

ni·
, where ni· =

K
∑

j=1

nij

• However, especially in chains with large K, there could be some p̂ij = 0
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BAYESIAN INFERENCE

• Conjugate prior for P defined by letting pi = (pi1, . . . , piK) ∼ Dir(αi), where αi =
(αi1, . . . , αiK) for i = 1, . . . ,K
⇒ matrix beta prior distribution

• ⇒ posterior pi|x ∼ Dir
(

α′
i

)

where α′
ij = αij + nij for i, j = 1, . . . ,K

• Scarce prior information ⇒ Jeffreys prior, i.e. matrix beta prior with αij = 1/2 for
all i, j = 1, . . . ,K

• Another improper prior, along lines of Haldane’s for binomial data, is f(pi) ∝ ∏K
j=1

1
pij

,
i.e. a matrix beta prior with αij → 0 for all i, j = 1, . . . ,K

– Posterior distribution pi|x ∼ Dir(ni1, . . . , nik) would imply a posterior mean
E[pij|x] = nij/ni· equal to MLE

– Improper posterior distribution if there are any nij = 0

• A proper Dirichlet prior

15



SYDNEY BOTANIC GARDENS WEATHER CENTER
Rainfall levels (from weatherzone.com.au) illustrate occurrence (2) or non occurrence
(1) of rain between February 1st and March 20th 2008. The data are to be read con-
secutively from left to right. Thus, it rained on February 1st and did not rain on March
20th.

2 2 2 2 2 2 2 2 2 2
1 1 2 1 1 1 1 1 1 1
2 2 1 1 1 1 2 2 2 1
2 1 1 1 1 1 2 1 1 1
1 1 1 1 1 1 1 1 1

The daily occurrence of rainfall is modeled as a Markov chain with transition matrix

P =

(

p11 1− p11
1− p22 p22

)

.

Given a Jeffreys prior, pii ∼ Be(1/2,1/2), for i = 1,2, then conditioning on the occur-
rence of rainfall on February 1st, the posterior distribution is

p11|x ∼ Be(25.5,5.5) p22|x ∼ Be(12.5,6.5).

The expectation of the transition matrix is E[P|x] =
(

0.823 0.177
0.342 0.658

)

16



DISCRETE TIME MARKOV CHAINS

• Sometimes it may be known that certain transitions are impossible a priori, e.g. re-
main in a state, so that pii = 0 for i = 1, . . . ,K

• ⇒ restrict matrix-beta prior to the space of transitions with positive probability and
set others to zero ⇒ conjugate analysis

• More interesting, but less studied: unknown, a priori, which transitions are possible
and which are impossible so that the chain may be periodic or transient

• In this situation, one possibility is to define a hierarchical prior distribution by first
setting the probabilities that different transitions are impossible

17



DISCRETE TIME MARKOV CHAINS

• P (pij = 0|q) ∝ q for i, j ∈ 1, . . . ,K

– restricted so that P (pi = 0|q) = 0

– ⇒ row i of transition matrix contains, e.g., exactly ri zeros at locations j1, . . . , jri
and K − ri ones at locations jri+1, . . . , jK

– ⇒ prior probability (conditional on q):
qri(1− q)K−ri

1− qK
for r = 0,1, . . . ,K − 1

• q ∼ U(0,1)

• Dirichlet priors for the vectors of nonnull transition probabilities, e.g.

(pijri+1
, . . . , pijK) ∼ Dir









1

2
, . . . ,

1

2
︸ ︷︷ ︸

K−ri









.
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DISCRETE TIME MARKOV CHAINS

• Z random K ×K matrix s.t. Zij = 0 if pij = 0 and Zij = 1 o.w.

• z matrix with i-th row of z with ri zeros in positions j1, . . . , jri for i = 1, . . . ,K

• Then, the posterior probability that Z is equal to z can be evaluated as

P (Z = z|x) ∝ f(x|z)P (z)

∝
∫

f(x|z,P)f(P|z) dP
∫ 1

0

P (Z = z|q)f(q) dq

∝ 1

Γ
(

1
2

)K2−Kr̄

K
∏

i=1

Γ
(

K−ri
2

)

Γ
(

K−ri
2

+
∑K

s=ri+1 nijs

) ×

K
∏

s=ri+1

Γ

(

1

2
+ nijs

)
∫ 1

0

qKr̄(1− q)K(K−r̄)

(1− qK)K
dq,

where the probability is positive over the range nij1, . . . , nijri = 0 for i = 1, . . . , K
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DISCRETE TIME MARKOV CHAINS

• For relatively small dimensional transition matrices, this probability may be evaluated
directly, but for Markov chains with a large number of states and many values nij =
0, exact evaluation will be impossible. In such cases, it would be preferable to employ
a sampling algorithm over values of Z with high probability.

• The posterior probability that the chain is periodic could then be evaluated by simply
summing those P (Z = z|x) where z is equivalent to a periodic transition matrix.

20



FORECASTING SHORT TERM BEHAVIOR

• Suppose that we wish to predict future values of the chain

• For example we can predict the next value of the chain, at time n+ 1, using

P (Xn+1 = j|x) =

∫

P (Xn+1 = j|x,P)f(P|x) dP

=

∫

pxnjf(P|x) dP =
αxnj + nxnj

αxn· + nxn·

where αi· =
∑K

j=1αij.

• Prediction of state at t > 1 steps is slightly more complex. For small t, use

P (Xn+t = j|x) =

∫

(

Pt
)

xnj
f(P|x) dP

which gives a sum of Dirichlet expectation terms. However, as t increases, the
evaluation of this expression becomes computationally infeasible.

• A simple alternative is to use a Monte Carlo algorithm based on simulating future
values of the chain

21



FORECASTING SHORT TERM BEHAVIOR

• For s = 1, . . . , S:

Generate P(s) from f(P|x).

Generate x(s)
n+1, . . . , x

(s)
n+t from the Markov chain with P(s) and initial

state xn.

• Then, P (Xn+t = j|x) ≈ 1
S

∑S
s=1 I

(

x(s)
n+t = j

)

where I(·) is an indicator function

and E[Xn+t|x] ≈ 1
S

∑S
s=1 x

(s)
n+t.

• Assume that it is now wished to predict the Sydney weather on the 21st and 22nd of March.
Given that it did not rain on the 20th March, then immediately, we have

P (no rain on 21st March|x) = E[p11|x] = 0.823,

P (no rain on 22nd March|x) = E
[

p211 + p12p21|x
]

= 0.742,

P (no rain on both) = E[p211|x] = 0.681.
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FORECASTING STATIONARY BEHAVIOR

• Interest in stationary distribution ⇒ straightforward for low dimensional chain where
the exact formula for the equilibrium probability distribution can be derived

• Suppose that K = 2 and P =

(

p11 1− p11
1− p22 p22

)

– Equilibrium probability of being in state 1: π1 =
1− p22

2− p11 − p22

– Predictive equilibrium distribution: E[π1|x] =
∫ 1

0

∫ 1

0

1− p22

2− p11 − p22
f(p11, p22|x) dx

• In the rainfall example E[π1|x] = E

[

1− p22

2− p11 − p22

∣

∣

∣

∣

x

]

= 0.655 ⇒ 65% (approx)

without rain at the center
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FORECASTING STATIONARY BEHAVIOR

• For higher dimensional chains, it is simpler to use a Monte Carlo approach as earlier
so that given a Monte Carlo sample P(1), . . . ,P(S) from the posterior distribution of
P, then the equilibrium distribution can be estimated as

E[π|x] ≈ 1

S

S
∑

s=1

π(s)

where π(s) is the stationary distribution associated with the transition matrix P(s)
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MODEL COMPARISON

• Bayes factor to test if data are independent or generated from a Markov chain

• Compare earlier Markov chain model (M1) with i.i.d. data with distribution q =
(q1, . . . , qK), (M2) with Dirichlet prior q ∼ Dir(a1, . . . , aK)

• Let ni· =
∑K

j=1 nij and αi· =
∑K

j=1 αij, then

f(x|M1) =

∫

f(x|P)f(P|M1) dP

=

K
∏

i=1

Γ(αi·)

Γ (ni· + αi·)

K
∏

j=1

Γ(αij + nij)

Γ(αij)

• Let a =
∑K

i=1 ai and n·i, then

f(x|M2) =
Γ(a)

Γ(a+ n)

K
∏

i=1

Γ(ai + n·i)

Γ(ai)
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MODEL COMPARISON

• The Bayes factor can now be calculated as the ratio of the two marginal likelihood
functions

• For the Australian rainfall data, assuming that the initial state is known and given the
Jeffreys prior for the Markov chain model, the marginal likelihood is

f(x|M1) =

(

Γ(1)

Γ(1/2)2

)2
Γ(25.5)Γ(5.5)

Γ(31)

Γ(6.5)Γ(12.5)

Γ(19)

and, taking logs, we have log f(x|M1) ≈ −28.60.

• For the independent model, M2, conditional on the initial state and assuming a beta
prior, q1 ∼ Be(1/2,1/2), we have

f(x|M2) =
Γ(1)

Γ(1/2)2
Γ(31.5)Γ(17.5)

Γ(49)

so that log f(x|M2) ≈ −33.37, which implies a strong preference for the Marko-
vian model over the independent model
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UNKNOWN INITIAL STATE

• Sometimes X0 is not fixed in advance ⇒ define a prior, e.g. multinomial
P (X0 = x0|θ) = θx0

where 0 < θk < 1 and
∑K

k=1 θk = 1

• Dirichlet prior θ ∼ Dir(γ) for the multinomial parameters ⇒ posterior θ|x ∼ Dir(γ ′),
withγ′

x0
= γx0

+1 and γ′
i = γi for i 6= x0 ⇒ inference for P as before

• As an alternative when the chain has been running for some time before the start of
the experiment, suppose the initial state generated from the equilibrium distribution,
π, of the Markov chain

• Then, making the dependence of π on P obvious, the likelihood function becomes

l(P|x) = π(x0|P)

K
∏

i=1

K
∏

j=1

p
nij

ij
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UNKNOWN INITIAL STATE

• In this case, simple conjugate inference is impossible but, given the same prior dis-
tribution for P as above, it is straightforward to generate a Monte Carlo sample of
size S from the posterior distribution of P using, for example, a rejection sampling
algorithm as follows:

• For s = 1, . . . , S:

For i = 1, . . . ,K, generate p̃i ∼ Dir(α′) with α′ with α′
ij = αij + nij

Set P̃ to be the transition probability matrix with rows p̃1, . . . , p̃K.

Calculate the stationary probability function π̃ satisfying π̃ = π̃P̃.

Generate u ∼ U(0,1). If u < π̃(x0), set P(s) = P̃. O.w. repeat from step 1

• In the rainfall example, assume the weather on February 1st generated from equilib-
rium distribution. Monte Carlo sample of size 10000 ⇒
E[P|x] ≈

(

0.806 0.194
0.321 0.679

)

and E[π1|x] ≈ 0.618, close to previous results
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PARTIALLY OBSERVED DATA

• Assume now that the Markov chain is only observed at a number of finite time points.

• Suppose, for example, that x0 is a known initial state and that we observe xo =
(xn1

, . . . , xnm
), where n1 < . . . < nm ∈ N.

• Likelihood function l(P|xo) =

m
∏

i=1

p(ti−ti−1)
ni−1ni

where p(t)ij represents the (i, j)-th element of the t step transition matrix,

• Computation of this likelihood often complex ⇒ preferable to consider inference
based on the reconstruction of missing observations

• Let xm represent the unobserved states at times 1, . . . , t1 − 1, t1 + 1, . . . , tn−1 −
1, tn−1 +1, . . . , tn and let x represent the full data sequence.

• Then, given a matrix beta prior, we have that P|x is also matrix beta.
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PARTIALLY OBSERVED DATA

• Furthermore, it is immediate that

P (xm|xo,P) =
P (x|P)

P (xo|P)
∝ P (x|P) (3)

which is easy to compute for given P,xm.

• One possibility would be to set up a Metropolis within Gibbs sampling algorithm to
sample from the posterior distribution of P.

• Such an approach is reasonable if the amount of missing data is relatively small.
However, if there is much missing data, it will be very difficult to define an appropriate
algorithm to generate data from P (xm|xo,P) in (3). In such cases, one possibility is
to generate the elements of xm one by one, using individual Gibbs steps. Thus, if t
is a time point amongst the times associated with the missing observations, then we
can generate a state xt using

P (xt|x−t,P) ∝ pxt−1xtpxtxt+1

where x−t represents the complete sequence of states except for the state at time t.
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PARTIALLY OBSERVED DATA

• One disadvantage of such approaches is that with large amounts of missing data,
the Gibbs algorithms are likely to converge slowly as they will depend on the recon-
struction of large quantities of latent variables.

• For the Sydney rainfall example, total rainfall was observed for the 21st and 22nd of
March. From these data, it can be assumed that it rained on at least one of these
two days. In this case, the likelihood function, including this data, becomes

l(P|x) = p2511p
5
12p

6
21p

12
22(p11p12 + p12p21 + p12p22) = p2511p

6
12p

6
21p

12
22(p11 + 1)

so that p22|x ∼ Be(12.5,6.5) as earlier and p11 has a mixture posterior distribution

p11|x ∼ 0.44 Be(26.5,6.5) + 0.56 Be(25.5,6.5).

The posterior mean is

E[P|x] =
(

0.800 0.200
0.342 0.658

)

.

The predictive equilibrium probability is E[π1|x] = 0.627.
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HIGHER ORDER CHAINS AND MIXTURES

• {Xn} Markov chain of order r if P (Xn = xn|X0 = x0, . . . , Xn−1 = xn−1) =
P (Xn = xn|Xn−r = xn−r, . . . , Xn−1 = xn−1)

• Chain of order r represented as first order one combining states

– Second order, homogeneous Markov chain {Xn} with 2 possible states (1, 2)

– pijl = P (Xn = l|Xn−1 = j,Xn−2 = i) for i, j, l = 1,2

– first order transition matrix is

(1,1)
(1,2)
(2,1)
(2,2)

(1,1) (1,2) (2,1) (2,2)






p111 p112 0 0
0 0 p121 p122

p211 p212 0 0
0 0 p221 p222






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HIGHER ORDER CHAINS AND MIXTURES

• Reduction of higher order Markov chains to first order ones ⇒ large number of states

• Xn taking values in {1, . . . ,K} ⇒ Kr states needed to define an r-th order chain

• Mixture transition distribution (MTD) model of Raftery (1985) one of the most popular
approaches to modeling r-th order dependence

– P (Xn = xn|Xn−1 = xn−1, . . . , Xn−r = xn−r) =
∑r

i=1wipxn−ixn,
with

∑r
i=1wi = 1 and P = (pij) transition matrix

– ⇒ more parsimonious modeling: in previous example 3 parameters (w1, p11, p22)
instead of 4 (p111, p121, p211, p221)
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HIGHER ORDER CHAINS AND MIXTURES
Bayesian inference for full r-th order Markov chain model carried out, in principle, as for
first order model, expanding the number of states appropriately

• Markov chains of orders r = 2 and 3 considered for Australian rainfall example

• Be(1/2,1/2) priors used for first non zero element of each row of the transition
matrix

• Initial r states known, supposedly generated from equilibrium distribution

• Predictive equilibrium probabilities of different states under each model:

States
r 2 (1,1) (1,2) (2,1) (2,2)

π 0.5521 0.1198 0.1198 0.2084
r 3 (111) (112) (121) (122) (211) (212) (221) (222)

π 0.4567 0.0964 0.0731 0.0550 0.0964 0.0317 0.0550 0.1357

• Log marginal likelihoods: −30.7876 (2nd order) and −32.1915 (3rd order) ⇒ first
order preferred (−28.60)
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HIGHER ORDER CHAINS AND MIXTURES
Straightforward Bayesian inference for the mixture transition distribution (MTD) model

• Assume known order r of the Markov chain mixture

• Define indicator variable Zn s.t. P (Zn = z|w) = wz, z = 1, r

• Consider P (Xn = xn|Xn−1 = xn−1, . . . , Xn−r = xn−r, Zn = z,P) = pxn−zxn

• ⇒ P (Xn = xn|Xn−1 = xn−1, . . . , Xn−r = xn−r) =
∑r

i=1 P (Xn = xn|Xn−1 =
xn−1, . . . , Xn−r = xn−r, Zn = z,P)P (Zn = z|w) =

∑r
i=1wipxn−ixn

• Posterior: P (Zn = z|Xn = xn, . . . , Xn−r = xn−r,P) =
wzpxn−zxn

∑r
j=1wjpxn−jxn

• ”Usual” matrix beta prior for P

• Dirichlet prior for w: w ∼ Dir(β1, . . . , βr)

• Known initial states of the chain (could take a probability model P (x0, . . . , xr−1))
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HIGHER ORDER CHAINS AND MIXTURES

• Given sequence of data x = (x0, . . . , xn) and independent indicator variables z =
(zr, . . . , zn) ⇒

f(P|x, z,w) ∝
n
∏

t=r

pxt−ztxtf(P)

f(w|z) ∝
n
∏

t=r

wztf(w)

• Available full conditionals ⇒ Gibbs sampling to get posterior distribution of w,P

– z|data,w,P in closed form

– P|data,w, z matrix beta distribution

– w|data, z,P Dirichlet distribution
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HIGHER ORDER CHAINS AND MIXTURES

• Two possible approaches possible with unknown chain order

– Fit models with different, fixed order and compare them via Bayes factor

– Specify a prior distribution on the order and use Reversible Jump Markov chain
Monte Carlo (RJMCMC) to estimate it

• Mixture transition models of orders up to 5 for Australian rainfall data

• Known first five data

• Discrete uniform prior r ∼ DU[1,5] prior distribution on the order

• Dirichlet prior distributions w|r ∼ Dir







1

2
, . . . ,

1

2
︸ ︷︷ ︸

r







• 200000 reversible jump MCMC iterations
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HIGHER ORDER CHAINS AND MIXTURES

Estimated posterior distribution, via RJMCMC, of Markov chain order
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Simple Markov chain most likely model ⇒ previous results confirmed
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DTM PROCESSES WITH CONTINUOUS STATE SPACE

• Markov processes at discrete times can be defined with both discrete and continuous
state spaces

• Equilibrium distribution exists for a Markov chain with discrete state space for

– aperiodic chain

– all positive recurrent states

• Although the condition of positive recurrence cannot be sensibly applied to chains
with continuous state space, a similar condition known as Harris recurrence applies
to chains with continuous state space, which essentially means that the chain can
get close to any point in the future

• Harris recurrent, aperiodic chains possess an equilibrium distribution, so that if the
conditional probability distribution of the chain is P (Xn|Xn−1), then the equilibrium
density π satisfies π(x) =

∫

P (x|y)π(y) dy

• As with Markov chains with discrete state space, a sufficient condition for a process
to possess an equilibrium distribution is to be reversible
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DTM PROCESSES WITH CONTINUOUS STATE SPACE

• Autoregressive (AR) models: simple examples of continuous space Markov chains

• AR(1): Xn = φ0 + φ1Xn−1 + ǫn

– ǫn sequence of i.i.d. Gaussian r.v.’s with zero mean and variance σ2

– Weakly, but not strictly, stationary if |φ1| < 1

– Non stationary process if |φ1| ≥ 1

– µX = φ0 + φ1µX ⇒ µX = φ0

1−φ1

• AR(k): Xn = φ0 +
∑k

i=1 φiXn−i + ǫn

• AR(k) (weakly) stationary if all roots zi of φ0zk −
∑k

i=1 φizk−i satisfy |zi| < 1
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INFERENCE FOR AR(k) MODELS

• X1 = x1, . . . , Xk = xk known initial values

• Sample of n data: Xk+1 = xk+1, . . . , Xk+n = xk+n

• Prior distributions

– 1
σ2 ∼ Ga

(

a
2
, b
2

)

– β ∼ N(m,V)

• Full conditional posterior distributions

– φ|σ2,x ∼ N
(

(

V−1 + 1
σ2ZZ

T
)−1 (

V−1m+ 1
σ2Z

Tx
)

,
(

V−1 + 1
σ2ZZ

T
)−1

)

– 1
σ2 |x ∼ Ga

(

a+n
2

,
b+(x−Zφ)T(x−Zφ)

2

)

– where x = (xk+1, . . . , xk+n)
T , Z = (z1, . . . , zn)T and zt = (1, xt+k−1, . . . , xt)T

• Gibbs sampling to get a sample from posterior distribution
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INFERENCE FOR AR(k): STATIONARITY
Straightforward extension this to incorporate stationarity

• MCMC sample generated from posterior distribution of β, σ2

• Reject sampled values with roots ≥ 1

• ⇒ Sample reduced to a sample from the posterior distribution based on a normal
gamma prior distribution truncated onto the region where the parameters satisfy the
stationarity condition
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INFERENCE FOR AR(k): MODEL SELECTION
Selection of appropriate value of k through

• Prior on k and RJMCMC

• Bayes factor

• DIC (Deviance Information Criterion)

– Model M parameterized by θ

– Sample x

– DICM = −4E [log f(x|θ)|x] + 2 log f(x|E[θ|x])
– Lower values of the DIC ⇒ more plausible models
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INFERENCE FOR AR(k)

• Quarterly data on seasonally adjusted gross national product of the USA between
1947 and 1991

• AR(3) model chosen by MLE (Tsay, 2005)

• Consider AR models with 0 up to 4 lags and use DIC to choose the model

• First 4 data known

• Independent prior distributions 1
σ2 ∼ Ga(0.001,0.001) and βi ∼ N(0,0.0001) for

i = 0, . . . , k

• WinBUGS used to run Gibbs sampler with 100000 iterations to burn in and 100000
iterations in equilibrium in each case
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INFERENCE FOR AR(k)

• Values of the DIC for each model

Lags DIC
0 -1065.2
1 -1090.3
2 -1099.1
3 -1102.7
4 -1092.3

• DIC ⇒ AR(3) model

• Tsay: Xn = 0.0047 + 0.35Xn−1 + 0.18Xn−2 − 0.14Xn−3 + ǫn, with estimated
standard deviation of error term σ̂ = 0.0098

• Ours: posterior mean predictor 0.0047+0.3516Xn−1+0.1798Xn−2−0.1445Xn−3

and 0.0100 as posterior mean of σ
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INFERENCE FOR AR(k)
Actual data and (Bayesian) fitted AR(3) model with 95% predictive intervals
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HIDDEN MARKOV MODELS
Hidden Markov models (HMMs) widely applied to analysis of weakly dependent data in
diverse areas such as econometrics, ecology and signal processing

• Observations Yn for n = 0,1,2, . . . generated from a conditional distribution f(yn|Xn)
with parameters dependent on unobserved or hidden state Xn ∈ {1,2, . . .K}

• Hidden states follow a Markov chain with transition matrix P and an initial distribution,
usually assumed to be the equilibrium distribution, π(·|P), of the underlying Markov
chain

• Influence diagram representing the dependence structure of a HMM

. . . ✲
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✛✘
Xn−1

✻

✲

✚✙
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HIDDEN MARKOV MODELS
Extension to HMM with continuous state space: simple example ⇒ Dynamic Linear Model
(DLM)

• DLM with univariate observations Xn characterized by {Fn, Gn, Vn,Wn}
– Fn known vector of dimension m× 1, for each n

– Gn is known m×m matrix, for each n

– Vn known variance, for each n

– Wn known m×m variance matrix, for each n

• Xn = Fnθn + vn, vn ∼ N(0, Vn)

• θn = Gnθn−1 + wn, wn ∼ N(0,Wn)

• Information Dn defined recursively as Dn = Dn−1 ∪ {xn}
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HIDDEN MARKOV MODELS

• Sample data y = (y0, . . . , yn)

• Likelihood l(θ,P|y) =
∑

x0,...,xn
π(x0)f(y0|θx0

)
∏n

j=1 pxj−1xjf(yj|θxj)

• Likelihood contains Kn+1 terms ⇒ in practice usually impossible to compute directly

• Other approaches taken

49



HIDDEN MARKOV MODELS

• Suppose states x of hidden Markov chain known

• ⇒ likelihood simplifies to
l(θ,P|x,y) = π(x0)

∏n
j=1 pxj−1xj

∏n
i=1 f(yi|θxi) = l1(P|x)l2(θ|x,y), with

l1(P|x) = π(x0|P)
∏n

j=1 pxj−1xj and l2(θ|x,y) =
∏n

i=0 f(yi|θxi)

• ”Usual” matrix beta prior distribution for P ⇒ simple rejection algorithm used to
sample from f(P|x)

• Sampling from each θi|x,y (straightforward if Y |θ standard exponential family dis-
tribution and conjugate prior for θ)

• Let x−t = (x0, x1, . . . , xt−1, xt+1, . . . , xn) ⇒ , for i = 1, . . . ,K,

P (x0 = i|x−0,y) ∝ π(i)pix1
f(y1|θi)

P (xt = i|x−t,y) ∝ pxt−1ipixt+1
f(yt|θi) for 1 < t < n

P (xn = i|x−n,y) ∝ pxn−1if(yn|θi)

• Gibbs sampling
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CONTINUOUS TIME MARKOV CHAINS

• CTMCs continuous time stochastic processes with discrete state space

• Here homogeneous CTMCs with finite state space

• System remains an exponential time at each state and, when leaving such state, it
evolves according to probabilities which depend only on the leaving state

• Simple proof of Markov property and Homogeneity ⇒ Exponential distribution

– Initial value X0 = i

– F (t) = P (τ > t|X0 = i), t > 0

– τ waiting time for a change of state from state i

P (τ > s+ t|X0 = i) = P (τ > s+ t|X0 = i, τ > s)P (τ > s|X0 = i)

= P (τ > s+ t|Xs = i)P (τ > s|X0 = i)

– ⇒ F (s+ t) = F (s)F(t)

– ⇔ F (t) = e−λt, t > 0, λ > 0
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CONTINUOUS TIME MARKOV CHAINS

• {Xt}t∈T continuous time stochastic process with discrete state space E = {1,2, . . . ,K}

• When the process enters into state i, it remains there for an exponentially distributed
time period with mean 1/νi

• At the end of this time period, the process will move to a different state j 6= i with
probability pij, s.t.

∑K
j=1 pij = 1, ∀i, and pii = 0

• For physical or logical reasons, some additional pij ’s could also be zero

• P = (pij) transition probability matrix

• Transition points {Xn} and transition matrix define an embedded (discrete time)
Markov chain

• {Xt} will be designated a CTMC with parameters P and ν = (ν1, . . . , νK)T
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BIRTH-DEATH PROCESS

• Birth-death process particular example of a CTMC with state space {0,1,2, . . . ,K}
denoting population size

• Transitions occur either as single births, with rate λi or single deaths, with rate µi,
for i = 0, . . . ,K, where µ0 = λK = 0

• Transition probabilities: pi,i+1 = λi/(λi + µi), pi,i−1 = µi/(λi + µi) and pij = 0
for i = 0, . . . ,K and j /∈ {i− 1, i+ 1} (properties of exponentials)

• Times between transitions Ex(νi), νi = λi + µi (minimum of two exponentials)

• Markovian queueing system: birth-death process with

– i people in the system (alive)

– arrivals (births) with rate λi

– service completed (deaths) with rate µi

• Poisson process: pure birth process with infinite state space {0,1,2, . . .}, µi = 0
and λi = λ for all i
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CONTINUOUS TIME MARKOV CHAINS

• rij = νipij: jumping intensities (from state i into state j)

• Set rii = −∑

j 6=i rij = −νi, i ∈ {1, . . . ,K} (⇒ ∑

j rij = 0)

• rij interpreted as flow rates (see Resnick p. 385-6):

– νit ≈ P (system leaves i before t)

– νipijt ≈ P (system leaves i before t and goes to j)

• Λ = (rij): intensity matrix (or infinitesimal generator of the process)
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CONTINUOUS TIME MARKOV CHAINS

• Short term behavior of CTMC described through forward Kolmogorov system of dif-
ferential equations

• Pij(t) = P (Xt+s = j|Xs = i) = P (Xt = j|X0 = i) transition probability
functions

• Suitable regularity conditions (see e.g. Ross, 2009)
⇒ P ′

ij(t) =
∑

k 6=j rkjPik(t)− νjPij(t) =
∑

k rkjPik(t)

• ⇒ P′(t) = ΛP(t) and P(0) = I,
with P(t) = (Pij(t)) matrix of transition probability functions and I identity matrix

• P(t) = exp(Λt) analytic solution of the system to be solved, for given t, using
matrix exponentiation
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CONTINUOUS TIME MARKOV CHAINS

• Simplest case: Λ diagonalizable (i.e. D = S−1ΛS) with different eigenvalues

– D diagonal matrix with distinct eigenvalues λ1, . . . , λK of Λ as entries

– S invertible matrix made of eigenvectors corresponding to eigenvalues in Λ

– Eigenvalues and eigenvectors from ΛS = SD

• Decompose Λ = SDS
−1

exp(Λt) =

∞
∑

i=0

(Λt)i

i!
=

∞
∑

i=0

(SDS
−1)iti

i!
= S

[ ∞
∑

i=0

(Dt)i

i!

]

S
−1

= S







exp(λ1t) 0 ... 0
0 exp(λ2t) ... 0
... ... ... ...
0 0 ... exp(λKt)







S
−1
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CONTINUOUS TIME MARKOV CHAINS

• As with the discrete time case, forecasting the long term behavior of a CTMC means
that we need to consider the equilibrium distribution

• Under suitable conditions (see e.g. Ross, 2009), for given P and ν, the equilibrium
distribution {πj}Kj=1, if it exists, is obtained through the solution of the system

νjπj =
∑

i 6=j

rijπi, ∀j ∈ {1, . . . ,K} ,
∑

j

πj = 1; πj ≥ 0
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INFERENCE FOR CTMC

• P and transition rates ν unknown and unrelated (i.e. elements of P not known
functions of ν)

• Observe initial state x0, times, ti, and states, xi, i = 1, . . . , n, of the first n transitions
of the chain

• ⇒ Likelihood

l(P,ν|data) =
∏n

i=1 νxi−1
exp(−νxi−1

(ti−ti−1))pxi−1xi ∝
∏K

i=1 ν
ni

i exp(−νiTi)
∏K

j=1 p
nij

ij ,

with nij number of observed transitions from i to j, Ti total time spent in state i and
ni =

∑K
j=1 nij total number of transitions out of state i, for i, j ∈ {1, . . . ,K}

• Note that many alternative experiments have likelihood functions of the same form
(e.g. the same Ti can be obtained with different individual stays)
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INFLUENCE DIAGRAM FOR A CTMC
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INFERENCE FOR CTMC

• Likelihood: l(P,ν|data) = l1(P|data)l2(ν|data),

with l1(P|data) =
∏K

i=1

∏K
j=1 p

nij

ij and l2(ν|data) =
∏K

i=1 ν
ni

i exp(−νiTi)

• Independent priors for P and ν ⇒ independent posteriors ⇒ separate inference for
P and ν

• Known initial state (o.w. as before)

• Conjugate matrix beta prior for P

• Priors νi ∼ Ga(ai, bi) ⇒ posteriors νi|data ∼ Ga(ai + ni, bi + Ti), for i = 1, . . . ,K
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INFERENCE FOR CTMC
Estimation of intensity matrix Λ = (rij)

• Posterior distributions of νi and pij, ∀i, j, sufficiently concentrated ⇒ use posterior
modes ν̂i and p̂ij to estimate r̂ij, ∀i, j

– r̂ij = ν̂ip̂ij, i 6= j

– r̂ii = −ν̂i, i = 1, . . . ,m

– For the Dirichlet-multinomial model (on P and X ’s) we get

ν̂i =
αi + ni − 1

βi +
∑ni

j=1 tij
; p̂ij =

δij + nij − 1
∑

l 6=i(nil + δil)− k +1
; r̂ij = ν̂ip̂ij, r̂ii = −ν̂i

• Posterior samples {νη}Nη=1 and {Pη}Nη=1 ⇒ samples from posterior of {rηij}, ∀i, j

– {rηij = νη
i p

η
ij}Nη=1, i 6= j

– {rηii = −νη
i }Nη=1, i = 1, . . . , k

– Summarize all samples through, e.g., sample means 1
N

∑N
η=1 r

η
ij,∀i, j
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FORECASTING SHORT TERM BEHAVIOR

• Forecast can be based on the solution of the system of differential equations char-
acterizing short term behavior,

P′(t) = ΛP(t) and P(0) = I,

when parameters P and ν are fixed

• Need to take into account the uncertainty about parameters to estimate the predictive
matrix of transition probabilities P(t)|data

• Various options can be considered
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FORECASTING SHORT TERM BEHAVIOR

• Posteriors of P and ν sufficiently concentrated ⇒ summarize them through posterior
modes ν̂ and P̂

• Assume Λ(P̂, ν̂) diagonalizable with K different eigenvalues

• ⇒ estimate P(t)|data through

S(P̂, ν̂)









exp(λ1(P̂, ν̂)t) 0 ... 0

0 exp(λ2(P̂, ν̂)t) ... 0
... ... ... ...
0 0 ... exp(λk(P̂, ν̂)t)









S(P̂, ν̂)−1.
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FORECASTING SHORT TERM BEHAVIOR

• Obtain Monte Carlo samples, ν(s),P(s), for s = 1, . . . , S

• ⇒ solve the corresponding decomposition for each s

• ⇒ sample P(t)(s), for s = 1, . . . , S

• Summarize through sample mean 1
S

∑

sP(t)(s)

• Procedure easily implemented for K relatively small

• For large K matrix exponentiation might be too computationally intensive to be used
within a Monte Carlo type scenario

• Use, for example, Reduced Order Model (ROM)
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REDUCED ORDER MODEL (GRIGORIU, 2009)

• Method possibly useful for predictive computations with stochastic process models

• Posterior predictive computation of an eventA dependent on θ: P (A|x) =
∫

P (A|θ)f(θ|x)dθ

• Monte Carlo approximation based on large sample {θi}Ni=1 from the posterior

PMC(A|x) =
1

N

N
∑

i=1

P (A|θi)

• Approach infeasible when finding each P (A|θi) computationally demanding ⇒ un-
able to use large enough samples to apply standard MC approximations

• Assume posterior f(θ|x) can be approximated by simple probability distribution with
m support points {θi}mi=1, each with probability pi, i = 1, ...,m, with m small enough
so that m predictive computations P (A|θi) are actually amenable

• Aim at approximating quantity of interest through P̃ (A) =
∑m

i=1 P (A|θi)pi, satis-
factorily under appropriate conditions
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REDUCED ORDER MODEL (GRIGORIU, 2009)

• Determine the order m ≥ 1 of ROM, based only on maximum number m of accept-
able P (A|θ) computations

• Determine the range {θ1, . . . , θm} of Θ̃ for the selected m

• Compute probabilities {p1, . . . , pm} of {θ1, . . . , θm}

• Use ROM approximation (details in Grigoriu, 2009)
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FORECASTING SHORT TERM BEHAVIOR

1. For s = 1, . . . , S, sample ν(s),P(s) from the relevant posteriors

2. Cluster the sampled values into m clusters and spread the centroids to obtain the
ROM range (ν(i),P(i)) for i = 1, . . . ,m

3. Compute the optimal ROM probabilities by solving
minq1,...,qm e(q1, . . . , qm) s.t.

∑m
r=1 qr = 1, qr ≥ 0, r = 1, . . . ,m

4. For i = 1 to m

(a) Compute Λ(ν(i),P(i))

(b) Decompose Λ(ν(i),P(i)) = S(ν(i),P(i))D(ν(i),P(i))S−1(ν(i),P(i))

(c) Compute P(t)|ν(i),P(i) through

S

(

P
(i),ν(i)

)





exp(λ1(P
(i),ν(i))t) 0 ... 0
0 exp(λ2(P

(i),ν(i))t) ... 0
... ... ... ...
0 0 ... exp(λm(P(i),ν(i))t)



S

(

P
(i),ν(i)

)−1

5. Approximate P(t)|data through
∑m

i=1 qi P(t)|ν(i),P(i)
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FORECASTING LONG TERM BEHAVIOR

• Long term forecasting of CTMC behavior undertaken in different ways depending on
concentration of posterior and available computational budget

• Sufficiently concentrated posteriors ⇒ replace parameters with posterior modes

– Solve system: ν̂jπj =
∑

i 6=j r̂ijπi,∀j ∈ {1, . . . ,K} , ∑

j πj = 1;πj ≥ 0

– ⇒ Obtain approximate point summary of predictive equilibrium distribution {π̂i}mi=1

– Drawback: approach does not give a measure of uncertainty

• Obtain samples from the posteriors, ν(s),P(s), for s = 1, . . . , S

– obtain sampled probabilities, π(s)
i , for s = 1, . . . , S, from the predictive equilib-

rium distribution through repeated solution of previous system

– summarize probabilities through means π̂i =
1
S

∑S
s=1 π

(s)
i for i = 1, . . . ,K

• For large K, use ROM for computationally expensive solution of system of equations
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PREDICTING TIMES BETWEEN TRANSITIONS

• Given current state i, straightforward prediction of the time to the next transition

• Exponential model Ex(νi) for T , time to the next transition

• Gamma posterior νi|data ∼ Ga(ai + ni, bi + Ti)

• ⇒ P (T ≤ t|data) =

(

bi + Ti

bi + Ti + t

)ai+ni

• Predictions of times up to more than one transition using Monte Carlo approaches
as earlier
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HARDWARE AVAILABILITY THROUGH CTMC

• Recent increased interest in reliability, availability and maintainability (RAM) analy-
ses of hardware (HW) systems and, in particular, safety critical systems

• Concerned with availability of hardware systems, modeled through CTMCs evolving
through a discrete set of states, some of which correspond to ON configurations and
the rest to OFF configurations

• Transition from an ON to an OFF state entails a system failure, whereas a transition
from an OFF to an ON system implies a repair

• Here emphasize availability, key performance parameter for Information Technology
systems

• There are many hardware configurations aimed at attaining very high system avail-
ability, e.g. 99.999% of time, through transfer of workload when one, or more,
system components fail, or intermediate failure states with automated recovery

• CTMC with states {1,2, . . . , l} corresponding to operational (ON) configurations,
whereas states {l+1, . . . , K} correspond to OFF configurations
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HARDWARE AVAILABILITY THROUGH CTMC

• A classical approach to availability estimation of CTMC HW systems would calcu-
late MLE for CTMC parameters, compute equilibrium distribution given these and
estimate the long term fraction of time that the system remains in ON configurations

• A shortfall of this approach is that it does not account for parameter uncertainty,
whereas the fully Bayesian framework automatically incorporates this uncertainty

• We provide short term and long term forecasting
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HARDWARE AVAILABILITY THROUGH CTMC

• Consider steady state prediction of the system

• ⇒ (unconditional) availability as sum of equilibrium probabilities for ON states

– Conditional (upon ν and P) availability: A|ν, P =
∑l

i=1 πi|ν,P
– Unconditional availability given by

1. Â|data ≃ ∑l
i=1 π̂i, using approximate equilibrium distribution if posteriors

sufficiently concentrated

2. 1
S

∑S
s=1A

(s), using sample {A(s) =
∑l

i=1 π
(s)
i }Ss=1

3.
∑m

i=1 qi

(

∑l
j=1 π

(i)
j |ν(i),P(i)

)

, based on ROM equilibrium distribution if com-

putational budget only allows for m equilibrium distribution computations
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HARDWARE AVAILABILITY THROUGH CTMC

• Interest in (short term) interval availability

• Define random variables Yt and At

Yt|ν,P =

{

1, if Xt|ν,P ∈ {1,2, . . . , l},
0, otherwise

At|ν,P =
1

t

∫ t

0

(Yu|ν,P) du

• Interval availability

It|ν,P = E[At|ν,P] =
1

t

l
∑

j=1

∫ t

0

πj(u|ν,P) du,

where πj(u|ν,P) = P (Xu = j|ν,P)

• Interval availability approximated with a one dimensional integration method, like
Simpson’s rule
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HARDWARE AVAILABILITY THROUGH CTMC

• Key computation πj(t|ν,P) terms, j = 1, ...,K through solution of Chapman-
Kolmogorov system of differential equations (see e.g. Ross, 2009)

π′(t|ν, P ) = (Λ|ν,P) · π(t|ν,P); t ∈ [0, T)

π(0|ν,P) = π(0), where

– π(t|ν,P) = (π1(t|ν,P), . . . , πK(t|ν,P))

– π(0) = (π
(0)
1 , π

(0)
2 , . . . , π

(0)
K ) initial state probability vector

– Λ|ν,P intensity matrix, conditional on ν,P

• ⇒ Analytic solution, with matrix exponentiation as key operation

π(t|ν,P) = π(0) exp(Λt|ν,P)
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HARDWARE AVAILABILITY THROUGH CTMC

• Posterior interval availability

It|data =

∫ ∫

E[At|ν,P]π(ν,P|data) dP dν

• As discussed earlier, at least three approaches to get predictive availability

1. E[At|P̂, ν̂], with P̂ and ν̂ posterior modes for posteriors sufficiently concen-
trated

2.
1

S

S
∑

s=1

E
[

At|P(s),ν(s)
]

for appropriate posterior samples {P(s), ν(s)}Ss=1, o.w.

3.
m
∑

i=1

qiE
[

At|P(i),ν(i)
]

, based on ROM, if computational budget allows only for

m availability computations
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DUAL-DUPLEX MODEL

• System described by dual-duplex model

• Dual-duplex system designed to detect a fault using a hardware comparator that
switches to a hot standby redundancy

• Dual-duplex system designed in double modular redundancy to improve reliability
and safety

• Dual-duplex system has high reliability, availability and safety ⇒ applied in embed-
ded control systems like airplanes

• two ON states {1,2} and two OFF states {3,4}

27



DUAL-DUPLEX MODEL

• Transition probability matrix

1 2 3 4

P =

1
2
3
4







0
p21
1
1

p12
0
0
0

p13
p23
0
0

0
p24
0
0







,

• Permanence rates: ν1, ν2, ν3 and ν4
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DUAL-DUPLEX MODEL

• Dir(0,1,1,0) and Dir(1,0,1,1) priors for rows 1 and 2, respectively

• Data counts n12 = 10, n13 = 4, n21 = 7, n23 = 1, n24 = 2

• ⇒ Posterior

(p11, p12, p13, p14)|data ∼ Dir(0,1+ 10,1+ 4,0)

(p21, p22, p23, p24)|data ∼ Dir(1 + 7,0,1+ 1,1+ 2)

• Posterior means:

p̂11 = 0, p̂12 = 0.69, p̂13 = 0.31, p̂14 = 0

p̂21 = 0.62, p̂22 = 0, p̂23 = 0.15, p̂24 = 0.23
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DUAL-DUPLEX MODEL

• Relatively sure about 1 failure every 10 hours for states with ν1 and ν2 ⇒ priors
ν1 ∼ Ga(0.1,1) and ν2 ∼ Ga(0.1,1)

• Less sure about states with ν3, ν4, expecting around 5 repairs per hour ⇒ priors
Ga(10,2) and Ga(10,2) for ν3, ν4

• Available data: for state 1, 14 times which add up 127.42; 10 with sum 86.81, for
state 2; 5 with sum 1.09, for state 3; and, 2 with sum 0.27, for state 4)

• ⇒ Posterior parameters of permanence rates, posterior means and standard devia-
tion

... α β Mean Std. Dev.
ν1 0.1+14 1+127.42 0.11 0.03
ν2 0.1+10 1+86.81 0.12 0.04
ν3 10+5 2+1.09 4.85 1.25
ν4 10+2 2+0.27 5.29 1.53
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DUAL-DUPLEX MODEL

• For fixed P and ν equilibrium solution given by


























ν1π1 = r21π2 + r31π3 + r41π4,
ν2π2 = r12π1,
ν3π3 = r13π1 + r23π2,
ν4π4 = r24π2,
π1 + π2 + π3 + π4 = 1,
πi ≥ 0,

• Solutions, with ∆ = ν2ν3ν4 + r12ν3ν4 + r13ν2ν4 + r12r23ν4 + r12r24ν3

– π1 =
ν2ν3ν4

∆

– π2 =
r12ν3ν4

∆

– π3 = 1− (π1 + π2 + π3)

– π4 =
r12r24ν3

∆
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DUAL-DUPLEX MODEL
Density plots for posterior equilibrium distribution
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Mean probabilities

π̂1 = 0.5931, π̂2 = 0.3990, π̂3 = 0.0059, π̂4 = 0.0020.
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DUAL-DUPLEX MODEL

• Split interval [0, t) into 200 subintervals

• Compute state probability vector π(t)|ν,P at each 200 endpoints

• Estimate system availability using Simpson’s rule

• Plot of system availability for initial state 1, 2 or unknown, with 95% predictive bands
around the central values
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DUAL-DUPLEX MODEL
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Initial ON State:Unknown

• ⇒ Uncertainty negligible, with relative errors less than 1%

• In fact, dual-duplex system designed as a high-availability device
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SEMI-MARKOVIAN PROCESSES

• Semi-Markovian processes (SMP) generalize CTMCs assuming that the times be-
tween transitions are not necessarily exponential

• {Xt}t∈T CTMC evolving within a finite state space E = {1,2, . . . ,K}

• When the process enters state i, it remains there for a random time Ti, with param-
eter νi, positive with probability 1

• fi(.|νi) and Fi(.|νi) density and distribution functions of Ti, respectively

• Define µi = E[Ti|νi]

• When leaving i, the process moves to j with probability pij, s.t.
∑

j pij = 1, ∀i, and
pii = 0

• As for CTMCs, the transition probability matrix, P = (pij), defines an embedded
DTMC

• Parameters for SMP: P = (pij) and ν = (νi)
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SEMI-MARKOVIAN PROCESSES

• Suppose states at transitions and times between transitions are observed
⇒ inference about P as before

• Assume posterior distribution of ν available, possibly through a sample

• Interest in long term forecasting of the proportion of time πj the system spends in
each state j

• For fixed P and ν, use the following procedure:

1. Compute, if it exists, the equilibrium distribution π̄ of the embedded Markov

chain, with transition matrix P: π̄ = π̄P and
K
∑

i=1

π̄i = 1, π̄i ≥ 0

2. Compute, if they exist, the expected holding times at each state, µ = (µ1, . . . , µK)

3. Compute π =
∑K

i=1 π̄iµi (expected holding time in any state)

4. Compute the equilibrium distribution π where πi =
π̄iµi

π
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SEMI-MARKOVIAN PROCESSES

• Uncertainty (ν,P) can be incorporated into the forecasts, through their posterior
predictive distributions

• As discussed before, various approaches can be considered

– For concentrated posteriors, estimates of P̂, µ̂ plugged in the previous proce-
dure to estimate predictive equilibrium distribution π̂

– Under greater uncertainty

∗ Monte Carlo sample, ν(s),P(s), s = 1, . . . , S, from their posterior distribu-
tions

∗ ⇒ sample π(s), s = 1, . . . , S, for repeated solutions of previous procedure

∗ predictive equilibrium distribution estimated from posterior mean π̂i =
1
S

∑S
s=1π

(s)

– If previous procedure too costly computationally ⇒ use ROM to reduce the com-
putational load
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SEMI-MARKOVIAN PROCESSES

• Conditional on parameter values, short term forecasting for a SMP involves complex
numerical procedures based on Laplace-Stieltjes transforms

• Pij(t) = P (Xt+s = j|Xs = i) = P (Xt = j|X0 = i) transition probability
functions

• fi(.|νi) and Fi(.|νi) density and distribution functions of Ti, respectively

• Evolution of Pij(t) described by forward Kolmogorov equations, for i, j = 1, . . . ,K

Pii(t) = (1− Fi(t)) +

∫ K
∑

k=1

pikfi(u)Pki(t− u)du

Pij(t) =

∫ K
∑

k=1

pikfi(u)Pkj(t− u)du, i 6= j
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SEMI-MARKOVIAN PROCESSES

• Equations in matrix form

P(t) = W(t) +

∫ t

0

(PF(u))P(t− u) du

– W(t) diagonal matrix with 1− Fi(t) in the i-th diagonal position of the matrix

– F(u) matrix with all elements in its i-th row equal fi(u)

• Matrix Laplace-Stieltjes transform M∗(s) of the matrix function M(t):
M∗(s) =

∫∞
0

M(t) exp(−st) dt, with m∗
ij(s) =

∫∞
0

mij(t) exp(−st) dt

• Basic Laplace-Stieltjes transform properties ⇒ P∗(s) = W∗(s) + (PF
∗(s))P∗(s)

• Simple matrix operations lead to P∗(s) = (I− PF
∗(s))−1W∗(s)

• W∗(s) diagonal matrix with elements 1
s
(1 − f∗

i (s)), because of properties of the
Laplace-Stieltjes transform

• Need to find the inverse transform of P∗(s) to obtain P(t)
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SEMI-MARKOVIAN PROCESSES
As earlier, account for uncertainty about (ν,P) and appeal to various approaches

• For sufficiently concentrated posteriors, uncertainty about (ν,P) summarized through
posterior modes ν̂ and P̂

– Obtain predictive Laplace-Stieltjes transform (I− P̂F∗(s|ν̂))−1W∗(s|ν̂)
– Invert it numerically to obtain an approximation of P(t|data) based on P(t|ν̂, P̂)

• For not concentrated posteriors

– Obtain samples from the posteriors: {νη}Nη=1, {Pη}Nη=1

– Find the corresponding Laplace-Stieltjes transform for each sampled value

PL(s|P η, νη) = (I − P ηFL(s|νη))−1WL(s|νη)

– Get the Monte Carlo approximation to the Laplace-Stieltjes transform

PL
MC(s) =

1

N

N
∑

η=1

PL(s|P η, νη)
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SEMI-MARKOVIAN PROCESSES

• For not concentrated posteriors

– Invert Monte Carlo approximation to the Laplace-Stieltjes transform to approxi-
mate P (t|data)

– Alternatively, we could have adopted the more expensive computationally, but
typically more precise procedure which consists of inverting the Laplace-Stieltjes
transform at each sampled parameter and, then, form the Monte Carlo sum of
inverses as an approximation to P (t|data)

• Too computationally intensive Laplace-Stieltjes transform computation and inversion
involved in the above procedure ⇒ use ROM, as for CTMCs

– approximate PL(s) through
∑m

i=1 q
ηPL(s|P η, νη)

– invert it to approximate P (t|data)
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POISSON PROCESS

• One of the simplest and most applied stochastic processes

• Used to model occurrences (and counts) of rare events in time and/or space, when
they are not affected by past history

• Applied to describe and forecast incoming telephone calls at a switchboard, arrival
of customers for service at a counter, occurrence of accidents at a given place,
visits to a website, earthquake occurrences and machine failures, to name but a few
applications

• Special case of CTMCs with jumps possible only to the next higher state and pure
birth processes, as well as model for arrival process in M/G/c queueing systems

• Simple mathematical formulation and relatively straightforward statistical analysis
⇒ very practical, if approximate, model for describing and forecasting many random
events
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POISSON PROCESS

• Counting process N(t), t ≥ 0: stochastic process counting number of events oc-
curred up to time t

• N(s, t], s < t: number of events occurred in time interval (s, t]

• Poisson process with intensity function λ(t): counting process N(t), t ≥ 0, s.t.

1. N(0) = 0

2. Independent number of events in non-overlapping intervals

3. P (N(t, t+∆t] = 1) = λ(t)∆t+ o(∆t), as ∆t → 0

4. P (N(t, t+∆t] ≥ 2) = o(∆t), as ∆t → 0

• Definition ⇒ P (N(s, t] = n) =
(
∫ t

s
λ(x)dx)n

n!
e
−
∫ t

s
λ(x)dx

, for n ∈ Z
+

⇒ N(s, t] ∼ Po
(

∫ t

s
λ(x)dx

)
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POISSON PROCESS

• Intensity function: λ(t) = lim
∆t→0

P (N(t, t+∆t] ≥ 1)

∆t

– HPP (homogeneous Poisson process): constant λ(t) = λ, ∀t
– NHPP (nonhomogeneous Poisson process): o.w.

• HPP with rate λ

– N(s, t] ∼ Po(λ(t− s))

– Stationary increments (distribution dependent only on interval length)
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POISSON PROCESS

• Mean value function m(t) = E[N(t)], t ≥ 0

• m(s, t] = m(t)−m(s) expected number of events in (s, t]

• If m(t) differentiable, µ(t) = m′(t), t ≥ 0, Rate of Occurrence of Failures (ROCOF)

• P (N(t, t+∆t] ≥ 2) = o(∆t), as ∆t → 0
⇒ orderly process
⇒ λ(t) = µ(t) a.e.

• ⇒ m(t) =
∫ t

0
λ(x)dx and m(s, t] =

∫ t

s
λ(x)dx

• ⇒ m(t) = λt and m(s, t] = λ(t− s) for HPP with rate λ
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POISSON PROCESS

• Arrival times {Tn, n ∈ Z
+}:

Tn :=

{

min {t : N(t) ≥ n} n > 0
0 n = 0

• {Tn, n ∈ N+} stochastic process, sort of dual of N(t)

• Interarrival times {Xn, n ∈ Z
+}:

Xn :=

{

Tn − Tn−1 n > 0
0 n = 0

• Interarrival and arrival times related through Tn =

n
∑

i=1

Xi
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POISSON PROCESS

• In a Poisson process N(t) with intensity λ(t)

– Tn has density gn(t) =
λ(t)[m(t)]n−1

Γ(n)
e−m(t)

– Xn has distribution function, conditional upon the occurrence of the (n − 1)-

st event at Tn−1, given by Fn(x) =
F (Tn−1 + x)− F (Tn−1)

1− F (Tn−1)
, with F (x) =

1− e−m(x)

– ⇒ distribution function of T1 (and X1) given by F1(t) = 1− e−m(t), and density
function g1(t) = λ(t)e−m(t)

• For HPP with rate λ

– Interarrival times, and first arrival time, have an exponential distribution Ex(λ)
(⇒ HPP renewal process)

– n-th arrival time, Tn, has a gamma distribution Ga(n, λ), for each n ≥ 1

– Link between HPP and exponential distribution
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POISSON PROCESS
Poisson process N(t) with intensity function λ(t) and mean value function m(t)

• T1 < . . . < Tn: n arrival times in (0, T ] ⇒ P (T1, . . . , Tn) =

n
∏

i=1

λ(Ti) · e−m(T )

⇒ likelihood

• ⇒ P (T1, . . . , Tn) = λne−λT for HPP with rate λ

• n events occur up to time t0 ⇒ distributed as order statistics from cdf m(t)/m(t0),
for 0 ≤ t ≤ t0 (uniform distribution for HPP)
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POISSON PROCESS

• Under suitable conditions, Poisson processes can be merged or split to obtain new
Poisson processes (see Kingman, p. 14 and 53, 1993)

• Useful in applications, e.g.

– merging gas escapes from pipelines installed in different periods

– splitting earthquake occurrences into minor and major ones

• Superposition Theorem

– n independent Poisson processes Ni(t), with intensity function λi(t) and mean
value function mi(t), i = 1, . . . , n

– ⇒ N(t) =
∑n

i=1Ni(t), for t ≥ 0, Poisson process with intensity function
λ(t) =

∑n
i=1 λi(t) and mean value function m(t) =

∑n
i=1mi(t)
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POISSON PROCESS

• Coloring Theorem

– N(t) be a Poisson process with intensity function λ(t)

– Multinomial random variable Y , independent from the process, taking values
1, . . . , n with probabilities p1, . . . , pn

– Each event assigned to classes (colors) A1, . . . , An according to Y Rightarrown
independent Poisson processesN1(t), . . . , Nn(t) with intensity functions λi(t) =
piλ(t), i = 1, . . . , n

• Coloring Theorem extended to the case of time dependent probabilities p(t), defined
on (0,∞)

– As an example, for an HPP with rate λ, if events at any time t are kept with
probability p(t) ⇒ Poisson process with intensity function λp(t)
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POISSON PROCESS: INFERENCE

• N(t) HPP with parameter λ

• n events observed in the interval (0, T ]

• Likelihood for two possible experiments

– Times T1, . . . , Tn available

Theorem on Poisson processes ⇒ l(λ|data) = (λT)ne−λT

– Only number n available

Properties of Po(λT) ⇒ l(λ|data) =
(λT)n

n!
e−λT

• Proportional likelihoods⇒ same inferences (Likelihood Principle, Berger and Wolpert,
1988)

• In both cases, likelihood not dependent on the actual occurrence times but only on
their number
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POISSON PROCESS: INFERENCE

• Gamma priors conjugate w.r.t. λ in the HPP

• Prior Ga(α, β)

• ⇒ f(λ|n, T) ∝ (λT)ne−λT · λα−1e−βλ

• ⇒ posterior Ga(α+ n, β + T)

• Posterior mean λ̂ =
α+ n

β + T

• Posterior mean combination of

– Prior mean λ̂P =
α

β

– MLE λ̂M =
n

T

12



ACCIDENTS IN THE CONSTRUCTION SECTOR
Rı́os Insua et al (1999)

• Interest in number of accidents in some companies in the Spanish construction sec-
tor

• 75 accidents and an average number of workers of 364 in 1987 for one company

• Number of workers constant during the year

• Times of all accidents of each worker are recorded

• Accidents occur randomly ⇒ HPP model justified

• Each worker has the same propensity to have accidents ⇒
– HPP with same λ for all of them

– If one year corresponds to T = 1 ⇒ number of accidents for each worker
follows the same Poisson distribution Po(λ)
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ACCIDENTS IN THE CONSTRUCTION SECTOR

• Accidents of different workers are independent

– Apply Superposition Theorem

– ⇒ Number of accidents for all workers given by an HPP with rate 364λ

• Gamma prior Ga(1,1) on λ

– Likelihood l(λ|data) = (364λ)75e−364λ

– Posterior gamma Ga(76,365)

– Posterior mean 76/365 = 0.208

– Prior mean 1

– MLE 75/364 = 0.206

– Posterior mean closer to MLE ⇒ think of the hypothetical experiment (just 1
hypothetical sample w.r.t. 75 actual ones)
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ACCIDENTS IN THE CONSTRUCTION SECTOR

• Prior Ga(1,1) ⇒ mean 1 and variance 1

– large variance in this experiment

– ⇒ scarce confidence on the prior assessment of mean equal to 1

• Prior Ga(1000,1000) ⇒ mean 1 and variance 0.001

– Small variance in this experiment

– ⇒ strong confidence on the prior assessment of mean equal to 1

• ⇒ Posterior Ga(1075,1364)

• Posterior mean 1075/1364 = 0.79

• Prior mean 1

• MLE 75/364 = 0.21

• Posterior mean 10075/10364 = 0.97 for a Ga(10000,10000) prior
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POISSON PROCESS: INFERENCE

• Computation of quantities of interest

– analytically (e.g. posterior mean and mode)

– using basic statistical software (e.g. posterior median and credible intervals)

• Accidents in the construction sector

– Gamma prior Ga(100,100) for the rate λ

– Posterior mean: 175/464 = 0.377

– Posterior mode: 174/464 = 0.375

– Posterior median: 0.376

– [0.323,0.435]: 95% credible interval ⇒ quite concentrated distribution

– Posterior probability of interval [0.3,0.4]: 0.789
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NON CONJUGATE ANALYSIS

• Improper priors

– Controversial, although rather common, choice, which might reflect lack of knowl-
edge

– Possible choices

∗ f(λ) ∝ 1: Uniform prior
⇒ posterior Ga(n+ 1, T)

∗ f(λ) ∝ 1/λ: Jeffreys prior given the experiment of observing times between
events
⇒ posterior Ga(n/2, T)

∗ f(λ) ∝ 1/
√
λ: Jeffreys prior given the experiment of observing the number

of events in a fixed period
⇒ posterior Ga(n+ 1/2, T)
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NON CONJUGATE ANALYSIS

• Lognormal prior LN
(

µ, σ2
)

• ⇒ posterior f(λ|n, T) ∝ λne−λT · λ−1e−(logλ−µ)/(2σ2)

• Normalizing constant C and other quantities of interest (e.g., the posterior mean λ̂)
computed numerically, using, e.g., Monte Carlo simulation

1. Set C = 0, D = 0 and λ̂ = 0. i = 1.

2. While i ≤ M, iterate through
. Generate λi from a lognormal distribution LN

(

µ, σ2
)

. Compute C = C + λn
i e

−λiT

. Compute D = D + λn+1
i e−λiT

. i = i+ 1

3. Compute λ̂ = C
D

.

18



NON CONJUGATE ANALYSIS

• Given the meaning of λ (expected number of events in unit time interval or inverse
of mean interarrival time), it may often be considered that λ is bounded

• ⇒ Prior on a bounded set

• Uniform prior on the interval (0, L]

• ⇒ Posterior f(λ|n, T) ∝ λne−λT I(0,L](λ)

• Normalizing constant γ(n + 1, LT)/T n+1, with γ(s, x) =
∫ x

0
ts−1e−tdt lower in-

complete gamma function

• Posterior mean λ̂ =
1

T

γ(n+ 2, LT)

γ(n+ 1, LT)
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FORECASTING

• n events observed in the interval (0, T ]

• Interest in forecasting number of events in subsequent intervals: P (N(T, T + s] =
m),

• For s > 0 and integer m

P (N(T, T + s] = m) =

∫ ∞

0

P (N(T, T + s] = m|λ) f(λ|n, T) dλ

=

∫ ∞

0

(λs)m

m!
e−λs f(λ|n, T) dλ

Posterior Ga(α+ n, β + T)

⇒ P (N(T, T + s] = m) =
sm

m!

(β + T)α+n

(β + T + s)α+n+m

Γ(α+ n+m)

Γ(α+ n)
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FORECASTING

• Expected number of events in the subsequent interval

E[N(T, T + s]] =

∫ ∞

0

E[N(T, T + s]|λ]f(λ|n, T)dλ

=

∫ ∞

0

λs f(λ|n, T)dλ

Posterior Ga(α+ n, β + T)

⇒ E[N(T, T + s]] = s
α+ n

β + T
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ACCIDENTS IN THE CONSTRUCTION SECTOR

• Gamma prior Ga(100,100) for the rate λ

• Posterior gamma Ga(175,464), having observed 75 accidents with 346 workers
in 1987

• Interest in number of accidents during the first six months of 1988 (i.e. s = 0.5),
when the number of workers has increased to 400 (i.e. m = 400)

• T1987 denotes December, 31st, 1987

• ⇒ N(T1987, T1987 + 0.5] ∼ Po(400λ · 0.5)

• E[N(T1987, T1987 +0.5]] = 400 · 0.5175
464

= 75.431

• Interested in probability of 100 accidents in the six months:

P (N(T1987, T1987 +0.5] = 100) =
200100

100!

464175

664275

Γ(275)

Γ(175)
= 0.003

• Probability of no accidents in the six months: (464/664)175 ≈ 0
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CONCOMITANT POISSON PROCESSES

• k Poisson processes Ni(t), with parameter λi, i = 1, . . . , k

• Observe ni events over an interval (0, ti] for each process Ni(t)

• Processes could be related at different extent

• Typical example, as in Cagno et al (1999), provided by gas escapes in a network of
pipelines which might differ in, e.g., location and environment

• Based on such features, pipelines could be split into subnetworks and an HPP for
gas escapes in each of them is considered

• Some possible mathematical relations among the HPPs are presented, using the
gas escape example for illustrative purposes
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CONCOMITANT POISSON PROCESSES

• Independence

– Processes correspond to completely different phenomena, e.g., gas escapes in
completely different pipelines, for material, location, environment, etc.

– Completely different λi, with no relation

– Conjugate gamma priors Ga(αi, βi) for each process Ni(t), i = 1, . . . , k

– ⇒ Posterior distribution Ga(αi + ni, βi + ti)

• Complete similarity

– Identical processes with same λ, e.g., the gas pipelines are identical for mate-
rial, laying procedure, environment and operation

– Likelihood l(λ|data) ∝
k
∏

i=1

(λti)
nie−λti ∝ λ

∑k

i=1
nie−λ

∑k

i=1
ti

– Gamma prior Ga(α, β)

– ⇒ Gamma posterior Ga
(

α+
∑k

i=1 ni, β +
∑k

i=1 ti

)

24



CONCOMITANT POISSON PROCESSES
Partial similarity (exchangeability) :

• Processes with similar λi, i.e. different but from same prior, corresponding e.g. to
similar, but not identical, conditions for the gas pipelines

• Hierarchical model:

Ni(ti)|λi ∼ Po(λiti), i = 1, . . . , k

λi|α, β ∼ Ga(α, β), i = 1, . . . , k

f(α, β)

• Experiment corresponding to observe k HPPs Ni(t), i = 1, . . . , k, with parameter
λi, until time ti

• Different choices for prior f(α, β) proposed in literature
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CONCOMITANT POISSON PROCESSES
Different choices for prior f(α, β)

• Albert (1985)

– Model reparametrization

∗ µ = α/β

∗ γi = β/(ti + β), i = 1, . . . , k

– Noninformative priors f(µ) = 1/µ and f(γ) = γ−1(1− γ)−1

– Approximations to estimate mean and variance of λi’s

• George et al (1993): failures of ten power plants

– Exponential priors Ex(1) or Ex(0.01) for α

– Gamma priors Ga(0.1,1) and Ga(0.1,0.01) for β

– Informal sensitivity analysis, with small and large values of α and β
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CONCOMITANT POISSON PROCESSES
Masini et al (2006)

• Priors

f(α) ∝ Γ(α+ 1)k/Γ(kα+ a), k integer ≥ 2, a > 0

β ∼ Ga(a, b)

• Proper prior distribution on α

– Shape depends on the parameter a, appearing also in the prior on β

– For a > 1, decreasing density for all positive α

– For a ≤ 1, increasing density up to its mode, (1 − a)/(k − 1), and then de-
creasing

– Numerical experiments showed wide range of behaviors representing possible
different beliefs

– Mathematical convenience: both gamma functions in the prior cancel when inte-
grating out α and β and computing the posterior distribution of λ = (λ1, . . . , λk)
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CONCOMITANT POISSON PROCESSES

• Posterior distribution of λ = (λ1, . . . , λk) given by

f(λ|data) ∝
∏k

i=1 λ
Ni(ti)−1
i exp {−λiti}

(
∑k

i=1 λi + b)a(− logH(λ))k+1
,

with H(λ) =
∏k

i=1 λi(
∑k

i=1 λi + b)−k

• Normalizing constant C computed numerically, using, e.g., Monte Carlo simulation

1. Set C = 0. i = 1.

2. Until convergence is detected, iterate through

. For j = 1, . . . , k generate λ(i)
j from Ga(Nj(tj), tj)

. Compute H(i)(λ) =
∏k

m=1 λ
(i)
m (
∑k

n=1 λ
(i)
n + b)−k

. Compute C =
∑i

l=1

∏k
j=1Γ(Nj(tj))t

−Nj(tj)
j

(
∑k

m=1 λ
(i)
m + b)a(− logH(i)(λ))k+1

. i = i+ 1
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COVARIATES

• Masini et al (2006): two models considering covariates

1. directly in the parameters

2. in the prior distributions of the parameters

• Key idea: find relations among processes through their covariates

• Two different gas subnetworks could differ on the pipe diameter (small vs. large)
but they might share the location ⇒ data from all subnetworks used to determine
contribution of the covariate (diameter) in inducing gas escapes

• m covariates taking, for simplicity, values 0 or 1 ⇒ 2m possible combinations

• For each combination j, j = 1, . . . ,2m

– Covariate values (Xj1, . . . , Xjm)

– ⇒ Poisson process Nj(t) with parameter λ
∏m

i=1 µ
Xji

i

⇒ All null covariates ⇒ HPP with parameter λ
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COVARIATES

• Consider only one covariate (m = 1)

– Only two possible combinations (e.g., small vs. large diameter in the gas pipelines)

– ⇒ Two HPPs N1(t) and N2(t) with rates λ and λµ, respectively

• Experiment

– n0 events observed in (0, t0] for 0-valued covariate

– n1 events observed in (0, t1] for 1-valued covariate

⇒ likelihood l(λ, µ|data) ∝ (λt0)n0e−λt0 · (λµt1)n1e−λµt1

• Gamma priors Ga(α, β) and Ga(γ, δ) for λ and µ, respectively

• ⇒ full conditional posteriors

λ|n, t, µ ∼ Ga(α+ n0 + n1, β + t0 + µt1)

µ|n, t, λ ∼ Ga(γ + n1, δ + λt1),

with n = (n0, n1) and t = (t0, t1)
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COVARIATES

• No closed forms available for posteriors

• Sample easily obtained through Gibbs sampling

1. Choose initial values λ0, µ0. i = 1.

2. Until convergence is detected, iterate through
. Generate λi|n, t, µi−1 ∼ Ga

(

α+ n0 + n1, β + t0 + µi−1t1
)

. Generate µi|n, t, λi ∼ Ga
(

γ + n1, δ + λit1
)

. i = i+ 1

• Straightforward extension to more than one covariate

– Independent gamma priors

– ⇒ Full gamma conditional posteriors

– ⇒ Gibbs sampling
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COVARIATES

• k Poisson processes Ni(t) with covariates X
′

i = (Xi1, . . . , Xim)

• Covariates introduced in previous hierarchical model

Ni(ti)|λi ∼ Po(λiti), i = 1, . . . , k

λi|α,β ∼ Ga
(

α exp{X′

iβ}, α
)

, i = 1, . . . , k

f(α,β)

• ⇒ exp{X′

iβ} prior mean of each λi

• Proper priors chosen for both α and β

• ⇒ posterior sampled using MCMC

• Possible alternative: λi|α,β ∼ Ga
(

α exp{2X′

iβ}, α exp{X′

iβ}
)

• ⇒ prior mean exp{X′

iβ} and variance 1/α (not dependent on covariates)
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COVARIATES
Empirical Bayes alternative

• Fixed α

– Perform sensitivity analysis w.r.t. α

• Estimate β following an empirical Bayes approach

– Find ̂β maximizing P (N1(t1) = n1, . . . , Nk(tk) = nk|β) =

=

∫

P (N1(t1) = n1, . . . , Nk(tk) = nk|λ1, . . . , λk)f(λ1, . . . , λk|β)dλ1 . . . dλk

• ⇒ Independent gamma posterior distributions

λi|ni, ti ∼ Ga
(

α exp{X′

i
̂β}+ ni, α+ ti

)

, i = 1, . . . , k

• ⇒ posterior mean
α exp{X′

i
̂β}+ ni

α+ ti
, i = 1, . . . , k
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NONHOMOGENEOUS POISSON PROCESS

• NHPPs characterized by intensity function λ(t) varying over time

• ⇒ NHPPs useful to describe (rare) events whose rate of occurrence evolves over
time (e.g. gas escapes in steel pipelines)

– Life cycle of a new product

∗ initial elevated number of failures (infant mortality )

∗ almost steady rate of failures (useful life)

∗ increasing number of failures (obsolescence)

⇒ NHPP with a bathtub intensity function

• NHPP has no stationary increments unlike the HPP

• Superposition and Coloring Theorems can be applied to NHPPs

• Elicitation of priors raises similar issues as before
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INTENSITY FUNCTIONS
Many intensity functions λ(t) proposed in literature (see McCollin (ESQR, 2007))

• Different origins

– Polynomial transformations of HPP constant rate

∗ λ(t) = αt+ β (linear ROCOF model)

∗ λ(t) = αt2 + βt+ γ (quadratic ROCOF model)

– Actuarial studies (from hazard rates)

∗ λ(t) = αβt (Gompertz)

∗ λ(t) = αβt + γt+ δ

∗ λ(t) = eα+βt + eγ+δt

– Reliability studies

∗ λ(t) = α+ βt+
γ

t+ δ
(quite close to bathtub for adequate values)

∗ λ(t) = αβ(αt)β−1 exp{αtβ} (Weibull software model)
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INTENSITY FUNCTIONS

• Different origins

– Logarithmic transformations

∗ λ(t) =
α

t
(⇒ logarithmic m(t))

∗ λ(t) = α log t+ α+ β

∗ λ(t) = α log (1 + βt) + γ

∗ λ(t) =
α log (1 + βt)

1 + βt
(Pievatolo et al, underground train failures)

– Associated to distribution functions

∗ λ(t) = αf(t;β), with f(·) density function
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NONHOMOGENEOUS POISSON PROCESS
• Different mathematical properties

– Increasing, decreasing, convex or concave

∗ λ(t) = Mβtβ−1, M,β > 0 (Power Law Process)

∗ Different behavior for different βs
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NONHOMOGENEOUS POISSON PROCESS

• Different mathematical properties

– Periodicity (Lewis)

∗ λ(t) = α exp{ρ cos(ωt+ ϕ)}
∗ Earthquake occurrences (Vere-Jones and Ozaki, 1982)

∗ Train doors’ failures (Pievatolo et al., 2003)

– Unimodal, starting at 0 and decreasing to 0 when t goes to infinity

∗ Ratio-logarithmic intensity

∗ λ(t) =
α log (1 + βt)

1 + βt

∗ Train doors’ failures (Pievatolo et al., 2003)
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NONHOMOGENEOUS POISSON PROCESS

• Properties of the system under consideration

– Processes subject to faster and faster (slower and slower) occurrence of events
⇒ increasing (decreasing) λ(t)

– Failures of doors in subway trains, with no initial problems, then subject to an
increasing sequence of failures, which later became more rare, possibly because
of an intervention by the manufacturer
⇒ ratio-logarithmic λ(t) (Pievatolo et al., 2003)

– New product ⇒ life cycle described by bathtub intensity

– Finite number of bugs to be detected during software testing
⇒ m(t) finite over an infinite horizon

– Unlimited number of death in a population
⇒ m(t) infinite over an infinite horizon (as a good approximation)
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CLASSES OF NHPPs
Classes of NHPPs

• Defined through density f(t), with cdf F (t)

– λ(t) = θf(t) and m(t) = θF (t)

– ⇒ θ interpreted as (finite) expected number of events over an infinite horizon

– Number of bugs in software (Ravishanker et al.)

• Separable intensity λ(t|M,β) = Mg(t, β)

– M,β > 0

– g nonnegative function on [0,∞)

– Very popular intensities:

∗ g(t, β) = βtβ−1 (Power law process)

∗ g(t, β) = e−βt (Cox-Lewis process)

∗ g(t, β) = 1/(t+ β) (Musa-Okumoto process)
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CLASSES OF NHPPs

• Musa and Okumoto: λ(t)
(

= [m(t)]
′)

= λe−θm(t)

⇒ m(t) =
1

θ
log(λθt+1) for m(0) = 0

• PLP: λ(t) = Mβtβ−1 ⇒ [m(t)]
′
=

βm(t)

t

• λ(t) = a(ebt − 1) ⇒ [m(t)]
′
= b[m(t) + at]

• λ(t) = a log(1 + bt) ⇒ [m(t)]
′
=

b[m(t) + at]

1 + bt

• ⇒ [m(t)]
′
=

αm(t) + βt

γ + δt

• y
′
=

αy + βx

γ + δx

• ⇒ y = e

∫

α/(γ+δx)dx

{
∫

βx

γ + δx
e
−
∫

α/(γ+δx)dxdx+ c

}
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CLASSES OF NHPPs
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
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δ
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
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


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




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t
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t
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CLASSES OF NHPPs

• Small changes in parameters may imply significative changes in the mathematical
expression for m(t)

– α = 0, β = 1, γ = 1, δ = 2
⇒ m0(t) = t/2− (1/4) log(1 + 2t)

– α > 0, β = 1, γ = 1, δ = 2
⇒ mα(t) = {t+ (1/α)(1 + 2t)α/2}/(2− α)

– ⇒ limα↓0mα(t) = m0(t), ∀t

• Open problems

– Interpretation

– Properties of the models (e.g. continuity)

– Sensitivity and model selection
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INFERENCE

• Intensity function of N(t) denoted λ(t|θ), θ parameter

• Events observed at times T1 < . . . < Tn in (0, T ]

• Likelihood l(θ|T1, . . . , Tn) =

n
∏

i=1

λ(Ti|θ) · e−m(T )

• Class of NHPPs with λ(t) = θf(t|ω)

• ⇒ l(θ, ω|T1, . . . , Tn) = θn
n
∏

i=1

f(Ti|ω) · e−θF (T |ω)

– Exponential distribution Ex(ω): f(t|ω) = ωe−ωt and F (t|ω) = 1− e−ωt

– ⇒ l(θ, ω|T1, . . . , Tn) = θnωne−ω
∑n

i=1
Ti−θ(1−exp{−ωT})
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INFERENCE

• Likelihood l(θ, ω|T1, . . . , Tn) = θn
n
∏

i=1

f(Ti|ω) · e−θF (T |ω)

• Independent priors θ ∼ Ga(α, δ) and f(ω)

• ⇒ posterior conditionals

θ|T1, . . . , Tn, ω ∼ Ga(α+ n, δ + F (T |ω))

ω|T1, . . . , Tn, θ ∝
n
∏

i=1

f(Ti|ω)e−θF (T |ω)f(ω)

• Sample from posterior applying Metropolis step within Gibbs sampler
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INFERENCE

• Class of NHPPs with λ(t|M,β) = Mg(t, β)

• Likelihood l(M,β|T1, . . . , Tn) = Mn
n
∏

i=1

g(Ti, β) · e−MG(T,β)

• G(t, β) =
∫ t

0
g(u, β)du

• Independent priors M ∼ Ga(α, δ) and f(β)

• ⇒ posterior conditionals

M |T1, . . . , Tn, β ∼ Ga(α+ n, δ +G(T, β))

β|T1, . . . , Tn,M ∝
n
∏

i=1

g(Ti, β)e
−MG(T,β)f(β)

• Sample from posterior applying Metropolis step within Gibbs sampler
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NONHOMOGENEOUS POISSON PROCESS
N(t) Power Law process (PLP) (or Weibull process)

• Two parameterizations:

– λ(t|α, β) =
β

α

(

t

α

)β−1

and m(t;α, β) =

(

t

α

)β

, α, β, t > 0

– λ(t;M,β) = Mβtβ−1 and m(t;M,β) = Mtβ, M,β > 0

– Link: α−β = M

• Parameters interpretation

– β > 1 ⇒ reliability decay

– β < 1 ⇒ reliability growth

– β = 1 ⇒ constant reliability

– M = m(1) expected number of events up to time 1
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POWER LAW PROCESS
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FREQUENTIST ANALYSIS
Failures T = (T1, . . . , Tn) ⇒ likelihood

l(α, β | T ) = (β/α)n
n
∏

i=1

(Ti/α)
β−1 e−(y/α)β

• Failure truncation ⇒ y = Tn

MLE: β̂ = n/

n−1
∑

i=1

log(Tn/Ti) and α̂ = Tn/n
1/β̂

C.I. for β :
(

β̂χ2
γ/2(2n− 2)/(2n), β̂χ2

1−γ/2(2n− 2))/(2n)
)

• Time truncation ⇒ y = T

MLE: β̂ = n/

n
∑

i=1

log(T/Ti) and α̂ = T/n1/β̂

C.I. for β :
(

β̂χ2
γ/2(2n)/(2n), β̂χ

2
1−γ/2(2n)/(2n)

)

Unbiased estimators, λ̂(t), approx. C.I., hypothesis testing, goodness-of-fit, etc.
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BAYESIAN ANALYSIS
Failure truncation ≡ Time truncation

l(α, β | T ) = (β/α)n
n
∏

i=1

(Ti/α)
β−1 e−(y/α)β

• π(α, β) ∝ (αβγ)−1 α > 0, β > 0, γ = 0,1 ⇒ β|T ∼ β̂χ2
2(n−γ)

/(2n)

– Posterior exists, except for γ = 0 and n = 1

– β̂ = n/
∑n

i=1 log(T/Ti)

– Posterior mean β̃ = (n− γ)/
∑n

i=1 log(T/Ti)

– Credible intervals easily obtained with standard statistical software
• π(α) ∝ α−1 and β ∼ U(β1, β2) ⇒ π(β|T) ∝ βn−1

∏n
i=1 T

β
i I[β1,β2](β)

• π(α|β) ∝ βsaβα−aβ−1e−b(s/α)β a, b, s > 0 and β ∼ U(β1, β2)

⇒ π(β|T ) ∝ βn
n
∏

i=1

(

Ti

s

)β [

(
Tn

s
)β + b

]−n−a

I[β1,β2](β)

• In all case α|T by simulation (but α|β, T inverse of a Weibull)
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BAYESIAN ANALYSIS
Other parametrization

• l(M,β | T1, . . . , Tn) = Mnβn
n
∏

i=1

T β−1
i e−MT β

• Independent priors M ∼ Ga(α, δ) and β ∼ Ga(µ, ν)

• Possible dependent prior: M |β ∼ Ga
(

α, δβ
)

• ⇒ posterior conditionals (in red changes for dependent prior)

M |T1, . . . , Tnβ ∼ Ga
(

α+ n, δβ + T β
)

β|T1, . . . , TnM ∝ βµ+n−1 exp{β(
n
∑

i=1

logTi − ν)−MT β−Mδβ}

• Sample from posterior applying Metropolis step within Gibbs sampler

Interest in posterior Eβ,P{β < 1}, modes, C.I.’s, EM (for λ(t) = Mβtβ−1)
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BAYESIAN ROBUSTNESS

• Interruption dates for a 115 kV transmission line (Rigdon and Basu, 1989)

• 13 failure dates available, from July 15, 1963 to December 19, 1971

– 12 failure times, assuming first failure date as time 0

– Data time truncated on December 31, 1971

• Re-scale failure times so that [15/7/1963,31/12/1971] becomes [0,1]

• ⇒ Factor e−MT β

in likelihood becomes e−M

(Simplifying assumption for illustrative purposes)

• Likelihood l(β,M |t1, . . . , t12) = β12uβ−1M12e−M , with

(re-scaled) failure times ti’s and their product u
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BAYESIAN ROBUSTNESS

• Independent priors on M and β ⇒ independent posterior ⇒ focus only on β

• Prior P0: β ∼ Ga(2,1.678) ⇒ prior median 1 ⇒ reliability growth and decay are
equally likely, a priori

• ⇒ 0.722 posterior mean of β

• ǫ–contamination class of priors around P0

– Γǫ = {P : P = (1− ǫ)P0 + ǫQ,Q ∈ Q}
– ǫ = 0.1

– Q class of all probability measures

• supΓǫ
E[β|data] = 0.757 (for Dirac measure at 0.953)

• infΓǫ
E[β|data] = 0.680 (for Dirac measure at 0.509)

• Very robust estimates ⇒ reliability growth
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CHANGE POINTS

• Bathtub shaped intensity function λ(t) describes life cycle of a new product with an
initial decreasing part, a constant part and a final increasing one

• λ(t) could be described by the intensity functions of three distinct PLPs

– First part: β1 < 1, M1

– Second part: β2 = 1, M2

– Third part: β3 > 1, M3

• Need to estimate

– β1, β2, β3

– M1,M2,M3

– Change points t1 and t2
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CHANGE POINTS
PLP but valid for previous general class

Changes at each failure time

• Hierarchical Model
– βi i.i.d. LN

(

φ, σ2
)

, i = 0, . . . , n

– φ ∼ N
(

µ, τ2
)

– σ2 ∼ IGa(ρ, γ)

• Gamma prior for M

• Conditional posteriors
– Gamma for M

– Inverse Gamma for σ2

– Normal for φ

– Known (apart from a constant) for βi’s

⇒ Metropolis-Hastings and Gibbs sampling
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CHANGE POINTS
Changes at each failure time

• Dynamic Model
– log βi = log a+ log βi−1 + ǫi, i = 1, . . . , n

– ǫi ∼ N
(

0, σ2
)

• Priors
– Gamma for M
– Inverse Gamma for σ2

– Lognormal for a | σ2

– Lognormal for β0 | σ2

• Conditional posteriors
– Gamma for M
– Inverse Gamma for σ2

– Lognormal for a
– Known (apart from a constant) for βi’s

⇒ Metropolis-Hastings and Gibbs sampling
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CHANGE POINTS

Changes at a random number of failures

• Dynamic model as before

• Bernoulli r.v.’s for change/no change

• Beta priors on Bernoulli parameter

Changes at a random number of points
⇒ Reversible jump MCMC with steps:

• change of M and β at a randomly chosen change point

• change to the location of a randomly chosen change point

• “birth” of a new change point at a randomly chosen location in (0, y]

• “death” of a randomly chosen change point
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COAL-MINING DISASTERS
Ruggeri and Sivaganesan (2005)

• Dates of British serious coal-mining disasters, between 1851 and 1962: a well-
known data set for change point analysis

• RJMCMC to find change points

• Posterior probabilities for number of change points

k 0 1 2 3
Prob. 0.01 0.85 0.14 0.09

• Strong evidence in favor of one point (like in Raftery and Akman, 1986) but some
weak evidence for 2 points

• March 1892: posterior median of the change point (conditional on having only a
single change point)

• April 1886 - June 1896: 95% equal tail credible interval
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COMPOUND POISSON PROCESSES

• In Poisson processes events occur individually ⇒ sometimes a limitation

• Batch arrivals

– passengers exiting a bus at a bus stop

– arrival of multiple claims to an insurance company

• ⇒ Compound Poisson process (see, e.g., Snyder and Miller, 1991), generalizes the
Poisson process to allow for multiple arrivals

– N(t) Poisson process with intensity λ(t) (center of clusters)

– Sequence of i.i.d. random variables {Yi}, independent of N(t) (size of jump)

– ⇒ Compound Poisson process: counting process (jump process) defined by

∗ S(t) =

N(t)
∑

i=1

Yi,

∗ with S(t) = 0 when N(t) = 0
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COMPOUND POISSON PROCESSES

• S(t) compound Poisson process ⇒ for t < ∞

1. E[S(t)] = E

[

E

[

n
∑

i=1

Yi|N(t) = n

]]

= m(t)E[Yi],

2. V [S(t)] = E

[

V

[

n
∑

i=1

Yi|N(t) = n

]]

+ V

[

E

[

n
∑

i=1

Yi|N(t) = n

]]

= E[N(t)]V [Yi] + V [N(t)](E[Yi])
2 = m(t)E

[

Y 2
i

]

.

• Inference for compound Poisson processes ⇒ complex task, as shown by a simple
example

– N(t): HPP with rate λ

– {Yi}: i.i.d. exponential Ex(µ) r.v.’s
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COMPOUND POISSON PROCESSES

• Suppose S(t) = s observed, with t, s > 0

• Likelihood from

f(S(t) = s) =

∞
∑

n=1

f

(

n
∑

i=1

Yi = s|N(t) = n

)

P (N(t) = n)

=

∞
∑

n=1

µn

n− 1!
sn−1e−µs · (λt)

n

n!
e−λt,

• since sum of n i.i.d. exponential Ex(µ) ⇒ Ga(n, µ)

• Gamma priors Ga(α, β) and Ga(γ, δ) for µ and λ, respectively

• ⇒ posterior

f(µ, λ|S(t) = s) ∝
∞
∑

n=1

sn−1

n− 1!

βα

Γ(α)
µα+n−1e−(β+s)µ · t

n

n!

δγ

Γ(γ)
λγ+n−1e−(δ+t)λ,
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COMPOUND POISSON PROCESSES

• Integrating w.r.t. µ ⇒ posterior on λ

f(λ|S(t) = s) ∝
∞
∑

n=1

Γ(α+ n)

Γ(α)

βα

(β + s)α+n

sn−1

n− 1!
·Γ(γ + n)

Γ(γ)

δγ

(δ + t)γ+n

tn

n!
g(γ+n, δ+t),

with g(a, b) density function of a gamma Ga(a, b) random variable

• Similar for µ, integrating w.r.t. λ

• Multiple observations ⇒ very cumbersome computations

• E[S(T)] =
∫

m(t|λ)E[Yi|µ]f(µ, λ|S(t) = s)dµdλ
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COMPOUND POISSON PROCESSES

• Widely used to model insurance claims

• X(t) = X(0) + ct−
N(t)
∑

i=1

Yi

– X(0) initial insurer’s reserve

– X(t) insurer’s reserve at time t

– c constant premium (paid to insurer) rate

– N(t) number of claims up to time t

– Yi, i = 1, . . . , N(t), amount of i-th claim

• Interest in ruin probability
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MODULATED POISSON PROCESS

• Simple extension of Poisson process: introduction of covariates in λ(t)

– Masini et al (2006): rate λ of HPP multiplied by factors µ
Xji

i depending on co-
variates Xji taking values 0 or 1

• Events occur according to a modulated Poisson process if

– λi(t) = λ0(t)eX
′
iβ for i = 1, . . . , n, with

– λ0(t) baseline intensity function

– Xi = (Xi1, . . . , Xim), i = 1, . . . , n different combinations of covariates

– m-variate parameter β
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INFERENCE
• Each combination of covariates produces a Poisson process Ni(t)

• Superposition Theorem ⇒ unique Poisson process N(t)

• Bayesian inference for general modulated Poisson processes very similar to one for
HPP, with the addendum of a distribution over the parameter β

• Call center arrival data (Soyer and Tarimcilar, 2008, and Landon et al, 2010)

– Calls typically linked to individual advertisements

– Interest in evaluating the efficiency of advertisements

– Xi vector of covariates describing characteristics of i-th advertisement

∗ media expenditure (in $’s)

∗ venue type (monthly magazine, daily newspaper, etc.)

∗ ad format (full page, half page, color, etc.)

∗ offer type (free shipment, payment schedule, etc.)

∗ seasonal indicators
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SELF-EXCITING PROCESSES

• In a Poisson process occurrence of events does not affect intensity function at later
times

• Such property not always realistic

– Sequence of aftershocks after major earthquake

– Introduction of new bugs during software testing and debugging

• ⇒ Self-exciting process (SEP) introduced to describe phenomena in which occur-
rences affect next ones (Snyder and Miller, 1991, Ch. 6, and Hawkes and Oakes,
1974)

• Deterministic intensity function of NHPP

λ(t) = lim
∆t→0

P (N(t, t+∆t] ≥ 1)

∆t
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SELF-EXCITING PROCESSES

• Intensity process associated to SEP, dependent on history

λ(t) = µ(t) +

N(t−)
∑

j=1

gj(t− Tj),

– µ(t) deterministic function

– Tj ’s occurrence times

– gj ’s nonnegative functions expressing influence of past observations on the in-
tensity process

• Likelihood function formally similar to NHPP’s

– P (T1, . . . , Tn) =

n
∏

i=1

λ(Ti) · e−
∫ T

0
λ(t)dt, with

– T1 < . . . < Tn arrival times in (0, T ]
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SELF-EXCITING PROCESSES

• New tyre of a bicycle goes flat according to an HPP with rate λ

– No degradation over [0, T ], if not punctured

– Punctures occur randomly

• Flat tyre occurs at T1 < . . . < Tn over [0, T ]

– Tyre repaired at each Ti but more prone to new failures

– ⇒ Add µi to previous rate of HPP

– ⇒ Stepwise HPP, very simple example of SEP, with λ(t) = λ+

N(t−)
∑

i=1

µiI(Ti,∞)(t)

• Likelihood
n
∏

i=1



λ+

i−1
∑

j=1

µj



 e−λT−
∑n

i=1
µi(T−Ti)

• Gamma priors on λ and µi’s

• ⇒ Mixtures of gamma distributions as full conditional posteriors
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DOUBLY STOCHASTIC POISSON PROCESSES

• Intensity function of a self-exciting process ⇒ (random) intensity process

– dependent on N(t) itself

– paths known when observing events in N(t)

• Doubly stochastic Poisson process or Cox process (Cox, 1955)

– Extension of Poisson processes, allowing for unknown paths of the intensity
process, when only N(t) is given

– Two step randomization procedure:
process Λ(t) used to generate another process N∗(t) acting as its intensity

∗ N(t) is a Poisson process on [0,∞)

∗ Λ(t) stochastic process, independent from N(t), with nondecreasing paths,
s.t. Λ(0) ≥ 0

∗ ⇒ N∗(t) = N(Λ(t)) doubly stochastic Poisson process

69



DOUBLY STOCHASTIC POISSON PROCESSES

• Definition ⇒ N(t) Poisson process conditional on sample path λ(t) of process Λ(t)

• λ(t) deterministic ⇒ N(t) Poisson process

• Λ(t) ≡ Λ r.v. ⇒ mixed Poisson process

• Very few papers on Bayesian analysis of doubly stochastic Poisson processes

– Gutiérrez-Peña and Nieto-Barajas (2003) modelled Λ(t) with a gamma process

– Varini and Ogata (forthcoming) on seismic applications

• Problem: repeated observations (paths) of the process needed to estimate intensity
process and avoid indistinguishability from a NHPP based on a single path
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MARKED POISSON PROCESSES

• Points of Poisson process might be labeled with some extra information

• Observations become pairs (Ti,mi)

– Ti occurrence time

– mi (mark ) outcome of an associated random variable

• Thinning (or Coloring Theorem)

– Equivalent to introducing a mark m valued {1, . . . , n} and

– assigning the event to the class Am in the family of mutually exclusive and ex-
haustive classes {A1, . . . , An}
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EARTHQUAKE OCCURRENCES

• Earthquakes as point events subject to randomness

• Earthquakes occurrences often modeled as realizations of a point process, since
Vere-Jones (1970) (see Vere-Jones, 2011, for an account of the history of stochastic
models used in analyzing seismic activities)

• Some stochastic processes

– NHPP with λ(t) = α exp{ρ cos(ωt+ ϕ)} (Vere-Jones and Ozaki, 1982)

– Marked Poisson processes used to jointly model occurrence and magnitude of
earthquakes (Rotondi and Varini, 2003)

– Stress release model to analyze data in the Italian Sannio-Matese-Ofanto-Irpinia
region (considered later) (Rotondi and Varini, 2007, but model introduced by
Vere-Jones, 1978)

∗ Justified by Reid’s physical theory: stress in a region accumulates slowly over
time, until it exceeds the strength of the medium, and, then, it is suddenly
released and an earthquake occurs
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EARTHQUAKE OCCURRENCES

• Data from Sannio Matese, area in southern Italy subject to a consistent, sometimes
very disruptive, seismic activity

– 6.89 magnitude earthquake on 23/11/1980 in Irpinia caused many casualties
and considerable damage

• Shocks in Sannio Matese since 1120 catalogued exhaustively in Postpischl (1985),
using current and historical data such as church records

• For each earthquake, the catalogue contains many data

– Occurrence time (often up to the precise second)

– Latitude and longitude

– Intensity (strength of shaking at location as determined from effects on people
and environment)

– Magnitude (energy released at the source of the earthquake, measured by seis-
mographs or, earlier, computed from intensity)

– Name of the place of occurrence
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EARTHQUAKE OCCURRENCES

• Exploratory data analysis identified three different behaviors of the occurrence time
process since 1120 (Ladelli et al, 1992)

• More formal analysis ⇒ change-point model as before

• Consider earthquakes in the third period, i.e. from 1860 up to 1980

• Presence of foreshocks and aftershocks, sometimes hardly recognized ⇒ consider
one earthquake, the strongest, as the main shock in any sequence lasting one week

• Sannio Matese divided into three sub-regions, relatively homogeneous from a geo-
physical viewpoint
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EARTHQUAKE OCCURRENCES

• Marked Poisson model (occurrence time and magnitude)

• X interoccurrence times (in years) of a major earthquake (i.e. with magnitude not
smaller than 5)

– First interoccurrence time given by elapsed time between first and second earth-
quake

• Y
′
magnitude of a major earthquake

• Z number of minor earthquakes occurred in a given area since previous major one

• Earthquakes occur according to an HPP

• Each earthquake has probability p of being a major earthquake (and 1− p of being
a minor one)
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EARTHQUAKE OCCURRENCES

• Coloring Theorem ⇒ decompose the Poisson process into two independent pro-
cesses with respective rates λp (major) and λ(1− p) (minor)

• ⇒ Interoccurrence times X ∼ Ex(λp)

• ⇒ Conditionally on time x (realization of X), Z ∼ Po(λ(1− p)x)

• ⇒ Z ∼ Ge(p) since, for z ∈ N,

P (Z = z) =

∫ ∞

0

P (Z = z|X = x)f(x)dx

=

∫ ∞

0

e−λ(1−p)x [λ(1− p)x]z

z!
· λpe−λpxdx = p(1− p)z
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EARTHQUAKE OCCURRENCES
• Magnitude Y

′
independent on X and Z

• Although continuous, model Y
′
as a discrete r.v. which gets the values (5,5.1,5.2, . . .)

(one decimal, in general, in data recorded in the earthquakes catalogue)

• Actually consider Y = 10(Y
′ − 5) ∼ Ge(µ)

• Approximation works well for µ ≃ 1

– ⇒∑∞
k=K µ(1− µ)k = (1− µ)K ≃ 0, even for small K

– ⇒ Quite small probability of Y being large

• Joint density of (X,Y, Z) given by

f(x, y, z) = f(x)P (Y = y)P (Z = z|X = x) = λpe−λx[λ(1− p)x]z

z!
µ(1− µ)y

• ⇒ Likelihood, for n observations {Xi, Yi, Zi}

l(p, λ, µ|data) = λn+
∑

Zie−λ
∑

Xipn(1− p)
∑

Ziµn(1− µ)
∑

Yi

n
∏

i=1

XZi

i

Zi!
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EARTHQUAKE OCCURRENCES

• Independent priors

– p ∼ Be(α1, β1)

– λ ∼ Ga(α2, β2)

– µ ∼ Be(α3, β3)

• ⇒ Independent posterior distributions

– p|data ∼ Be(n+ α1,
∑

Zi + β1)

– λ|data ∼ Ga(n+
∑

Zi + α2,
∑

Xi + β2)

– µ|data ∼ Be(n+ α3,
∑

Yi + β3)
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EARTHQUAKE OCCURRENCES

• Posterior mean

– E[p|data] =
n+ α1

n+ α1 +
∑

Zi + β1

– E[λ|data] =
n+

∑

Zi + α2
∑

Xi + β2

– E[µ|data] =
n+ α3

n+ α3 +
∑

Yi + β3
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EARTHQUAKE OCCURRENCES

• Predictive densities for Xn+1, Yn+1 and Zn+1

f(xn+1|data) =
(n+

∑

Zi + α2)(
∑

Xi + β2)
n+
∑

Zi+α2Γ(n+ α1 +
∑

Zi + β1)

Γ(n+ α1)Γ(
∑

Zi + β1)
×

×
∫ 1

0

pn+α1(1− p)
∑

Zi+β1−1

(pxn+1 +
∑

Xi + β2)
n+
∑

Zi+α2+1
dp,

P (Yn+1 = yn+1|data) =
(n+ α3)Γ(n+ α3 +

∑

Yi + β3)Γ(
∑

Yi + β3 + yn+1)

Γ(
∑

Yi + β3)Γ(n+ α3 +
∑

Yi + β3 + yn+1 +1)
,

P (Zn+1 = zn+1|data) =
(n+ α1)Γ(n+ α1 +

∑

Zi + β1)Γ(
∑

Zi + β1 + zn+1)

Γ(
∑

Zi + β1)Γ(n+ α1 +
∑

Zi + β1 + zn+1 +1)
,

for xn+1 ≥ 0 and yn+1, zn+1 ∈ N

80



EARTHQUAKE OCCURRENCES

• p ∼ Be(α1, β1), λ ∼ Ga(α2, β2) and µ ∼ Be(α3, β3) independent a priori

• p: probability that, given an earthquake occurs, it is a major one

– Major earthquakes very unlikely w.r.t. minor ones ⇒ assume E[p] close to 0

– α1 = 2 and β1 = 8 ⇒ E[p] = 1/5

• Major earthquake occurs, on average, every ten years

– ⇒ E[X] = 10 = 1/(λp)

– α2 = 2 and β2 = 4 ⇒ E[λ] = 1/2 ⇒ E[λ]E[p] = 1/10

• As discussed earlier, µ very close to 1

– α3 = 8 and β3 = 2 ⇒ E[µ] = 4/5

• Prior variances denote strong beliefs:

V [p] = 4/275, V [λ] = 1/8 and V [µ] = 4/275
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EARTHQUAKE OCCURRENCES
Number and sums of observations in three areas in Sannio Matese

n
∑

xi
∑

yi
∑

zi
zone 1 3 50.1306 9 713
zone 2 16 81.6832 53 1034
zone 3 14 118.9500 100 812

Parameters of posterior distributions

p ∼ Be λ ∼ Ga µ ∼ Be
zone 1 (5,721) (718,54.1306) (11,11)
zone 2 (18,1042) (1052,85.6832) (24,55)
zone 3 (16,820) (828,122.9500) (22,102)
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EARTHQUAKE OCCURRENCES
Posterior expectations (and standard deviations)

E[p|data] E[λ|data] E[µ|data]
zone 1 .0069 13.2642 .5000

(.0031) (.4950) (.1043)
zone 2 .0170 12.2778 .3038

(.0040) (.3785) (.0514)
zone 3 .0191 6.7344 .1774

(.0047) (.2340) (.0342)

95% Credible intervals

p|data λ|data µ|data
zone 1 (.0022,.0141) (12.3116,14.2518) (.2978,.7022)
zone 2 (.0101,.0256) (11.5470,13.0307) (.2081,.4089)
zone 3 (.0110,.0295) (6.2835,7.2008) (.0976,.2128)
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EARTHQUAKE OCCURRENCES

• Percentage of major earthquakes very small and not significantly different for the
three zones, although relatively few major earthquakes occur in zone 1 (smallest p
and pλ, besides a small number of shocks)

– Posterior density of each p very concentrated around its mean (≃ .01)

– For all p’s ⇒ probability larger than 95% of being in the interval (.0022, .0295)

• Quite different occurrence rate in the three zones, as λ has very different means and
credible intervals: highest rates in zones 1 and 2

• Few minor earthquakes in zone 3, but major earthquakes characterized by larger
magnitudes (small µ) ⇒ most disruptive earthquakes occur mainly in zone 3

• Zone 2 and 3 with similar number of major earthquakes, but longer interoccurrence
times, smaller number of minor earthquakes and larger magnitudes in zone 3

– Does greater elapsed times between shocks imply greater magnitudes?
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A NEW BIRNBAUM-SAUNDERS DISTRIBUTION

• Motivated by problems of vibration in commercial aircrafts that cause fatigue in ma-
terials, Birnbaum and Saunders (1969) introduced a probability distribution (BS) that
describes lifetimes of specimens exposed to fatigue due to cyclic stress

• BS model is based on a physical argument of cumulative damage that produces
fatigue in materials, considering the number of cycles under stress needed to force
a crack extension due to fatigue to grow beyond a threshold, provoking the failure of
the material

• Density and cdf of BS distribution given by

f(x) =

√

x
β
+

√

β
x

2αx
φ







√

x
β
−
√

β
x

α







and F (x) = Φ







√

x
β
−
√

β
x

α







.

with x > 0, α, β > 0, and φ and Φ standard Gaussian pdf and cdf

• Several extensions and generalizations of the BS distribution
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A NEW BIRNBAUM-SAUNDERS DISTRIBUTION

• NHPP N(t) number of cycles occurring in [0, t]

– Intensity function λ(t), with λ(t) > 0,∀t
– Mean value function Λ(t) strictly increasing

• {ξk; k ∈ N} sequence of i.i.d. r.v.’s denoting crack extension due to kth stress cycle

– Mean µ and variance σ2

• ⇒ compound Poisson Wt =
∑Nt

k=1 ξk: total crack extension produced during [0, t]

• Interest in Wt > ω∗ since failure occurs for crack length exceeding a critical value ω∗

• T = inf{t > 0: Wt > ω∗} lifetime until failure occurs

• ⇒ Interest in deriving the distribution of T
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A NEW BIRNBAUM-SAUNDERS DISTRIBUTION
Theorem

• {Rt; t ≥ 0} process defined as

Rt =

Nt
∑

k=0

ξk − µΛ(t)

[{µ2 + σ2}Λ(t)]1/2

• Λ(t) −→
t→∞

∞

• ⇒ Rt
D−→

t→∞
R

– R ∼ N(0,1)

– D convergence in distribution
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A NEW BIRNBAUM-SAUNDERS DISTRIBUTION

• T and Wt related:

{T ≤ t} = {Wt ≥ ω∗} =

{

∑Nt

k=1 ξk − µΛ(t)
[

{µ2 + σ2}Λ(t)
]1/2

≥ ω∗ − µΛ(t)
[

{µ2 + σ2}Λ(t)]1/2

}

• Combined with Central Limit Theorem ⇒ approximate, for t large enough

P(Wt ≥ ω∗) = P(T ≤ t) ≈ Φ

(

µ
√

Λ(t)

[µ2 + σ2]1/2
− ω∗

[µ2 + σ2]1/2
√

Λ(t)

)

• As in Birnbaum and Saunders, approximation treated as exact

• ⇒ Λ-BS distribution Λ-BS(α, β,Λ), with cdf

FT(t) = P(T ≤ t) = Φ
([
√

Λ(t)/βΛ −
√

βΛ/Λ(t)
]

/α
)

, t > 0,

with α =
√

[µ2 + σ2]/[ω∗µ] and βΛ = ω∗/µ
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A NEW BIRNBAUM-SAUNDERS DISTRIBUTION

• Link with a Gaussian r.v. Z

Z =
1

α

[

√

Λ(T)/βΛ −
√

βΛ/Λ(T)
]

∼ N(0,1)

⇔ T = Λ−1
(

βΛ

[

αZ/2+

√

{αZ/2}2 +1
]

2

)

∼ Λ−BS(α, β,Λ)

• Pdf of T ∼ Λ-BS(α, β,Λ) given by fT(t) = φ (at)At, for t > 0, α > 0 and β > 0,
where

at = at(α, β,Λ) =
1

α

[
√

Λ(t)

βΛ

−
√

βΛ

Λ(t)

]

, At =
d

dt
at =

Λ′(t) [Λ(t) + βΛ]

2α
√
βΛΛ(t)3/2

• BS distribution obtained for HPP with λ = 1
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A NEW BIRNBAUM-SAUNDERS DISTRIBUTION

• PLP: λ(t) = Mθtθ−1

• ⇒ pdf fT(t) =
1√
2π

exp

(

− 1

2α2

[

{

t

β

}θ

+

{

β

t

}θ

− 2

])

θ

2α t

[

{

t

β

}θ/2

+

{

β

t

}θ/2
]

• Pdf does not depend on M

• Plots of Λ-BS densities for some α, β and θ

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

t

f(
t)

Λ − BS(α = 0.5, β = 1, θ = 0.5)
Λ − BS(α = 0.5, β = 1, θ = 2)
Λ − BS(α = 0.5, β = 1, θ = 4)
BS(α = 0.5, β = 1)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

t

f(
t)

Λ − BS(α = 0.25, β = 1, θ = 0.5)
Λ − BS(α = 0.5, β = 1, θ = 0.5)
Λ − BS(α = 0.75, β = 1, θ = 0.5)
Λ − BS(α = 1, β = 1, θ = 0.5)

90



OTHER ISSUES

• Spatio-temporal models, especially spatial point processes, including Poisson ones,
are getting more and more popular, mostly stemming from environmental and epi-
demiological problems (Banerjee et al, 2004)

• (Extended) gamma process conjugate prior on the intensity function for data coming
from replicates of a Poisson process (Lo, 1982)

• Intensity function of a spatial NHPP modeled with a Bayesian nonparametric mixture
(Kottas and Sansò, 2007)

• Under the Bayesian nonparametric approach, intensity function seen as a realization
from a process ⇒ data viewed as arising from a doubly stochastic Poisson process

• de Miranda and Morettin (2011) used wavelet expansions to model the intensity
function in a classical framework ⇒ possible Bayesian approach
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WHAT IS RELIABILITY?

• Probability that a system operates correctly, under specified condi-
tions, for a given time

• Quality over time (Condra, 1993)

• P(T ≥ t) (reliability function), with T failure time, nonnegative r.v.

2



SOME ISSUES IN RELIABILITY

• System performance

• Monetary costs

• Social costs

• Warranty (length, cost, forecast)

• Inventory of spare parts

• Maintenance and replacement policy

• Product testing

• Degradation up to failure

• Safety and security
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BASIC DEFINITIONS

• Failure time T , with pdf f(t) and cdf F (t), t ≥ 0

• Reliability function: S(t) = P(T > t) =
∫∞
t
f(x)dx

• Mean time to failure MTTF =
∫∞
0
tf(t)dt =

∫∞
0
S(t)dt

• Mean time between failures MTBF

• Hazard function (hazard rate, failure rate):

h(t) = lim
∆t→0

P(t ≤ T < t+∆t|T ≥ t)

∆t
=
f(t)

S(t)

– h(t) not a density but h(t)∆t ≈ P(t ≤ T < t+∆t|T ≥ t)

– h(t) =
f(t)
S(t)

– f(t) = h(t)S(t) = h(t)e
−
∫ t

0
h(x)dx
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REPAIRABLE SYSTEMS
Failure of a water pump in a car

• Water pump ⇒ non-repairable system

• Car ⇒ repairable system

Most common models for repairable systems:

• Renewal Process (“Good as new”)

– sequence of i.i.d. r.v.’s denoting time between two failures

• Non-homogeneous Poisson Process (NHPP) (“Bad as old”)

Both models have drawbacks:

Repair ⇒ reliability growth but not “as new”

Different models used in disjoint time intervals
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RENEWAL PROCESS

• Sequence of failure times X0 = 0 ≤ X1 ≤ X2 ≤ · · ·

• Interfailure times Ti = Xi −Xi−1 for i = 1,2, . . .

• If T1, T2, . . . sequence of i.i.d. random variables

• ⇒ {Ti} stochastic process called renewal process

• HPP renewal process since interfailure times are i.i.d. exponential random variables

• Two simple examples of Bayesian estimation via conjugate priors
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RENEWAL PROCESS

• Number of cycles (daily beard cuts of the same individual) run by an electric razor
before battery exhaustion and replacement

• ⇒ Sequence of integer-valued random variables N1, . . . , Nn

• Assume Ni’s, i = 1, . . . , n, are i.i.d. Poisson Po(λ) random variables

• ⇒ likelihood given by l(λ|data) =
λ
∑n

i=1
Ni

∏n
i=1Ni!

e−nλ

• Conjugate gamma Ga(α, β) prior for λ

• ⇒ Posterior Ga
(

α+
∑n

i=1Ni, β+ n
)

• Posterior mean
α+

∑n
i=1Ni

β+ n

8



RENEWAL PROCESS

• Posterior predictive distribution of (n+k)’th failure time Xn+k, for any integer k > 0

– Sum of k i.i.d. Po(λ) random variables ⇒ Po(kλ)

– for m ≥∑n
i=1Ni,

P (Xn+k = m|N1, . . . , Nn) =

∫

P (Xn+k = m|λ)f(λ|N1, . . . , Nn)dλ

=

∫

(kλ)m−
∑n

i=1
Ni

(m−∑n
i=1Ni)!

e−kλ · (β+ n)α+
∑n

i=1
Ni

Γ(α+
∑n

i=1Ni)
λα+

∑n

i=1
Ni−1e−(β+n)λdλ

=
km−

∑n

i=1
Ni

(m−∑n
i=1Ni)!

(β+ n)α+
∑n

i=1
Ni

(β+ n+ k)α+m
Γ(α+m)

Γ(α+
∑n

i=1Ni)
.

– As a consequence, for r = 0,1, . . .,

P (Nn+1 = r|N1, . . . , Nn) =
1

r!

(β+ n)α+
∑n

i=1
Ni

(β+ n+1)α+r+
∑n

i=1
Ni

Γ(α+ r+
∑n

i=1Ni)

Γ(α+
∑n

i=1Ni)
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RENEWAL PROCESS

• Red traffic light, whose bulbs are substituted upon failure

• Replacement time negligible w.r.t. bulb lifetime

• All the bulbs have the same characteristics and operate under identical conditions

• ⇒ assume interfailure times, T1, . . . , Tn, a sequence of i.i.d. exponential Ex(λ)
random variables

• Likelihood l(λ|data) = λne−λ
∑n

i=1
Ti

• Conjugate gamma Ga(α, β) prior chosen for λ

• ⇒ Posterior gamma Ga
(

α+ n, β+
∑n

i=1 Ti
)

• Posterior mean
α+ n

β+
∑n

i=1 Ti

10



RENEWAL PROCESS

• Posterior predictive density fn+k(x) of the (n+k)-th failure timeXn+k =
∑n+k

i=1 Ti,
for any integer k > 0

– Sum of k i.i.d. Ex(λ) random variables ⇒ Ga(k, λ)

– for x > 0,

fn+k(x+

n
∑

i=1

Ti|T1, . . . , Tn) =

∫

fk(x|λ)f(λ|T1, . . . , Tn)dλ

=

∫

λk

Γ(k)
xk−1e−λx · (β+

∑n
i=1 Ti)

α+n

Γ(α+ n)
λα+n−1e−(β+

∑n

i=1
Ti)λdλ

= xk−1 Γ(α+ n+ k)

Γ(k)Γ(α+ n)

(β+
∑n

i=1 Ti)
α+n

(β+ x+
∑n

i=1 Ti)
α+n+k

.

– One-step-ahead predictive distribution is given by

fn+1(x|T1, . . . , Tn) = (α+ n)
(β+

∑n
i=1 Ti)

α+n

(β+ x+
∑n

i=1 Ti)
α+n+1
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FEATURES OF A NHPP

• NHPP used to model reliability growth/decay

• NHPP good for

– prototype testing

– repair of small components in complex systems

• Repair strategies in a NHPP:

– instantaneous

– minimal repair (⇒ back to previous reliability)

Repairs could worsen the reliability

12



NHPP

• Issues already presented earlier:

– Definition, properties and theorems

– Choice of intensity function

– Elicitation of priors

– Estimation and forecasting

• Other issues to be presented in case studies

• Here:

– Further on prior elicitation

– Reliability measures

13



EXPERT ELICITATION
Campodonico and Singpurwalla (1995)

• Analyst A chooses process, i.e. λ(t)

• A asks Expert E questions on µ1 = E[N(T1)] and µ2 = E[N(T2)], T1 < T2

• Expert E

– does not know λ(t)

– chooses a functional form for the µi’s

– visualizes his/her own cdf’s for µi with location and scale mi and si, i = 1,2

– E gives mi and si, i = 1,2 to A

14



EXPERT ELICITATION

• A reparameterizes the model, e.g. PLP

– µi = MT βi , i = 1,2

∗ ⇒ β =
logµ2/µ1

logT2/T1

∗ ⇒M =
logT2 logµ1 − logT1 logµ2

logT2 − logT1

– ⇒ PLP with parameters µ1, µ2

• A builds the prior on (µ1, µ2|m1, s1,m2, s2)

– likelihood f(m1, s1,m2, s2|µ1, µ2) based on his/her opinion on E and assump-
tions (e.g. independence and truncated Gaussian distributions) on the quantities

– flat prior for values of (µ1, µ2) over the support of the likelihood

15



EXPERT ELICITATION
Betrò and Guglielmi (1996)

• PLP: λ(t;M,β) = Mβtβ−1

• T1 first failure time: P [T1 > s|M,β] = e−Msβ

– Independent priors on M and β

– Gamma prior M ∼ Ga(a, b)

– Expert asked about lower and upper bounds, li and ui, on P [T1 > si], i =
1, . . . , n

– π(β) ∈ Γ, generalized moments class:

li ≤ P [T1 > si] =

∫ ∞

0

Hi(β)π(β)dβ ≤ ui,

with Hi =

(

b

siβ + b

)a

, i = 1, . . . , n

• E[N(T)|M,β] = MT β, similarly

16



RELIABILITY MEASURES

• System reliability (for a PLP)

– Data on the same system (observed up to y):

R((y, s]) = P (N(y, s) = 0|M,β) = e
−M
(

sβ − yβ
)

– Data on equivalent system:

R(s) = P (N(s) = 0|M,β) = e−Msβ

• Expected number of failures in future intervals

– Same system: E[N(y, s]|M,β] = M
(

sβ − yβ
)

– Equivalent system: E[N(s)|M,β] = Msβ

• Intensity function at y:

Reliability growth models without further improvements ⇒ constant intensity λ(y)

17



RELIABILITY MEASURES

• Posterior on (M,β) given data T

• Estimates:

– ̂R((y, s]) = E[R((y, s]|M,β)] =
∫

e−M(sβ−yβ)f(M,β|T)dMdβ

– ̂E[N(y, s]] = E[E[N(y, s]|M,β]] =
∫

M(sβ − yβ)f(M,β|T)dMdβ

• If MCMC sample available from posterior

– Monte Carlo computation of the integrals

18



FAILURE COUNT DATA

• Experiments introduced so far for NHPPs assume observation of failure times

• Here we assume known only the number of failures in an interval

• Failures of vehicle from brand ABC

– Under warranty, cars taken to ABC at any failure

⇒ (Random) failure times ti observed for each system (individual vehicle)

– After warranty expiration, cars taken at any mechanics and ABC contacts, every
once in a while, k buyers about their car failures

⇒ (Random) number ni of failures in a (random) period ti for k systems

• ⇒ k independent PLPs with the same λ(t) (assuming systems are operated under
same conditions)

19



FAILURE COUNT DATA
Calabria, Guida and Pulcini (1994)

• k systems operated under same conditions

• ⇒ k independent PLPs with the same λ(t)

• Only failure counts in interval available, not actual failure times

• Maximum likelihood estimation of β, α, λ(t) and M(t) (none in closed form)

• Study (through Monte Carlo) of “relative bias”, i.e. ratio of bias of MLEs to true values

• Bootstrap confidence interval (based on small samples)

20



FAILURE COUNT DATA
Calabria, Guida and Pulcini (1994)

• Time truncated experiment about 10 systems

• Data generated from PLP with λ(t) = β
α

(

t
α

)β−1

– α = 100 (hours) and β = 1.5

• Censoring times Ti drawn from U(0,1200)

• Censoring times Ti and number of failures ni

System 1 2 3 4 5 6 7 8 9 10
Ti 1042 932 997 1087 900 849 764 202 141 479
ni 36 26 29 28 32 29 22 6 2 7

• Consider PLP with M = (1/α)β parameter ⇒M = 0.001
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FAILURE COUNT DATA

• Likelihood obtained as product of densities

f(ni, Ti|β,M) = f(ni|Ti, β,M)f(Ti|β,M), for i = 1, . . . , k,

– Censoring times independent of the failure process (and β and M )

– ⇒ only f(ni|Ti, β,M) considered

• ⇒ Likelihood

l(β,M | d) ∝ pβM s exp

[

−M
k
∑

i=1

T βi

]

, with

– s =
∑k

i=1 ni

– p =
∏k
i=1 T

ni
i

– T = (T1, . . . , Tk)

– n = (n1, . . . , nk)

– d = (T,n)

22



FAILURE COUNT DATA

• Joint prior f(β,M) = f(M |β)f(β)
– M |β ∼ Ga

(

ρ, σβ
)

– β ∼ Ga(ν, µ)

– Mazzali (1996) considered independent priors (M ∼ Ga(ρ, σ)) as well, with no
significant difference in posterior inference

• Joint posterior

f(M,β | d) ∝ (pσρ)βM s+ρ−1βν−1 exp(−µβ) exp[−M(σβ +

k
∑

i=1

T βi )]

• Posterior conditional distributions

M | β,d ∼ Ga
(

s+ ρ, σβ +
∑k

i=1 T
β
i

)

β | M,d ∝ (pσρ)ββν−1e−µβ−Mσβ

• Marginal posteriors easily sampled via a Metropolis within Gibbs algorithm
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FAILURE COUNT DATA

• M |β ∼ Ga
(

15,0.55β
)

• β ∼ Ga(2,1)

• β̃ = 1.274 posterior mean of β, very close to 1.275 (MLE)

• Unlike the frequentist approach, the Bayesian one allows for a direct, straightforward
assessment on β and the system reliability

• Posterior cdf of β for selected δ’s

δ 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8
P (β ≤ δ | d) .005 .09 0.21 0.40 0.60 0.78 0.89 0.95 0.99

• Systems very likely under reliability decay

– β has large probability of being greater than 1

– 90% highest posterior density interval given by (0.940,1.564)

24



FAILURE COUNT DATA
• µ = 1, ν = 2, σ = 1.1 and ρ= 30
• Posterior of β under

– dependent prior: dotted line

– independent prior: solid line
• No significant difference
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FAILURE COUNT DATA
Estimation of mean value function m(t)

• m(t|M,β) = Mtβ

• E[m(t) | d] = E[tβE[M |β,d]] = E[tβ(s+ ρ)/(σβ +
∑

T βi )]

• Latter expected value taken w.r.t. posterior of β

– Integrating joint posterior w.r.t. M

– ⇒ posterior of β

f(β | d) ∝ (pσρ)β
Γ(s+ ρ)

(σβ +
∑k

i=1 T
β
i )

s+ρ
βν−1e−µβ.

• ⇒ Posterior mean of m(t)

E[m(t) | d] =
∫

+∞
0

(tpσρ)ββν−1 exp (−µβ)(s+ ρ)(σβ +
∑

T βi )
−s−ρ−1 dβ

∫

+∞
0

(pσρ)ββν−1 exp (−µβ)(σβ +∑

T βi )
−s−ρ dβ
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FAILURE COUNT DATA
• Estimate of intensity function λ(t)

E[λ(t)|d] = 1

t

∫

+∞
0

(tpσρ)ββν exp (−µβ)(s+ ρ)(σβ +
∑

T βi )
−s−ρ−1 dβ

∫

+∞
0

(pσρ)ββν−1 exp (−µβ)(σβ +∑

T βi )
−s−ρ dβ

• Interest, as a performance measure, in the distribution of N(0, t], i.e. the number of
failures in (0, t]

• Conditional on M and β

P (N(0, t] = r|β,M) =
1

r!

(

Mtβ
)r

exp
(

−Mtβ
)

• Posterior (unconditional) predictive distribution

P (N(0, t] = r|d) =

∫

+∞

0

∫

+∞

0

P (N(0, t] = r|β,M)f(β,M | d) dβ dM

=
1

r!

∫

+∞
0

(trpσρ)ββν−1 exp (−µβ) Γ(s+ρ+r)

(tβ+σβ+
∑

T β

i )
s+ρ+r dβ

∫

+∞
0

(pσρ)ββν−1 exp (−µβ) Γ(s+ρ)

(σβ
∑

T β

i )
s+ρ dβ
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FAILURE COUNT DATA

• Interest in predicting the behavior of another, k+ 1-th, identical system, given data
on k identical systems

• ⇒ Interest for a given t or 0 < t ≤ T

– Expected number of failures N(0, t]

– Intensity function λ(t)

– System reliability R(t) = P (N(0, t])

• In our example, interest in expected number of failures up to time t = 1200

– Posterior mean m̂(1200) = 38.81

– Compare with MLE at 38.70

• m(1) = M ⇒ posterior estimate M̂ = 0.009
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FAILURE COUNT DATA
Plots of E[m(t) | d] (left) and E[λ(t) | d] (right) for t ∈ [0,1.2] (in thousands of hours)
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• Estimate of m(t) denotes a quick increase at early stages, getting steadier later

• Estimate of λ(t) denotes reliability decay, with a very steep increase in the failure
rate right after the initial time (seen also in m(t))
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FAILURE COUNT DATA
Posterior predictive distribution of N(0,1200] (left) and P (N(0, t] = 0) as a function of
t (right)
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FAILURE COUNT DATA
Simulation study to compare MLEs and posterior means

• 60 β’s drawn from U(0,1.5)

• For each β, repeat 100 times:

– 10 systems

– Censoring times Ti from U(0,1.2) (in thousands of hours)

– Data generated from PLP (α= 0.1, β)

– Find MLE β̂

– Find E[β|T ] for µ = 1, ν = 2, σ = 1.1 and ρ = 30

• Compute ASE =

100
∑

i=1

(β − β∗)2/100 with β∗ = MLE or Bayes

• Compare Averaged Squared Errors for each β’s
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FAILURE COUNT DATA
Averaged Squared Errors for each β’s
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• Dotted line: MLE (the one above)

• Solid line: Posterior mean (the one below)
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FAILURE COUNT DATA
Sensitivity analysis

• M |β ∼ Ga
(

15, .55β
)

• β ∼ Ga(ν, µ), .5 ≤ µ, ν ≤ 2 ⇒ .25 ≤ Eβ ≤ 4

– Parametric class of priors

• Posterior ranges and MLEs

MLE Posterior expectation
β 1.275 [1.198,1.292]
λ(1200) 41.13 [38.11,42.47]
m(1200) 38.70 [37.77,39.05]

• ⇒ Strong support to (weak) reliability decay
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CASE STUDY: GAS ESCAPES

• Company responsible for a large metropolitan gas distribution network
developed in the last century

• Distribution network characterized by very non-homogeneous techni-
cal and environmental features (material, diameter of pipes, laying lo-
cation, etc.)

• Distribution network consists of several thousand kilometers of pipelines
providing gas at low, medium and high pressure

• Most of the network is at low-pressure (20 mbar over atmospheric
pressure) and attention will be concentrated on it
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GAS ESCAPES: RISKS AND COSTS

• Possible explosions: casualties and destructions

• Cost of installation of pipelines

• Cost of maintenance and replacement of riskier pipelines

• Labor cost of emergency and inspection squads
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GAS ESCAPES: ATTENUATION OF RISKS

• Gas smells by law (introduction of smelling chemicals) to favor gas escape detections

• Pipelines installation and pipes in house according to the law

• Material chosen according to characteristics of installation area (traffic, ground mois-
ture, residential area or not, etc.)

• Efficient calling center to report possible escapes

• Sufficient size and training of emergency and inspection squads

• Identification of risk factors (kind of junction, material, laying conditions, etc.)
⇒ Statistics and Decision Analysis
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GAS ESCAPES: REPLACEMENT POLICY

• Setting up an efficient replacement policy in an urban gas distribution
network

• i.e. change of a certain kind of pipelines with a safer one

• assessment of the propensity of failure of the different kinds of pipelines

• assessment of the probability of failure of the different kinds of pipelines

• change of pipelines with highest propensity/probability of failure
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GAS ESCAPES: DEMERIT-POINT-CARDS

• Propensity to failure determined by demerit-point-cards in many companies (see,
e.g., technical report by British Gas Corporation)

• Influence of various quantitative and qualitative factors (diameter, laying depth, etc.)
is quantified by assigning a score to each of them (e.g. if laying depth is between
0.9 and 1.5 m, the score is 20)

• Positive aspects

– easy to specify

– highlighting the critical factors strongly correlated with pipeline failures
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GAS ESCAPES: DEMERIT-POINT-CARDS

• Negative aspects

– Setting of the scores, in our context, for the considered factors (and the choice
of the factors) would be based only on previous empirical experience in other
cities without any adjustment for the current context

– An aggregate demerit score, obtained by adding the individual scores of the
different factors, often hides possible interactions between the considered fac-
tors (e.g. diameter and laying depth), so losing other important information and
worsening an already critical situation

– Propensity-to-failure score of a given section of gas pipeline is considered inde-
pendently of the length of the section and the planning period

– Stochastic nature of the phenomenon is ignored
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GAS ESCAPES: MATERIALS

Several materials for low-pressure pipelines

• traditional cast iron (CI)

• treated cast iron (TCI)

• spheroidal graphite cast iron (SGCI)

• steel (ST)

• polyethylene (PE)
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GAS ESCAPES: YEARLY FAILURE RATES

 Company historical annual failure rates per unit length of different materials. Maximum, minimum, 

Failure rates

ST TCI SCGI CI PE

0

0

0

0

.00

.05

.10

.15

ST = steel

TCI = treated cast iron

SGCI = spheroidal graphite

CI = traditional cast iron

PE = polyethylene
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GAS ESCAPES: INTEREST ON CI

• higher failure rate than other materials (even by one order of magni-
tude)

• covers more than a quarter of the whole network

• about 6000 different pipe sections with homogeneous characteristics,
ranging in length from 3 to 250 meters for a total of 312 kilometers
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GAS ESCAPES: FACTORS

Three groups of factors identified based upon

• studies in other companies

• reports in literature

• discussions with company’s experts
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GAS ESCAPES: FACTORS
• Intrinsic features of the pipeline-section

– thickness

– diameter

– age
• factors concerning the laying of the pipeline-section

– depth

– location

– ground characteristics

– type and state of the pavement

– laying techniques
• environmental parameters of the pipeline-section

– traffic characteristics

– intensity of underground services

– external temperature and moisture
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GAS ESCAPES: FACTORS
Reports on those factors rarely available and useful

• companies hardly disclose data on failures/escapes

• companies are in general responsible for a single city network, making very difficult
any comparison between different situations and data re-utilisation/sharing

• data registration methods change over the long period of operation of the pipelines

• data are poorly registered or recorded for other purposes which are not sufficiently
coherent with the requirements of a correct safety and reliability analysis
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GAS ESCAPES: MANOVA ON FACTORS

• Multivariate analysis of variance (MANOVA) to consider mean differ-
ences on two or more dependent variables (i.e. failure factors) simul-
taneously

• CI distribution network (and the corresponding number of failures) over
a significantly long period (10 years) was divided into different classes
based on the previous factors

• For each factor, two levels were identified, where the notations ”high”
and ”low” were qualitative rather than quantitative
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GAS ESCAPES: MANOVA ON FACTORS

• The study identified diameter, laying depth and location as the most significant fac-
tors

• The other factors given above were not particularly important, as they turned out

– either to be homogeneous for the analyzed distribution network (e.g. the soil
used during installation works always had the same chemical and mechanical
characteristics, while external temperature and moisture actually do not have a
different effect on different pipeline sections, as the ground has a strong insulat-
ing capacity, even with shallow laying)

– or to be strongly correlated to the above factors (e.g. the thickness of a pipe is
fixed for a given diameter).

• Those considerations were fully shared and validated by company experts
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GAS ESCAPES: FIRST FINDINGS

Following this preliminary data analysis, the most important conclusions
were

• This industrial sector is characterized by a remarkable shortage of
data because pipeline failures are rare and available information is
often inadequate. This scarcity of data, together with some underly-
ing ”noise” stemming from imprecise recording of data, suggested that
information obtained from the company archives should be improved
with expert judgements using a Bayesian approach
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GAS ESCAPES: FIRST FINDINGS

• CI pipeline failure rate seems to be scarcely sensitive to wear or proximity to a previ-
ous failure (or leak) in the same pipeline section, but it is mostly influenced by acci-
dental stress, even if the useful life phase may be considered longer than 50 years.
So propensity-to-failure in a unit time period or unit length does not vary significantly
with time and space. Since failures are rare events (an assumption confirmed by
available data), it was felt appropriate to model them with an homogeneous (in time
and space) Poisson process

• The evident importance of interactions between factors (e.g. diameter is significant
with shallow but not with deep laying) led to the abandonment of the additive ap-
proach, typical of the demerit-point-cards, which sums the effects of the factors, in
favor of the determination of pipeline classes derived from the combination of the
levels of the most significant factors. This proposed data organization also facilitates
the expression of experts judgements
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FAILURES IN CAST-IRON PIPES

• Some materials (e.g. steel) subject to aging ⇒ NHPP

• Cast-iron is not aging ⇒ HPP in space and time

• HPP with parameter λ (unit failure rate in time and space)

• n failures in [0, T ]× S,⇒ L(λ|n, T,S) = (λsT)ne−λsT , with s = meas(S)

• Data: n = 150 failures in T = 6 years on a net ≈ s = 312 Km long ⇒
L(λ|n, T,S) = (1872λ)150e−1872λ (if considering all failures together)

• MLE λ̂ = n/(sT) = 150/1872 = 0.080

• Consider the 8 classes determined by the two levels of the relevant covariates: di-
ameter, location and depth
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FAILURES IN CAST-IRON PIPE

Depth < 0.9 m 0.0717 cl.1

D < 125 mm 0.0755

Depth > 0.9 m 0.0941 cl.2

Sidewalk 0.0698

Depth < 0.9 m 0.0666 cl.3

D > 125 mm 0.0656

Depth > 0.9 m 0.0600 cl.4

Overall 0.08003

Depth < 0.9 m 0.1773 cl.5

D < 125 mm 0.1668

Depth > 0.9 m 0.1152 cl.6

Street 0.1497

Depth < 0.9 m 0.1315 cl.7

D > 125 mm 0.1371

[failures/(km year)] Depth > 0.9 m 0.1777 cl.8

Fig. 2. Failure rate broken-down by laying location, diameter and laying depth (decreasing effect of factors on 

3 5 6 7 8
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CHOICE OF THE PRIOR
HPP with parameter λ and n failures in [0, T ]× S ⇒ L(λ|n, T,S) = (λsT)ne−λsT

• λ ∼ G(α, β) ⇒ λ|n, T,S ∼ G(α+ n, β+ sT) (Conjugate prior)

• π(λ|n, T,S) ∝ L(λ|n, T,S)π(λ)
∝ λne−λsT · λα−1e−βλ

• α and β chosen to match, e.g.

– mean α/β and variance α/β2 (or mode)

– Ideal experiment with α= number of failures in the observation time β

– two quantiles, with a third given for consistency
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ELICITATION OF EXPERTS’ OPINIONS

• The expert judgements were collected by an ad hoc questionnaire and integrated
with historical data by means of Bayesian inference

• Experts from three areas within the company were selected to be interviewed:

– pipeline design: responsible for designing the network structure (4 experts)

– emergency squad: responsible for locating network failures (8 experts)

– operations: responsible for the repair of broken pipelines (14 experts)
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ELICITATION OF EXPERTS’ OPINIONS

• Interviewees were actually not able to say how many failures they expected to see
on a kilometer of a given kind of pipe in a year (the situation became even more
untenable when they were asked to express the corresponding standard deviation
or upper and lower bounds)

• The experts had great difficulty in saying how and how much a factor influenced the
failure and expressing opinions directly on the model parameters while they were
able to compare the performance against failure of different pipeline classes

• To obtain such a propensity-to-failure index, each expert was asked to compare the
pipeline classes pairwise. In a pairwise comparison the judgement is the expression
of the relation between two elements that is given, for greater simplicity, in a linguistic
shape

• The linguistic judgement scale is referred to a numerical scale (Saaty’s proposal:
Analytic Hierarchy Process) and the numerical judgements can be reported in a
single matrix of pairwise comparisons
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ELICITATION OF EXPERTS’ OPINIONS

Fig. 3. Picture shown to experts during the test, illustrating the surface loads (laying location), the diameter 

   2   1 3 4  5 6 7 8
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ANALYTIC HIERARCHY PROCESS

Two alternatives A and B

B “equally likely as” A → 1
B “a little more likely than” A → 3
B “much more likely than” A → 5
B “clearly more likely than” A → 7
B “definitely more likely than” A → 9

Pairwise comparison for alternatives A1, . . . , An

⇒ square matrix of size n

⇒ eigenvector associated with the largest eigenvalue

⇒ (P(A1), . . . , P(An))
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ANALYTIC HIERARCHY PROCESS

An expert’s opinion on propensity to failure of cast-iron pipes

Class 1 2 3 4 5 6 7 8

1 1 3 3 3 1/6 1 1/6 3
2 1/3 1 1/4 2 1/6 1/2 1/5 1
3 1/3 4 1 1 1/4 1 1/6 2
4 1/3 1/2 1 1 1/5 1 1/5 1
5 6 6 4 5 1 4 4 5
6 1 2 1 1 1/4 1 1/6 1
7 6 5 6 5 1/4 6 1 4
8 1/3 1 1/2 1 1/5 1 1/4 1
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MATHEMATICS OF AHP

• A = {aij} matrix from pairwise comparisons in AHP

• A strongly consistent if aij = aikakj, for all i, j, k
⇒ A represented by normalized weights (w1, . . . , wn) s.t.

A =











w1/w1 w1/w2 w1/w3 . . . w1/wn
w2/w1 w2/w2 w2/w3 . . . w2/wn
w3/w1 w3/w2 w3/w3 . . . w3/wn
. . . . . . . . . . . . . . .

wn/w1 wn/w2 wn/w3 . . . wn/wn











⇒ aij = wi/wj = (wi/wk) · (wk/wj) = aikakj, for all i, j, k

• Unfortunately, human judgements are not in general consistent

• ⇒ Need to find a consistent matrix and a measure of inconsistency
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MATHEMATICS OF AHP

• A consistent ⇒ Find weights wi’s as solution of










w1/w1 w1/w2 w1/w3 . . . w1/wn
w2/w1 w2/w2 w2/w3 . . . w2/wn
w3/w1 w3/w2 w3/w3 . . . w3/wn
. . . . . . . . . . . . . . .

wn/w1 wn/w2 wn/w3 . . . wn/wn





















w1

w2

w3

. . .
wn











= n











w1

w2

w3

. . .
wn











• Aw = nw or (A − nI)w = O system of homogeneous linear equations, with
nontrivial solution iff det(A− nI) = 0 ⇒ n eigenvalue of A, unique since

– {number of nonnull eigenvalues = rank of A = 1}, since each row is a linear
combination of the others

– sum of eigenvalues equals the trace of the matrix, i.e. sum of its diagonal ele-
ments, and here tr(A) = n

• The eigenvector w has positive entries and is unique up to a constant ⇒ normalized
dividing entries by their sum

• A consistent ⇒ weights given by normalized eigenvector
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MATHEMATICS OF AHP

• A not consistent ⇒ take eigenvector of Aw = λmaxw, with λmax largest eigenvalue
(always λmax ≥ n for positive reciprocal matrices and λmax = n for consistent ones)

• λmax − n

n− 1
measure of inconsistency (difference divided by the number of the other

eigenvalues)

• In order to derive a meaningful interpretation of either the difference or the consis-
tency index, Saaty simulated random pairwise comparisons for different size ma-
trices, calculating the consistency indices, and arriving at an average consistency
index for random judgments for each size matrix. He then defined the consistency
ratio as the ratio of the consistency index for a particular set of judgments, to the
average consistency index for random comparisons for a matrix of the same size
(quoted from Forman and Selly)
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ELICITATION OF EXPERTS’ OPINIONS
Values elicited by experts ⇒ similar opinions

0 .0

0 .1
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0 .3

0 .4

0 .5
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MODELS FOR CAST-IRON PIPES
Independent classes Ai, i = 1,8, given by 3 covariates (diameter, location and depth) ⇒
find the “most risky” class

• Failures in the network occur at rate λ ⇒ failures in class Ai occur at rate λi =
λP (Ai)

• P (Ai) given by AHP for any expert

• Choice of λ⇒ critical

– Proper way to proceed:

∗ Use experts’ opinions through AHP to get a Dirichlet prior on pi = P (Ai)

∗ Ask the experts about the global unit rate for gas escapes, λ, and get a
gamma prior on it

– What we did

∗ Estimate λ by MLE λ̂ with a unique HPP for the network

∗ Use experts’ opinions through AHP to get a prior on λi = λP (Ai)
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MODELS FOR CAST-IRON PIPES

• Choice of priors

– Gamma vs. Lognormal

– For each expert, eigenvector from AHP multiplied by λ̂⇒ sample about (λ1, . . . , λ8)

– Mean and variance of priors on λi’s estimated from the sample of size 26 (num-
ber of experts)

• Posterior mean of failure rate λi for each class

• Classes ranked according to posterior means (largest ⇒ most keen to gas escapes)

• Sensitivity

– Classes of Gamma priors with mean and/or variance in intervals

– Classes of Gamma priors with λ in an interval

• Non-dominated actions under classes of priors/losses
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NON-DOMINATED ACTIONS

• L(λ, a) loss function with action a ∈ A (action space)

• Γ class of priors

• Could consider classes of priors and/or losses

• EπL(λ, a) posterior expected loss for any π ∈ Γ and a ∈ A

• a ∈ A is a non-dominated alternative if there is no other alternative b ∈ A s.t.

– EπL(λ, b) ≤ EπL(λ, a), ∀π ∈ Γ

– there is π0 ∈ Γ s.t. Eπ0
L(λ, b) < Eπ0

L(λ, a)
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MODELS FOR CAST-IRON PIPES
Hierarchical model

• Yi|λi ∼ P(λiti), i = 1,8 ti known time length

• λi|β ∼ G(αeXT
i β, α), α known, s.t. Eλi = eX

T
i β

• π(β)

• Improper priors, numerical approximation (Albert, 1988)

• Empirical Bayes

– λi|β, d ∼ G(αeXT
i β + yi, α+ ti), λi ⊥ λj|d

– f(d|β) =
∫

f(d|λ)π(λ|β)dλ maximised by β̂

⇒ λi|β̂, d ∼ G(αeXT
i β̂ + yi, α+ ti), ∀i

• “Pure” Bayesian approach ⇒ prior on (α, β)
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ESTIMATES’ COMPARISON

• Location: W (under walkway) or T (under traffic)
• Diameter: S (small, < 125 mm) or L (large, ≥ 125 mm)
• Depth: N (not deep, < 0.9 m) or D (deep , ≥ 0.9 m)

Class MLE Bayes (LN ) Bayes (G) Hierarchical
TSN .177 .217 .231 .170
TSD .115 .102 .104 .160
TLN .131 .158 .143 .136
TLD .178 .092 .094 .142
WSN .072 .074 .075 .074
WSD .094 .082 .081 .085
WLN .066 .069 .066 .066
WLD .060 .049 .051 .064

Highest value; 2nd-4th values

• Location is the most relevant covariate
• TLD: 3 failures along 2.8 Km but quite unlikely to fail according to the experts
• LN and G ⇒ similar answers
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NON-DOMINATED ACTIONS

• Range of prior opinions on λi’s, i = 1,8, by 14 experts vs.

• Range of non-dominated actions based on a quantile class

Γ = {Π : Π(qj) = pj, j = 1, k}, with

– Π used both for probability measure and cdf

– pj ’s fixed set of probabilities

– qj ’s empirical quantiles based on experts’ opinions on λi’s

– k = 3 or 7 number of quantiles

• Misalignment in class numbering
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NON-DOMINATED ACTIONS
Range of prior opinions
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NON-DOMINATED ACTIONS
Range of non-dominated actions for quantile class: 3 quantiles (left) and 7 (right)
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GAS ESCAPES: MATERIALS

• traditional cast iron (CI)

– resistent to corrosion and usage

– 70-80 years of useful life

– very fragile with respect to random shocks

• steel (ST)

– subject to corrosion, despite of cover, and affected by usage

– 30-40 years of useful life

– very robust with respect to random shocks

• polyethylene (PE)

– cheap, currently used in most replacements

– resistent to corrosion

– very fragile with respect to ground digging
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GAS ESCAPES: MATERIALS

• Evolution over time from CI to ST to PE

• Decision based upon conflicting aspects

– costs (material, placement, replacement, etc.)

– reliability (corrosion, frailty, etc.)

– external conditions (stray currents, traffic, digging, etc.)

• Small example of Multicriteria Decision Making
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FAILURES IN STEEL PIPES

• Steel pipelines are subject to corrosion, leading to reduction of wall thickness; it can
be reduced using

– bitumen cover

– cathodic protection (via electric current), working especially when bitumen cover
is imperfect

• Most of the low pressure network is without cathodic protection to avoid electrical
interference with other metal structures

• Cathodic protected areas can be tested (using electricity) once or twice a year to
check for cover status; other areas cannot ⇒ need to identify riskier cases for their
preventive inspection ⇒ Statistics

• Different causes (e.g. digging) destroy bitumen cover and start corrosion process
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FAILURES IN STEEL PIPES

• Data: 53 failures in 30 years on an expanding net, ≈ 380 Km long (year 2000)

• Three major factors related to failures

– Age

∗ continuous electrolytic process reducing wall thickness

– Type of corrosion

∗ natural corrosion

∗ galvanic corrosion

∗ corrosion by interference (or stray currents)

– Lay location

∗ near streetcar substations or train stations

∗ o.w.
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FAILURES IN STEEL PIPES: AGE
Physical aspects

• Different installation dates of different sections

– same physical properties?

– same installation procedure?

• Unknown date for start of corrosion process

• Different operating conditions

– diameter, location, depth

– electricity in the ground

– kind of pipes (e.g. junction)
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FAILURES IN STEEL PIPES: AGE
Mathematical aspects

• Different installation dates of different sections

– A unique process or as many as (say) the installation years?

– If many processes, one for each installation date or one starting (say) on July
1st every year?

– Parameters for each process?

∗ equal

∗ similar (exchangeable)

∗ completely independent

• Unknown date for start of corrosion process

– model or ignore it?

• Different operating conditions

– reasonable or feasible discriminating among them?
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FAILURES IN STEEL PIPES
Bad data quality

• Diameter, location, depth and installation data of broken pipes sometimes unavail-
able
⇒ impossible to perform analysis similar to the one on cast-iron pipes (there data
collected in 1991-96 and here on a larger period because of their scarceness and
age dependence)

• evolution of the net exactly known for the last 10 years and approximately since first
installation (1930)
⇒ we assume it known, after interviewing company’s experts, and performing linear
interpolation, adjusted for the years of WWII

• unknown installation date of few failed pipes
⇒ imputation with statistical methods or looking at nearby failed pipes

• (probably) improperly recorded escapes (e.g. six in 24 hours in different parts of the
city, without any physical explanation, e.g. earthquake)
⇒ impossible to examine what happened so that we kept them as they were and
statistical analysis had been badly affected
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FAILURES IN STEEL PIPES

• Network split into subnetworks based upon year of installation, as if pipes were in-
stalled on July, 1st each year

• Removals and replacements not relevant for the network reliability ⇒ repairable sys-
tem

• Independent PLP’s for each subnetwork

• Superposition Theorem: Sum of independent NHPPs with intensity functions λi(t)
is still a NHPP with intensity function λ(t) =

∑

λi(t)

• The same parameters vs. exchangeable ones in each PLP

• Statistical analysis

– parameter estimation

– prediction of future escape times

– computation of reliability measures
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FAILURES IN STEEL PIPES

• Experts asked about time up to first failure

– Choice of section of the network (e.g. length l)

– Choice of time intervals in a list (e.g. [T0, T1])

– Degree of belief on each interval (choice among 95%, 85% and 75%); e.g. for
PLP (M,β)
⇒ P ([T0, T1]) = exp{−lMT β0 } − exp{−lMT β1 } = 0.95

– Check for consistency, e.g. A ⊂ B 6⇒ P (A) > P (B)

• Pooling of experts’ opinions

– ⇒ sample from priors

– ⇒ hyperparameters in priors, matching moments
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MODELS FOR STEEL PIPES
PLP’s with exchangeable Ms and βs; known installation dates

• r number of years

• M = (M1, . . . ,Mr) and β = (β1, . . . , βr)

• ls length of network installed in year s = 1, . . . , r

• ⇒ r independent PLP’s, nonhomogeneous in time but homogeneous in space:

λs(t) = lsMsβstβs−1, s = 1, . . . , r

• [T0, T1]: interval when recording failures

• δk: installation date of k-th failed pipe

• |Is| number of failures of pipes installed in year s = 1, . . . , r
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MODELS FOR STEEL PIPES
Likelihood function L(M,β; t, δ)

n
∏

k=1

βδklδkMδk(tk − δk)
βδk−1e−

∑r

s=1
lsMs[(T1−s)βs−(s∨T0−s)βs]

• Ms ∼ E(θM) and βs ∼ E(θβ), s = 1, . . . , r

• θM ∼ E(τM) and θβ ∼ E(τβ)

• Ms’s ⊥ βs’s but exchangeable among themselves

– π(M1, . . . ,Mr) =
∫
∏r
i=1 θMe

−θMMiπ(θM)dθM

– π(β1, . . . , βr) =
∫
∏r
i=1 θβe

−θββiπ(θβ)dθβ
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MODELS FOR STEEL PIPES

• Posterior π(M,β|t, δ) obtained integrating out θM and θβ

• ⇒ π(M,β|t, δ) ∝
(

r
∏

s=1

(lsMsβs)
|Is|
)(

n
∏

k=1

(tk − δk)
βδk−1

)

e−
∑r

s=1
lsMs[(T1−s)βs−(s∨T0−s)βs]·

·τMτβ
r!

[
∑r

s=1(Ms + τM/r)
]r+1

r!
[
∑r

s=1(βs + τβ/r)
]r+1
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MODELS FOR STEEL PIPES
Exchangeable M and β; known installation dates

95% credible intervals for reliability measures:

• System reliability over 5 years: P{N(1998,2002) = 0} ⇒ [0.0000964,0.01]

• Expected number of failures in 5 years: EN(1998,2002) ⇒ [4.59,9.25]

• Mean value function (solid) vs. cumulative # failures (points)
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MODELS FOR STEEL PIPES
Other models considered by Pievatolo and Ruggeri (2004)

• Same M and/or β

• Unknown installation dates

– Prior distribution on them

• Censored data

– Known number (but not times) of gas escapes before observation period
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A VERY SIMPLE NHPP MODEL

MLE (dashed) vs. Bayes (solid) for λθ(t) = a ln(1 + bt) + c
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TYPES OF CORROSION

• Natural corrosion

– due to ground properties, e.g. very wet ground is a good conductor easing
development of the electrolytic phenomenon

• Galvanic corrosion

– network made of different materials

– contact of two different materials with imperfect insulation

– corrosion started by potential difference between two different materials

• Corrosion by interference (or stray currents)

– presence of stray currents in the ground coming from other electrical plants badly
insulated (e.g. streetcar substations or train stations)

– when discharging on steel pipe they increase the corrosion rate by various or-
ders of magnitude
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LAYING LOCATION

• Areas near streetcar substations or train stations (Zone A)

– Streetcar substations generate current, which goes through the
aerial line and is transformed into power by the streetcar; then it
goes back to the substation through the steel streetcar tracks and
the trunk of negative electric cables hidden underground (which are
the cause of stray currents due to bad insulation)

– Near railway stations, the stray currents derive not only by the bad
insulation of the tracks, but also by the strong electrical field coming
from the passage of the train

• Other areas (Zone B)
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DATA: ZONE AND CORROSION

Failure rate (failures) by zone and type of corrosion

Natural (N ) Galvanic (G) By interference (I)

Zone A (12 km2) 0.583 (7) 0.083 (1) 0.500 (6)
Zone B (88 km2) 0.068 (6) 0.057 (5) 0.091 (8)

• Different failure rates for natural corrosion

⇒ suspects on right reporting by repairing squads
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EXPERTS’ OPINIONS

• Experts

– 2 technicians assessing pipes conditions after excavation

– 2 engineers expert of technical and management aspects

• Analytic Hierarchy Process (AHP) as before

– Qualitative pairwise comparisons with answers: equally likely, a little more likely,
much more likely, clearly more likely, definitely more likely
⇒ quantitative judgements

• Questions

– In your opinion is a failure more likely to happen in zone A or in zone B? How
much more likely? ⇒ P (failure in A) = P (A) and P (B)

– Pairwise comparisons like: In an area with (without) streetcar substations or rail-
ways stations is it more likely to have natural or galvanic corrosion? How much
more likely? ⇒ P (N |A), P (G|A), P (I|A), P (N |B), P (G|B), and P (I|B)
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EXPERTS’ OPINIONS

• P (A) and P (B) known and

• P (N |A), P (G|A), P (I|A), P (N |B), P (G|B), and P (I|B) known

• ⇒ P (N) = P (N |A)P (A) + P (N |B)P (B)

• ⇒ P (A|N) =
P (N |A)P (A)

P (N)

• The same for P (G), P (I), P (A|G), P (A|I)

• Probabilities obtained for all experts and pooled

Mean St. dev.
P (A) 0.7938 0.1962
P (B) 0.2063 0.1962
P (A|N) 0.6133 0.2114
P (A|G) 0.6221 0.2168
P (A|I) 0.9581 0.0574
P (N) 0.1636 0.0403
P (G) 0.2767 0.1298
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POSTERIOR PROBABILITIES

• P (A) = p probability that a failure occurs in zone A

• Conditional upon observing n total failures, the number nA of failures in A is a Bino-
mial r.v.
⇒ p(nA|n, p) ∝

( n

nA

)

pnA(1− p)n−nA

• Prior on p: Be(a, b) conjugate w.r.t. Binomial model

• ⇒ posterior: Be(a+ nA, b+ n− nA)

• Bayes estimator of p: posterior mean
a+ nA

a+ b+ n

Historical (MLE) Prior Posterior
p (zone A, 12 km2) 0.4528 0.7938 0.4790
1− p (zone B, 88 km2) 0.5472 0.2062 0.5210
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POSTERIOR PROBABILITIES
Historical (MLE) Prior Posterior

Mean St. Dev. Mean St. Dev.
P (A|N) 0.5385 0.6133 0.2114 0.5662 0.1065
P (A|G) 0.1667 0.6221 0.2168 0.4125 0.0351
P (A|I) 0.4286 0.9581 0.0574 0.6700 0.0909

Historical (MLE) Prior Posterior
Mean St. Dev. Mean St. Dev.

P (N) 0.3940 0.1636 0.0403 0.2290 0.0388
P (G) 0.1818 0.2767 0.1298 0.2498 0.0400
P (I) 0.4242 0.5597 0.1565 0.5212 0.0461
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MODEL SELECTION

• Gas escapes caused by corrosion: natural, galvanic and by stray currents

• λ(t) = β (HPP) vs. λ(t) = βt/(γ + t) (NHPP)

• Number of failures in [0, T ]

– HPP: P(βT)

– NHPP: P(
∫ T

0
βt/(γ + t)dt)

• Bayes factor BF =

∫

L(β,0)Π(dβ)
∫

L(β, γ)Π(dβ)Π(dγ)
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UNCERTAINTY ON PRIOR DISTRIBUTION

• So far we have assumed there exists a unique prior but it is very questionable

– impossibility of specifying a distribution exactly based upon experts’ opinions

– group of people with different opinions

• Specify class of priors, compatible with prior knowledge

• Compute upper and lower bounds on quantity of interest and check if they are close
⇒ robustness or not

• β ∼ G(a, b) and π(γ) ∈ Γ = {π : median at1}

• Quantity of interest here: Bayes factor
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MODEL SELECTION

Corrosion BF Eβ|d Eγ|d
Galvanic (0.68,0.82) (0.59,1.10) (0.59,8.08)
Natural (0.25,0.54) (0.87,2.40) (0.71,22.64)
Stray Currents (2.00,13968.02) (0.82,1.00) (0.00,0.16)

• λ(t) = β (HPP) vs. λ(t) = βt/(γ + t) (NHPP)

• Bayes factor BF =

∫

L(β,0)Π(dβ)
∫

L(β, γ)Π(dβ)Π(dγ)

• Upper and lower bounds on BF ⇒ HPP better for stray currents and worse o.w.
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NONPARAMETRIC APPROACH
# events in [T0, T1] ∼ P(Λ[T0, T1]), with Λ[T0, T1] = Λ(T1)− Λ(T0)

Parametric case: Λ[T0, T1] =
∫ T1

T0
λ(t)dt

Nonparametric case: Λ[T0, T1] ∼ G(·, ·) ⇒ Λ d.f. of the random measure M

Notation : µB := µ(B)

Definition 1 Let α be a finite, σ-additive measure on (S,S). The random measure µ
follows a Standard Gamma distribution with shape α (denoted by µ ∼ GG(α,1)) if, for
any family {Sj, j = 1, . . . , k} of disjoint, measurable subsets of S, the random variables
µSj are independent and such that µSj ∼ G(αSj,1), for j = 1, . . . , k.

Definition 2 Let β be an α-integrable function and µ ∼ GG(α,1). The random mea-
sure M = βµ, s.t. βµ(A) =

∫

A
β(x)µ(dx), ∀A ∈ S, follows a Generalised Gamma

distribution, with shape α and scale β (denoted by M ∼ GG(α, β)).
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NONPARAMETRIC APPROACH
Consequences:

• µ ∼ Pα,1,Pα,1 unique p.m. on (Ω,M), space of finite measures on (S,S), with
these finite dimensional distributions

• M ∼ Pα,β, weighted random measure , with Pα,β p.m. induced by Pα,1

• EM = βα, i.e.
∫

Ω
M(A)Pα,β(dM) =

∫

A
β(x)α(dx), ∀A ∈ S

Theorem 1 Let ξ = (ξ1, . . . , ξn) be n Poisson processes with intensity measure M . If
M ∼ GG(α, β) a priori, then M ∼ GG(α+

∑n
i=1 ξi, β/(1 + nβ)) a posteriori.
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NONPARAMETRIC APPROACH
Data: {yij, i = 1 . . . kj}nj=1 from ξ = (ξ1, . . . , ξn)

Bayesian estimator of M : measure ˜M s.t., ∀S ∈ S,

˜MS =

∫

S

β(x)

1 + nβ(x)
α(dx) +

n
∑

j=1

kj
∑

i=1

β(yij)

1 + nβ(yij)
IS(yij)

Constant β ⇒ ˜MS =
β

1+ nβ
[αS+

n
∑

j=1

kj
∑

i=1

IS(yij)]

Bayesian estimator of reliability R, RS = P (ξS = 0), S ∈ S:

˜RS = exp







−
∫

S

ln(1 +
β(x)

1 + nβ(x)
)α(dx)−

n
∑

j=1

kj
∑

i=1

ln(1 +
β(yij)IS(yij)

1 + nβ(yij)
)







Constant β ⇒ ˜RS =
(

1+ β
1+nβ

)−(αS+
∑n

j=1
ξjS)
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STEEL PIPES
Parametric NHPP: ˜Λθ(t) =

∫ t

0
[ã log(1 + b̃t)]dt+ ĉt

Nonparametric model: M ∼ Pα,β : α(ds) := ˜Λθ(s)/σds , β(s) := σ

⇒ EMS = ˜ΛθS and V arMS = σ˜ΛθS

⇒MS “centered” at parametric estimator ˜ΛθS and closeness given by σ
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PARAMETRIC VS. NONPARAMETRIC

[0, T ] split into n disjoint Ij, j = 1, . . . , n

Data: k = (k1, . . . , kn), with kj = {#obs. in Ij} ⇒ f(k | Λ) = e−Λ(T )
∏n
j=1

(ΛIj)
kj

kj!

Parametric: P (k | HP) =

∫

R3
+

e−Λθ(T )
n
∏

j=1

[ΛθIj]
kj

kj!
π(θ)dθ

Nonparametric: k |M,θ ∼ f(k | Mθ), M | θ ∼ GG(Λθ/σ, σ) and θ ∼ π:

P (k | HN) =

∫

R3
+

n
∏

j=1





∏kj−1
i=0 (ΛθIj + iσ)

kj! exp
[(

ΛθIj
σ

+ kj

)

ln(1 + σ)
]



π(θ)dθ

Bayes Factor: BFPN =
P (k | HP)

P (k | HN)
=

∫

R3
+

e−Λθ(T )
∏n
j=1(ΛθIj)

kjπ(θ)dθ

∫

R3
+

∏n
j=1

[

(1 + σ)−(ΛθIj/σ+kj)
∏kj−1
i=0 (ΛθIj + iσ)

]

π(θ)dθ
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PARAMETRIC VS. NONPARAMETRIC

Bayes factor BFPN as a function of σ
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CASE STUDY: SUBWAY TRAINS’ FAILURES

• New underground line opened in a major Italian city on 3/5/1990 just before the FIFA
World Cup

• 40 trains delivered to the transportation company between 11/1989 and 3/1991 and
put on service between 4/1990 and 7/1992

• Transportation company viewpoint: interest about delivered trains for

– financial costs (LCC: Life Cycle Cost)

∗ forecast of costs over all useful life

– service quality (RAM: Reliability, Availability, Maintainability)

∗ forecast of quality over all useful life

• Main goal: check of fulfillment of contract specifics before warranty expiration
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RAM: RELIABILITY, AVAILABILITY, MAINTAINABILITY

• EU laws require specification of precise performance values (instead of generic de-
scriptions) in competitions to assign contracts in public services

• RAM is an important performance index (sometimes RAMS, ”Safety”)

• RAM(S) parameters important for

– manufacturer

∗ design, components’ choice, experiments, production and control

– transportation company

∗ purchase cost, maintenance cost, spare parts, service unavailability, etc.

• RAM(S) parameters strongly correlated and depending on failures
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RAM: RELIABILITY

• Main features

– failure rate λ = λ(t)

– mean time to failure MTTF =
∫∞
0
tf(t)dt =

∫∞
0
S(t)dt

– mean time between failures MTBF

– mean distance between failures

– mean time between unscheduled maintenance actions

• Main reliability indices in the company

– number of failures for 1 million Km’s

∗ with delays exceeding 30 minutes

∗ with delays exceeding 5 minutes

∗ with delays below 5 minutes

– number of failures of an item (e.g. door) in 100,000 Km’s
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RAM: AVAILABILITY
Probability that a system operates correctly, under specified conditions, when required
(compare with for a given time)

• MTBF/(MTBF +MTTR) (MTTR mean time to repair)

• Na/Nt (Na trains available at rush hour out of a total of Nt)

• ∑i(OHi − PMHi − CMHi)/
∑

iOHi

– i index of interested items (e.g. all trains)

– OHi operation hours for item i

– PMHi preventive maintenance hours for item i

– CMHi corrective maintenance hours for item i
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RAM: MAINTAINABILITY
Probability of performing proper maintenance within a given time

• Corrective maintenance cost: CM = 1000
∑

i(WCCi ·WTCi +MCCi)/K

– i index of the n requested corrective maintenance interventions

– WCCi unit cost of workforce for intervention i

– WTCi time of workforce for intervention i

– MCCi total cost of materials for intervention i

– K km’s run during observation period

• Preventive maintenance cost: PM = 1000
∑

i(WCPi ·WTPi +MCPi)/K

• Global index GM = CM + PM to be minimized
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LIFE CYCLE COST
Total cost of ownership of machinery and equipment, including its cost of acquisition,
operation, maintenance, conversion, and/or decommission

• Need to monitor costs during all useful life (lower purchase price could lead to higher
costs in future)

• Main categories of costs incurred by transportation company upon introduction of
new trains

– organization in general (e.g. administration)

– organization strictly related to trains (e.g. training of drivers and technicians,
maintenance procedures)

– batch of train (e.g. size, deposit)

– individual train (e.g.failures)
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(SUBSET OF) COSTS

• Trains purchase

• Subway line (e.g. tracks, platform, stations) costruction/modification

• Deposit (e.g. for maintenance, night stops)

• Personnel costs (e.g. training, salary)

• Operating costs (e.g. energy, SW and HW, cleaning)

• Maintenance (e.g. training and size of squad, site and size for spare parts)

• Technical changes

• Missed gains and image damages

• Environmental costs

• End-of-life dismissal of trains
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STATEMENT OF THE PROBLEM

• Improving RAM and LCC is a huge task

• Both RAM and LCC are strongly affected by reliability

• ⇒ interest in failures of some components, identified by EDA

– doors (major cause of failures)

– engine wheels

– two converters

• Doors failure data collected between 1/4/1990 and 31/12/1998

• Data collected by B.Sc. student at Politecnico di Milano for his dissertation
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STATEMENT OF THE PROBLEM

• Interest in process modelling and estimation

– all doors failure regardless of the cause

– only individual, major failure causes

• Interest in reliability check before warranty expiration

– reliability standards set by the contract between manufacturer and transportation
company

– structural failures occurred during the warranty time are responsibility of the
manufacturer (and the company’s after warranty expiration)

– transportation company can ask for manufacturer’s intervention on trains if there
is evidence of poor reliability during warranty time (but not later)
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REPAIRABLE SYSTEMS
Theorem (due to Grigelionis, see Thompson, 1988, p.69) states that, under suitable con-
ditions, superposition of many failure processes, one for each failure mode, is approxi-
mately a Poisson process

• Doors are complex systems made of many components, subject to different failure
causes

• Upon failures, repairs are immediate (i.e. done in a negligible time w.r.t. doors
lifetime) and minimal (i.e. just the cause of the failure is fixed)

• Repairs bring reliability back to its status just before failures (bad as old property)

⇒ Non-homogeneous Poisson process (NHPP)
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FAILURE MODELS

• All door failures together regardless of cause or separated by cause

• A NHPP used directly to model failures or ...

• ... NHPP for each independent cause and apply Superposition Theorem

– consider n independent Poisson processes N (i)
t , t ≥ 0, with intensity function

λ(i)(t), i = 1, . . . , n

– consider the sum process Nt =
∑n

i=1N
(i)
t , t ≥ 0

– ⇒ Nt is a Poisson process with intensity function λ(t) =
∑n

i=1 λ
(i)(t)

• In any case, a NHPP for the failures
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FAILURE MODELS

• Trains could be considered as a) different systems or b) the same, unique system

– a) likelihood as product of likelihoods based upon individual intensities

– b) likelihood based upon sum of intensities (as a consequence of the Superpo-
sition Theorem)

• Behaviour of different trains could be ...

– i) equal ⇒ same parameters

– ii) similar ⇒ different parameters from same distribution (exchangeability )

– iii) different ⇒ different parameters from different distributions

– iv) ”almost” different ⇒ some common parameters and other different ones from
different distributions

• EDA lead to iii) in Part I, and further physical considerations lead to iv) in Part II
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FAILURE MODELS

• Likelihood based on failures in one train

– Estimation of its intensity function

– Comparison between its cumulative and estimated expectation of number of fail-
ures

– Predictive distribution and expectation of its future failures

• Likelihood based on failures in all train

– Comparison between cumulative and estimated expectation of number of fail-
ures among all trains

– Predictive distribution and expectation of future failures of a new train
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DOUBLE SCALE DATA
Data: more than 2000 door failures of 40 trains, put on service from 1/4/1990 to 20/7/1992,
observed up to 31/12/1998

Goal: checking components reliability before warranty’s expiration
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Failures vs. days (left) and failures vs. kilometers (right)

• Concavity denotes improvement over time

• Oscillations

• Transient behaviour during first 500 days
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SEASONALITY
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Left : Monthly no. of failures for the 40 trains starting January 1991

Right : Spectrum of the time series of the monthly number of failures from 1991 to 1998

• Decreasing trend

• Periodicity (estimated at 12 months by the spectrum)

• NHPP: λ(t) = exp{α+ ρ sin(ωt+ θ)}
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MODEL FOR DOORS FAILURES
Marked Poisson process on time scale

λ(t; θ1, θ2) = µ(g(t); θ1)s(t; θ2)

• µ(k; θ1) = β0
log(1 + β1k)

(1 + β1k)

– µ(0; θ1) = 0, maximum at (e− 1)/b1 and lim
k→∞

u(k; θ1) = 0

– m.v.f. Λ(k) = β0 log
2(1 + β1k)/(2β1)

suitable for actual cumulative number of failures

• s(t; θ2) = exp{ρ cos(ωt+ ϕ)}(periodic component)

• From EDA we could take k = g(t) = at+ bt2 and substitute above

• We actually took kilometers k|t ∼ N (g(t), σ2)
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MODEL FOR DOORS FAILURES

• j-th train monitored in [0, Tj]

• Failures at times (t1, . . . , tnj) = tj and kilometers (k1, . . . , knj) = kj

• Likelihood for j-th train

Lj(θ1, θ2) =
∏nj
i=1 µ(g(ti); θ1)s(ti; θ2) exp

[

−
∫ Tj
0
µ(g(t); θ1)s(t; θ2)dt

]

• Non-Bayesian analysis

Parameter MLE C.I. Parameter MLE C.I.
a× 10−2 1.209 [1.171, 1.247] b× 102 2.025 [1.862, 2.188]
σ2 × 10−7 5.809 [4.214, 8.345] ρ× 10 3.234 [0.000, 6.779]
β0 × 102 7.358 [5.640, 9.076] β1 × 105 2.239 [1.938, 2.540]
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DIAGNOSTIC PLOTS FOR ONE TRAIN
Given θ̂ = (â, b̂, σ̂2, ρ̂, β̂0, β̂1)

⇒ need to check if the model is good

⇒ plots and tests

• Estimated m.v.f. Λ(·; θ̂) vs. cumulative number of observed failures

• Estimated intensity function λ(·; θ̂)

• Expected (âti + b̂t2i ) vs. observed odometer readings at failure times ti

• Expected (Λ(ti; θ̂)) vs. observed (i) number of failures
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DIAGNOSTIC PLOTS FOR ONE TRAIN

0 20 40 60 80
0

10

20

30

40

50

60

70

observed no. of failures

ex
pe

ct
ed

 n
o.

 o
f f

ai
lu

re
s

0 2 4 6

x 10
5

0

1

2

3

4

5

6
x 10

5

observed km

ex
pe

ct
ed

 k
m

0 1000 2000 3000 4000
0

0.01

0.02

0.03

0.04

days
0 1000 2000 3000 4000

0

10

20

30

40

50

60

70

days

C
um

ul
at

iv
e 

no
. o

f f
ai

lu
re

s

Estimated m.v.f. vs. observed failures (top left), estimated intensity function (top right),

expected vs. observed odometer readings at failure times (bottom left) and expected vs.

observed number of failures (bottom right)
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DIAGNOSTIC FOR ONE TRAIN
Theorem 1 Let Λ(t) be a continuous nondecreasing function. Then T1, T2, . . . are arrival
times in a Poisson process Nt with m.v.f. Λ(t) if and only if Λ(T1),Λ(T2), . . . are arrival
times in an HPP Ht with failure rate one.

• Λ̂(t) estimated from data T1, T2, . . .

• Suppose T1, T2, . . . from NHPP with m.v.f. Λ̂(t)

• Y1 = Λ̂(T1), Y2 = Λ̂(T2), . . . data from HPP with rate 1

• Interarrival times Xi = Yi − Yi−1 i.i.d. E(1)

• Ui = exp{−Xi} i.i.d. U[0,1]

• Should Λ̂(t) be the right model, then Ui’s should be uniform r.v.’s

• Kolmogorov-Smirnov test to check if data are coming from uniform distribution

• Unsatisfactory results
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A BAYESIAN MODEL

• Interest in

– checking if trains fulfill reliability requirements before warranty expiration

– mathematical model able to predict failures based upon current failure data and
knowledge

• ⇒ a (more complex) Bayesian model

– first 2 years of data used to estimate parameters

– number of failures predicted in the following 1, 2, 3, 4, 5 years (for which ob-
served data are available)

– compute E(N(2,2 + i)|N(0,2)) =
∫

Λ((2,2 + i)|θ)π(θ|N(0,2))dθ, with
95% credible interval (from simulations), for i = 1,5

– comparison between predicted and actual observed failure data (cumulative
number)

– good forecast
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HIERARCHICAL MODEL

• Hierarchical model with g(t) realisation of a Gamma process

g(t) ∼ G(at, b)
θ ∼ π(θ)

[t | g, θ] = NHPP{µ(g(t); θ1)s(t; θ2)}
[k | t, g] =

n
∏

i=1

δg(ti)(·)

• MCMC algorithm (Gibbs sampling with Metropolis steps within)
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GENERATION OF g

• g updated with an acceptance/rejection step

• g needs to go through observed failure data ki = g(ti)

• link between Dirichlet and Gamma distributions

• g(t) points drawn from the cumulative distribution of a Dirichlet pro-
cess, multiplied by g(ti)− g(ti−1) and shifted above by g(ti−1)

123



GENERATION OF g
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An example of g during the MCMC run
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INTENSITY AND MEAN VALUE FUNCTION ESTIMATION
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FORECAST
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Prediction intervals of the number of failures for train 19 using 730 days (2 years) of

observations, up to 5 years ahead. The vertical lines are the interquartile intervals with

the posterior median; the plus signs are the extremes of 95% posterior probability intervals
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DIFFERENT FAILURE MODES MODEL

Code Subsystem No. of parts Total failures
1 opening commands (electrical) 14 530
2 cables and clamps 4 33
3 mechanical parts 67 1182
4 electrical protections 12 9
5 power supply circuit 2 7
6 pneumatic gear 31 295
7 electro-valves 8 39

Classification of failure modes and total failures per mode for all trains in
nine years
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CUMULATIVE NUMBER OF FAILURES
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• Failure modes 4 and 5 very rare ⇒ not enough information for fitting a stochastic
process model

• Failure modes 6 and 7 show change-points
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CUMULATIVE NUMBER OF FAILURES
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• Failure modes 1, 2 and 3 display a more regular pattern

• Mode 2 failures are only 0.11 per train and per year

• ⇒ concentrate on failure modes 1 and 3
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AVERAGE DAILY DISTANCE
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• More recent trains are used less daily
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BIVARIATE INTENSITY FUNCTION
For each train i

λi(t, s) = µ exp
{

−γ(s− ai − ci(t− t0i))
2w(t− t0i)

}

·
· exp {A cos(ω(t− d))}λ0(t− t0i)

• t0i starting operation date

• ai + ci(t− t0i) expected distance after (t− t0i) days in service
((ai, ci) different for every train, as seen before)

• w(·) positive weight function, rather close to 0 for (t− t0i) ≈ 0 and to 1 for (t− t0i)
large (initial relation between distance and time not linear)

e.g. w(z) =

√
1+ z

1+
√
1+ z

, bounded between 0.5 and 1

• λ0(·) is a baseline intensity function (depending on time since first ride), common to
all trains except for starting point

• exponentiated cosine is a periodic component with phase d (depending on calendar
time), common to all trains
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PERIODIC COMPONENT
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• Periodogram of monthly time series of failure modes 1 and 3 (after detrending)

• No clear frequency for failure mode 1 ⇒ omit periodic component in intensity

• 12-month cycle evident for failure mode 3
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BASELINE INTENSITY

• Λ0(u) = Mub (Power Law process)

• Λ0(u) = ln(1 + bu) (Reciprocal)

• Λ0(u) = (1− e−bt)/b (Exponential)

We omit writing likelihood, priors, posterior conditionals and MCMC imple-
mentation
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ESTIMATE OF MEAN VALUE FUNCTION

• Posterior mean of Λ(t; θ)

– correct one

– requires numerical integration of λ(t; θ) at each MCMC step

• Plot of Λ(t; θ̂) =
∑40

i=1

∫ t

t0i
λi(u; θ̂) du, t = 1, . . . ,3287

– θ̂ estimate of θ from MCMC run

– λi(t) = µ
√

π
γw(t−t0i) Φ

{

(ai + ci(t− t0i))
√

2γw(t− t0i)
}

·
· exp {A cos(ω (t− d))} λ0(t− t0i)
(marginal of λi(t, s))

– not optimal but useful
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ESTIMATE OF MEAN VALUE FUNCTION
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• Cumulative number of failures for all trains and estimated mean value function (dashed)

• Row 1: failure mode 1; Row 2: failure mode 3

• Each column is for a different baseline (exponential in third column is the best)
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FORECAST OF FUTURE FAILURES OF GIVEN MODE

• DT0 data available at day T0

• π(· | DT0) posterior density of θ

Predictive distribution

P(NT0+u −NT0 = x | DT0) =

∫

e−{Λ(T0+u;θ)−Λ(T0;θ)}

{Λ(T0 + u; θ)− Λ(T0; θ)}x
x!

π(θ | DT0) dθ

Expected value

E(NT0+u −NT0 | DT0) =

∫

{Λ(T0 + u; θ)− Λ(T0; θ)}π(θ | DT0) dθ
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FORECAST OF FUTURE FAILURES OF MODE 1
end of

recording
period

forecasting
horizon
(years)

95%
credibility
interval

true value posterior
mean

1992
1 (86, 143) 83 114
2 (79, 140) 72 109
3 (71, 138) 62 105

1993
1 (69, 124) 72 97
2 (59, 121) 62 90
3 (50, 119) 42 85

1994
1 (50, 100) 62 74
2 (41, 95) 42 66
3 (32, 91) 35 59

1995
1 (38, 81) 42 59
2 (30, 74) 35 51
3 (24, 68) 23 44

1996
1 (27, 60) 35 43
2 (20, 52) 23 35

1997 1 (19, 46) 23 39
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FAILURE FORECAST OF NEW TRAIN

• NH(t) failure Poisson process for new train

• λH(t; θ) intensity function and ΛH(t; θ) mean value function

• Dt failure data up to time t

• T0 = 2 years

Pr(NH(T0) > xU | Dt) = 1−
∫ xU
∑

x=0

e−ΛH(T0;θ)
[ΛH(T0; θ)]

x

x!
π(θ | Dt) dθ

f. mode 1 xU 3 4 5 6 7 8 9 10 11 12 13
prob. 0.82 0.68 0.52 0.36 0.23 0.14 0.07 0.04 0.02 0.01 0.00

f. mode 3 xU 12 13 14 15 16 17 18 19 20 21 22
prob. 0.47 0.36 0.26 0.18 0.12 0.08 0.05 0.03 0.01 0.01 0.00
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CASE STUDY: SOFTWARE RELIABILITY

Software reliability can be defined as the probability of failure-free opera-
tion of a computer code for a specified mission time in a specified input
environment

According to the Software Engineering Institute, even experienced programmers inject

about one defect into every 10 lines of code. A laudable standard which is aspired to by

many modern manufacturers of commercial software is what is referred to as the Five 9s

- software which works 99.999% of the time
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SOFTWARE RELIABILITY: ENVIRONMENTS
Techniques to achieve reliable software systems, aimed at

• Fault prevention

• Fault removal

• Fault tolerance (i.e. providing service despite of faults)

• Fault forecasting (room for statistics ...)

Stages, including

• Testing (globally and/or parts of codes)

• Operation

• Debugging
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SOFTWARE RELIABILITY: ENVIRONMENTS
Software

• Desktop computing

• Client/server computing

• Web-deployed applications

• .net enterprise (e.g. banking on line)

Intervention

• Perfect repair

• Imperfect repair

• Bugs introduction

Different environments, different models
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SOFTWARE RELIABILITY: MODELS

Seminal paper by Jelinski and Miranda (1972)

More than 100 models after it (Philip Boland, MMR2002)

Many models clustered in few classes

Search for unifying models (e.g. Self-exciting process, Chen and Singpur-
walla, 1997)
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SOFTWARE RELIABILITY: MODELS

Most software reliability models fall into one of two categories (Singpur-
walla and Wilson, 1994)

• [Type I]: models on times between successive failures based on

– [Type I-1] failure rates (e.g. Jelinski-Moranda)

– [Type I-2] inter-failure times as function of previous inter-failure
times (e.g. random coefficient autoregressive model, Singpurwalla
and Soyer, 1985)

• [Type II] models (counting processes) on observed number of failures
up to time t (e.g. NHPP)
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SOFTWARE RELIABILITY: MODELS

Failures at T1, T2, . . . , Tn

Inter-failure times Ti − Ti−1 ∼ E(λi), independent, i = 1, . . . , n

• λi = φ(N − i+1), φ ∈ R+, N ∈ N, (Jelinski-Moranda, 1972)

– Program contains an initial number of bugs N

– Each bug contributes the same amount to the failure rate

– After each observed failure, a bug is detected and corrected

Straightforward Bayesian inference with priors N ∼ P(ν) and φ ∼
G(α, β)
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SOFTWARE RELIABILITY: MODELS

• λi = φ(N − p(i− 1)), φ ∈ R
+, N ∈ N, p ∈ [0,1],

(Goel and Okumoto, 1978)

– Imperfect debugging

• λi = φδi, φ ∈ R
+, δ ∈ (0,1), (Moranda, 1975)

– Failure rate (geometrically) decreasing

Failure rate constant between failures; different from

• h(ti) =
α

β0 + β1i+ ti
(Littlewood and Verall, 1973)

• h(ti) = (N − i+1)φti (Schick and Wolverton, 1973)
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FAILURE RATES

Chen and Singpurwalla, Adv. Appl. Prob., 1997
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SOFTWARE RELIABILITY: MODELS

Random coefficient autoregressive model
(Singpurwalla and Soyer, 1985)

• Ti interfailure times and Yi = logTi, i = 1, n

• Yi = θiYi−1 + ǫi, i = 1, n

• ǫ1, . . . , ǫn ∼ N (0, σ21), i.i.d.

• θ1, . . . , θn ∼ N (λ, σ22), i.i.d.

• λ ∼ N (µ, σ23)
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SOFTWARE RELIABILITY: MODELS

Martingale processes
(Basu and Ebrahimi, 2003)

Interfailure times Ti ∼ E(λi), i = 1, n, conditionally independent given
λ1, . . . , λn

• λ1 ∼ G(α, β1) and λi|λ(−1) ∼ G(α, α/λi−1), i > 1,

⇒ E(λi|λi−1) = λi−1

• λ1 ∼ G(α1, β1) and λi|λ(−i) ∼ G(τλ2i−1, τλi−1), i > 1,

⇒ E(λi|λi−1) = λi−1
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SOFTWARE RELIABILITY

• Bugs in software induce failures

• Fixing current bugs sometimes implies introduction of new bugs

• Lack of knowledge about effects of bugs fixing

• ⇒ need for models allowing for possible, unobserved introduction of new bugs in a
context aimed to reduce bugs

• Software affects our life at a larger extent and its malfunctioning could be very harm-
ful

• Goal: Detecting bad fixing of bugs and reliability level
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BUGS INTRODUCTION: MODELS

Failures at T1, T2, . . . , Tn

Inter-failure times Ti − Ti−1 ∼ E(λi), independent, i = 1, . . . , n

• λi+1 = λie
−θi, λi, θi ∈ R

+, independent
(Gaudoin, Lavergne and Soler, 1994)

– θi = 0 ⇒ no debugging effect

– θi > 0 ⇒ good quality debugging

– θi < 0 ⇒ bad quality debugging
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BUGS INTRODUCTION: MODELS

• λi+1 = (1− αi − βi)λi+ µβi, λi, µ ∈ R+, (Gaudoin, 1999)

– Imperfect debugging

– αi good debugging rate

– βi bad debugging rate
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BUGS INTRODUCTION: MODELS

Birth-death process (Kremer, 1983)

• pn(t) = Pr{X(t) = n}

• ν(t) birth rate

• µ(t) death rate

• a initial population

p
′
n(t) = (n−1)ν(t)pn−1(t)−n[ν(t)+µ(t)]pn(t)+(n+1)µ(t)pn+1(t), n ≥ 0

with p−1 ≡ 0 and pn(0) = 1{n=a}
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HIDDEN MARKOV MODEL

• Failure times t1 < t2 < . . . < tn in (0, y]

• Yt latent process describing reliability status of software at time t (e.g. growing,
decreasing and constant)

• Yt changing only after a failure ⇒ Yt = Ym for t ∈ (tm−1, tm], m = 1, . . . , n+ 1,
with t0 = 0, tn+1 = y and Yt0 = Y0

• {Yn}n∈N Markov chain with

– discrete state space E

– transition matrix P with rows Pi = (Pi1, . . . , Pik), i = 1, . . . , k
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HIDDEN MARKOV MODEL

• Interarrival times of m-th failure Xm|Ym = i ∼ E(λ(i)), i = 1, . . . , k,m = 1, . . . , n

• Xm’s independent given Y ⇒ f(X1, . . . , Xn|Y ) =

n
∏

m=1

f(Xm|Y )

• Pi ∼ Dir(αi1, . . . , αik),∀i ∈ E, i.e. π(Pi) ∝
k
∏

j=1

P
αij−1
ij

• Independent λ(i) ∼ G(a(i), b(i)),∀i ∈ E

• Interest in posterior distribution of Θ = (λ(k),P, Y (n))

– λ(k) = (λ(1), . . . , λ(k))

– Y (n) = (Y1, . . . , Yn)

154



ORDERING OF STATES

• Independent λ’s ⇒ no ordering among states

• No 0 in transition matrix ⇒ jumps possible from any state to any state

⇒ difficult ranking of states in terms of reliability

• prior on ordered λ’s ⇒ identification of different levels of reliability

• Bi-(or tri-) diagonal transition matrix allowing only jumps into the near-
est best (nearest best and worst) state
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EXTENSION: PRIOR ON ORDERED λ’S

• X ∼ G(α, β) ⊥ (Y1, . . . , Ym) ∼ Dir(a1, . . . , am) :
∑m
i=1 ai = α

• Take (λ1, . . . , λm) : λm = X & λj = X
∑j
i=1 Yj, j = 1,m− 1

• ⇒ X = λm & Yj =
λj−λj−1
λm

, j = 1,m− 1 (with λ0 = 0)

• f(λ1, . . . , λm) = βαe−βλm
∏m
j=1

(λj−λj−1)
aj−1

Γ(aj)
I{λ1<λ2<...<λm}

• ⇒ λj|λ(−j) ∼ Be(aj, aj+1) on (λj−1, λj+1), j < m
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SOFTWARE RELIABILITY - MUSA DATA

• Musa System 1 data: 136 software failure times

• Hidden Markov model with 2 unknown states

Posterior Predictive Density of X[137]

x[137]
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SOFTWARE RELIABILITY - MUSA DATA

Posterior Distribution of Lambda[1]
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SOFTWARE RELIABILITY - MUSA DATA

Posterior Distribution of P[1,1]
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SOFTWARE RELIABILITY - MUSA DATA
Time Series Plot of Failure Times
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Longer failure times ⇒ higher Bayes estimator of probability of ”good” state
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SELF-EXCITING PROCESS WITH LATENT VARIABLES

• NHPPs widely used in (software) reliability, characterised by intensity function µ(t)

• Self-exciting processes (SEPs) add extra terms g(t− ti) to the intensity as a conse-
quence of events at ti (e.g. introduction of new bugs)

• Binary latent variables modelling the introduction of new bugs

• Interest in

– detecting possible bugs introduction

– finding optimal stopping time t∗ either as {min t : λ(t) ≤ λ∗} or minimising
E{CT(t) + CO(N(t, T ])}

– CT(t) = tCT testing cost

– CO(N(t, T ]) = CO ·N(t, T ] operational failure costs during useful life (t, T ]
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SOFTWARE RELIABILITY

• λ(t) = µ(t) +
∑N(t−)

j=1 Zjgj(t− tj)

• µ(t): nonincreasing intensity (bugs removal)

• N(t−): # failures before t

• Zj = 1,0 (introduction of new bug or not)

• gj(u) ≥ 0 for u > 0 and 0 for u ≤ 0

• Likelihood L(θ; t, Z) = f(t|Z, θ)f(Z|θ)

– f(t|Z, θ) =

n
∏

i=1

λ(ti)e
−
∫ T

0
λ(t)dt

– Bernoulli priors on Zj ’s updated by data

• P (Zj = 1|t), etc.
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CASE STUDY 4: CYLINDER LINERS WEAR

• Grimaldi Group is one of the largest ship companies in Italy (and, prob-
ably, in Europe), involved in both freight and passengers transportation
and operating more than 60 ships, mostly in Europe but also overseas

• Interest in preventive and optimal maintenance of ships

• Earlier models studied by engineers and a physicist in Napoli

• Researchers from Milano involved recently on (more sophisticated?)
mathematical models from a Bayesian perspective
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PROBLEM DESCRIPTION

• Marine diesel engines are obliged to have high levels of reliability and availability to
meet operating requirements

• A costly maintenance programme (including inspection, repair and replacement) is
required to satisfy these requirements

• ”Condition based” maintenance, based on identifiable warnings of the onset of a
failure, is one of the most effective policies

• In this context, preventive replacement of components is carried out on the basis of
their current conditions, rather than on accumulated operating time, i.e. only when
actually required, reducing costs and increasing system availability
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PROBLEM DESCRIPTION

• Wearing of cylinder liners is a major factor in causing failures in heavy-duty diesel
engines

• Liner replacement is generally carried out when the maximum wear of the internal
surface approaches a threshold (4mm in our case) imposed by warranty clauses;
note that the liner walls are 100mm thick

• The largest wear is usually achieved at the Top Dead Center of the liner, which is sub-
ject to high thermomechanical and tribological (i.e. related to interactions between
surfaces in relative motion) stresses which produce relevant early local damages
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PROBLEM DESCRIPTION
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PROBLEM DESCRIPTION

• Major wear is due to the high quantity of abrasive particles on the piston surface,
produced from the combustion of heavy fuels and oil degradation (soot)

• If the lubricant film along the walls of the liner is less thick than the soot particle, then
the soot can cause abrasion on the liner metal surface (soot particles are harder
than engine parts)

• Besides abrasive wearing, there is a corrosive wearing due to sulphuric acid, ni-
trons/nitric acids and water
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GOALS OF THE RESEARCH

The company’s viewpoint

• Forecast the behaviour of the wear process

• Develop a parsimonious, but efficient, inspection policy which increases
ships availability and prevents exceedance of the maximum allowed
wear (costs due to any failure occurred with a wear under such thresh-
old are charged to the liner’ constructor, whereas the naval company
pays o.w.)
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GOALS OF THE RESEARCH

The researchers’ viewpoint

• Introduce models capable of describing the wear process and fore-
casting its behaviour

• Study of optimal maintenance policies, e.g. computing the probability
of exceeding the maximum allowed wear before the next inspection is
performed
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CASE STUDY

• Data about wear in 30 cylinder liners of 8 cylinder SULZER RTA 58 engines, equip-
ping twin ships of the Grimaldi Group

• Data collected after each liner was mounted (dates after 1/1/1996) until 30/12/2004

• Liners were periodically inspected and the accumulated wear was measured by po-
sitioning a micrometer inside a planned hole in correspondence of the Top Dead
Center (i.e. the point of maximum wear)

• Micrometer accuracy is 0.05mm so that all measures are approximated to the near-
est multiple of 0.05mm

• Failed liners are replaced by new ones

• Wear should increase more slowly as accumulated wear increases (see next figure)
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COMPETING RISK MODEL

Early work (Bocchetti, Giorgio, Guida and Pulcini, 2006)

• Two possible causes of failure: wear (as before) and thermal crack

• The thermal crack of the liner is due to fatigue cracking caused by repeated occur-
rences of thermal shocks

• Thermal shocks are caused by changes in the temperature of the cooling fluid on
the external surface of the liner, often aggravated by corrosion caused by inadequate
chemical treatment of the cooling water

• The changes occur mostly during the maneuver operations when it is difficult to keep
the temperature constant

• As a consequence, a small crack can arise in the external surface of the liner and
then propagate towards the inside
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COMPETING RISK MODEL

• Failure mechanisms are independent since

– wear is internal to the liner and is not influenced by the thermal
shock which is external

– the point in which maximum wear and crack could occur are quite
far apart

– external temperature is quite uninfluential on the process inside

• Current research concentrates only on wear, which is deemed as the
most relevant phenomenon
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COMPETING RISK MODEL

• Wearing events, modelled by NHPP N(t), induce an accumulated wear W(t) =
cN(t), with c constant to be estimated

• λ(t) = a exp{−bt}, a, b > 0, intensity function of N(t), preferred to the Power
Law process (PLP) with decreasing λ(t) = Mβtβ−1, M > 0,0 < β < 1, to avoid
unlimited growth of the wear process

• Weibull distribution used to describe occurrence of thermal cracks (justified by plot-
ting the Kaplan-Meier estimator on Weibull paper)

• Thermal crack dominating cause of failure in the first 5000 hours and then wear
dominates
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GOALS OF OUR RESEARCH

Our viewpoint

• Describe the wear process and forecast its behaviour

• Introduce models (e.g. diffusion processes) capable of better describ-
ing the dynamics of the wear process

• Use available information (in a situation of few data) through a Bayesian
approach
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PHYSICAL ASSUMPTIONS

• wear increment decreases as a function of wear

• background activity of tiny particles and corrosion lead to rather negli-
gible wear increments

• large soot particles responsible for the most relevant wear increments
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MATHEMATICAL ASSUMPTIONS

• wear W (t) evolves over time and influences wear increment dW (t)

⇒ stochastic differential equation (SDE) dW (t) = f(W (t))

• additive accumulation of wear as a sequence of small normally dis-
tributed effects (e.g. tiny particles and corrosion)
⇒ possibly a Wiener process with drift

• wear increment jumps because of large particles
⇒ possibly a jump process in the SDE
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OUR FIRST MODEL

dW (t) = W (t−) {µdt+ σdB(t) + dJ(t)}

• µ drift, µ > 0, and σ volatility, σ > 0

• B(t) Wiener process at time t

• N(t) homogeneous Poisson process (HPP) with rate λ, λ > 0, denoting number of
collisions of large particles up to time t

• τj, j = 1, . . . , N(t), (unobserved) collision times up to time t

• Yj =
W (τj)−W (τ−

j )

W (τ−
j )

, j = 1, . . . , N(t), jump sizes (Yj > 0 ⇒ upward jumps)

• J(t) =
∑N(t)

j=1 Yj jump process
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OUR FIRST MODEL

dW (t) = W (t−) {µdt+ σdB(t) + dJ(t)}

Positive aspects

• closed-form solution

W(t) = W(0) exp
{

(µ− σ2/2)t+ σB(t)
}

N(t)
∏

j=1

(Yj + 1)

• explicit expression for conditional likelihood (upon the number of collisions in each
interval between inspection times)

• feasible Bayesian inference, based on MCMC methods
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OUR FIRST MODEL

dW (t) = W (t−) {µdt+ σdB(t) + dJ(t)}

Negative aspects

• wear increment proportional to wear, but proper choice of jump process can contrast
the direct proportionality (e.g. by considering a decreasing λ over time, with λ the
parameter of the HPP determining the number of collisions)

• cannot start with W(0) = 0 since the solution is

W(t) = W(0) exp
{

(µ− σ2/2)t+ σB(t)
}

N(t)
∏

j=1

(Yj + 1)

• Yj are not observed ⇒ need to sample them during MCMC
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MODEL ON THICKNESS

dT(t) = −T(t−) {µdt+ σdB(t) + dJ(t)}

• T(t) thickness of the wall

• T0 = T(0) initial thickness

• T ∗ threshold (minimum allowed) thickness

• µ drift, µ > 0, and σ volatility, σ > 0

• B(t) Wiener process at time t

• Yj =
T (τ−

j )−T (τj)
T (τ−

j )
, j = 1, . . . , N(t), jump sizes

• J(t) =
∑N(t)

j=1 Yj jump process

181



MODEL ON THICKNESS

dT(t) = −T(t−) {µdt+ σdB(t) + dJ(t)}

Positive aspects

• thickness decrement proportional to thickness

• closed-form solution

T(t) = T(0) exp
{

−(µ+ σ2/2)t− σB(t)
}

N(t)
∏

j=1

(1− Yj)

182



MODEL ON THICKNESS

dT(t) = −T(t−) {µdt+ σdB(t) + dJ(t)}

Negative aspects

• not monotone but we expect very minor oscillations

• (1− Yj) ∈ (0,1) since Yj ∈ (0,1) but we use a lognormal model for
(1−Yj) , considering a Gaussian distribution which assigns negligible
probability to the positive values of log(1− Yj)

• Yj are not observed ⇒ need to sample them during MCMC
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SOLUTION OF SDE

dT(t) = −T(t−) {µdt+ σdB(t) + dJ(t)}

Solution of SDE (Runggaldier, 2003)

T(t) = T(0) exp
{

−(µ+ σ2/2)t− σB(t)
}

N(t)
∏

j=1

(1− Yj)

Conditional upon N(t) = n and taking t0 = 0

T(t) ∼ T(0) · LN
(

−(µ+ σ2)t, σ2t
)

· LN
(

an, b2n
)

∼ LN
(

logT(0)− (µ+ σ2/2)t+ an, σ2t+ b2n
)

Starting at s, with T(s) > 0, and conditional on N(s, t) = n

T(t) ∼ LN
(

logT(s)− (µ+ σ2/2)(t− s) + an, σ2(t− s) + b2n
)
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MOMENTS

T(t) ∼ LN
(

logT(0)− (µ+ σ2/2)t+ an, σ2t+ b2n
)

U ∼ LN (p, q2)

• EU = exp{p+ q2/2}

• V ar(U) = exp{2p+ q2}(exp(q2)− 1)

E(T(t)|N(t)) = exp{g+ hN(t)} ⇒ E(T(t)) = exp{g − λt+ λteh}

• g = logT(0)− µt

• h = a+ b2/2

V ar(T(t)) similar
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DATA

• i = 1, . . . ,30 labels of 30 cylinder liners

• T(ti0) = 100mm initial liner thickness

• Wmax = 4mm maximum allowed wear

• Tmax = 96mm minimum allowed thickness

• ni number of inspections performed on the i-th liner;

• ti,j age (in operating hours) of i-th liner at time of j-th inspection;

• Ti,j thickness (in mm) measured for i-th liner at time of j-th inspection.
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DATA

i ni ti,1 Ti,1 ti,2 Ti,2 ti,3 Ti,3 ti,4 Ti,4
1 3 11300 99.10 14680 98.70 31270 97.15
2 2 11360 99.20 17200 98.65
3 2 11300 98.50 21970 98.00
4 2 12300 99.00 16300 98.65
5 3 14810 98.10 18700 97.75 28000 97.25
6 3 9700 98.90 19710 97.40 30450 97.00
7 3 10000 98.80 30450 97.25 37310 96.95
8 3 6860 99.50 17200 98.55 24710 97.85
9 3 2040 99.60 12580 98.00 16620 97.65
10 3 7540 99.50 8840 98.90 9770 98.85
11 3 8510 99.20 14930 98.55 21560 98.10
12 4 18320 97.80 25310 97.00 37310 96.30 45000 96.25
. . . . . . . . . . . . . . . . . .
30 1 8250 99.30
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LIKELIHOOD

We consider just one cylinder liner

Different models for joint analysis of all liners

• completely different liners ⇒ independent models with different parameters ⇒ sep-
arated analyses

• similar (exchangeable) liners ⇒ conditionally independent models with parameters
from same prior ⇒ hierarchical model

• same kind of liners operated under same conditions ⇒ product of likelihoods with
same parameters and prior

• different operating conditions ⇒ models with covariates (e.g. the ship they are in)
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LIKELIHOOD

Independent increments (Øksendal, 1998)

f(T(tn) = wn, . . . , T(t1) = w1) =

= f(T(tn)− T(tn−1) = wn − wn−1, . . . , T(t1)− T(t0) = w1 − w0)

=

n
∏

i=1

f(T(ti)− T(ti−1) = wi − wi−1)

=
∑

n1,...,nn

n
∏

i=1

f(T(ti)− T(ti−1) = wi − wi−1|N(ti−1, ti) = ni)f(N(ti−1, ti) = ni) (1)

⇒ likelihood based on (1) too difficult to deal with
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PARTIAL LIKELIHOOD

• partial likelihood based on N(ti−1, ti) = ni, i = 1, . . . , n

• treat N(ti−1, ti) = ni, i = 1, . . . , n, as parameters and draw from
their (conditional) posterior distribution in the MCMC sampling

n
∏

i=1

1√
2π
√

σ2(ti − ti−1) + b2niwi
exp{−[logwi − logwi−1 + (µ+ σ2/2)(ti − ti−1)− ani]2

2[σ2(ti − ti−1) + b2ni]
}
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PRIORS

• µ ∼ N (ρ, τ2)

• a ∼ N (δ, ǫ2)

• σ2 ∼ IG(α, β)

• b2 ∼ IG(γ, η)

• Ni ∼ P(λ(ti − ti−1)), i = 1, . . . , n

• λ ∼ G(φ, ψ)
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PARAMETERS ELICITATION

E(T(t)) = E(T(t))(θ) and V ar(T(t)) = V ar(T(t))(θ)

⇒ elicitation of a prior on θ

• Fix times u1, . . . , uk

• Ask the experts about expected thickness at times u1, . . . , uk and the ranges in
which they are almost sure (99%) the thickness will be

• Use the given information to match E(T(t)) and V ar(T(t)) for each u1, . . . , uk
⇒ 2k equations

• Problems

– transform equations into priors

– consistency checks
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POSTERIOR CONDITIONALS
Set

• ∆i = ti − ti−1

• Θi = σ2(ti − ti−1) + b2ni

• Σi = logwi − logwi−1 + σ2(ti − ti−1)/2− ani

• Γi = logwi − logwi−1 + (µ+ σ2/2)(ti − ti−1)

• Φi = logwi − logwi−1 + (µ+ σ2/2)(ti − ti−1)− ani

• Ωi = logwi − logwi−1 + µ(ti − ti−1)− ani
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POSTERIOR CONDITIONALS

• µ ∼ N (
ρ/τ2 −∑n

i=1(∆iΣi/Θi)

1/τ2 +
∑n

i=1∆
2
i /Θi

,

{

1/τ2 +

n
∑

i=1

∆2
i /Θi

}−1

)

• a ∼ N (
δ/ǫ2 +

∑n
i=1(niΓi/Θi)

1/ǫ2 +
∑n

i=1 n
2
i /Θi

,

{

1/ǫ2 +

n
∑

i=1

n2
i /Θi

}−1

)

• σ2 ∝ (σ2)−(α+1)e−β/σ
2∏n

i=1{σ2∆i + b2ni}−1/2e{−(Ωi+σ2∆i/2)2/[2(σ2∆i+b2ni)]}

• b2 ∝ (b2)−(γ+1) exp{−η/b2}∏n
i=1{σ2∆i+b2ni}−1/2 exp{−Φ2

i /[2(σ
2∆i+b2ni)]}

• Ni ∝ {σ2∆i+b2ni}−1/2w−1
i exp{−(Γi−ani)2/[2(σ2∆i+b2ni)]}(λ∆i)ni

ni!
exp{−λ∆i},

i = 1, . . . , n

• λ ∼ G(φ+
∑n

i=1 ni, ψ+ tn − t0)
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DATA AUGMENTATION

Only 1 to 4 observations for each liner
⇒ hard to get reliable estimates
⇒ data augmentation

(Elerian et al, 2001, Eraker, 2001, Golightly and Wilkinson, 2005, and Gili-
oli, Pasquali and FR, Bulletin of Mathematical Biology, 2007)
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DATA AUGMENTATION

Steps within the MCMC algorithm

1. Choose a number M of points to generate between two inspection points ti−1 and
ti, with thickness wi−1 and wi, respectively

2. Get M pairs time/thickness (y
(0)
j , z

(0)
j ) by interpolating between (ti−1, wi−1) and

(ti, wi)

3. Based on Euler’s approximation, add the Gaussian contribution of the new observa-
tions (y(m)

j , z(m)
j ) to the likelihood

4. Compute the conditional distribution of each new observation (considered as param-
eter ), given all the other parameters and new observations

5. Draw another value (y(m)
j , z(m)

j ) of the new observation (Metropolis-Hastings step)

6. Back to Step 3 until an adequate sample is obtained
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PRACTICAL PROBLEM . . .

• Inverse gamma as proposal distribution in the Metropolis steps for σ2

and b2

• Very very low acceptance rate under

– independent proposal (the same at each step)

– random walk proposal (with mean equal to last drawn values)
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. . . AND SOLUTION

• σ2 ∝ (σ2)−(α+1)e−β/σ
2∏n

i=1{σ2∆i + b2ni}−1/2e{−(Ωi+σ2∆i/2)2/[2(σ2∆i+b2ni)]}

• ⇒ σ2 ∝ IG(α, β) · h(σ2)

• Two steps procedure

– Estimate Eσ2 (given other parameters) by importance sampling, i.e.
∑

σ2
i h(σ

2
i )

∑

h(σ2
i )

,

with IG(α, β) as sampling distribution

– Perform the Metropolis step with IG with mean Eσ2 and given variance
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COMMENTS

• Two step procedure and data augmentation improve results but worsen
execution time

• λ (the parameter of the HPP related to jumps) is rather uninfluential

• Robustness w.r.t. changes in the priors for σ2 and b2

• Significant change in expected number of jumps in each interval from
prior to posterior
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Trajectories with estimated parameters (a priori and posteriori)
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CASE STUDY 5: COMPETING RISKS
Many causes of failures: here maintenance and actual failure of pumps

Nr.
1-8 (14,0) (30,0) (48,0) (7,0) (3,0) (2,0) (7,0) (6,0)

10-16 (11,0) (7,0) (8,0) (24,0) (21,0) (5,0) (1,0) (7,0)
17-24 (3,0) (92,0) (13,0) (10,0) (4,0) (10,0) (49,0) (89,0)
25-32 (48,1) (12,1) (8,1) (3,1) (3,0) (3,1) (3,1) (28,0)
33-34 (23,0) (22,0)

Pump data: 0 = failure, 1 = maintenance

Interest in

• determining the goodness of the company’s maintenance policy

• proposing an optimal maintenance policy
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RANDOM SIGN CENSORING MODEL
Definition 3 Given a random variable X, consider Y = X −Wδ, where W is a random
variable with 0 < W < X and δ = {−1,1} is also a random variable independent of X.
The variable Z ≡ [min(X,Y ),1(Y < X)], with 1(·) denoting the set function, is called
a random sign censoring of X by Y .

• X failure, Y maintenance and Z observed times

• We want Y < X (i.e. δ = −1) and W as close as possible to 0

• CR repair and CM maintenance costs s.t. CM < CR

• Current expected cost (after n observed failures):
EC = CRP (δn+1 = −1|t, δ) + CMP (δn+1 = 1|t, δ)

• Expected cost at time t under our model (based upon predictive distribution after n
observed failures):
Et = CRP (Xn+1 ≤ t|t, δ) + CMP (Xn+1 > t|t, δ)

• Looking for critical tc s.t. EC = Etc

• Choose t∗ = tc − ǫ, ǫ > 0
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BASIC QUEUEING CONCEPTS

• Queueing system: structure in which clients arrive according to some arrival process
and wait, if necessary, before receiving service from one or more servers

• Client attended upon arrival if there are free servers; o.w. it will leave the system
immediately or wait for some time until it can wait no longer or until a server becomes
available

• Queueing system often summarized by six characteristics A/S/c/K/M/R, using
Kendall’s (1953) notation

– A and S: forms of arrival and service processes, respectively

– c number of servers

– K finite or infinite capacity of the system

– M finite or infinite customer population

– R service discipline
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BASIC QUEUEING CONCEPTS
• As an example, M/D/2/10/∞/FIFO

– M : Markovian arrival process, with exponential i.i.d. inter-arrival times

– D: Fixed or deterministic service times

– 2: number of servers

– 10: capacity of the queue

– ∞: size of the population

– FIFO: service policy (First In First Out)

• Often systems summarized as in M/G/c, shorthand for

– Markovian arrival process

– General service time distribution

– c servers

– Infinite capacity

– Infinite population

– FIFO service policy
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QUANTITIES OF INTEREST

• Arrival and service processes

• Client’s perspective

– Waiting time in queue

– Size of the waiting queue

• Server’s perspective

– Busy period

– Idle time between services

• ⇒ Introduction of performance measures
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QUANTITIES OF INTEREST

Nq(t) = number of clients waiting in queue at time t

Nb(t) = number of busy servers at time t

N(t) = Nq(t) +Nb(t) = number of clients in system at time t

Wq(t) = time spent waiting in queue by a client arriving at time t

W(t) = time spent in system by a client arriving at instant t
= Wq(t) + S, with S service time of the client

• Quantities of interest

– typically stochastic

– exact distributions difficult to obtain for most queueing systems

• Assuming system reaches equilibrium as time increases

• ⇒ more straightforward analysis of long term behavior
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STABILITY

• Stability of queueing system depends on traffic intensity ρ

• G/G/c system

– General inter-arrival time distribution G

– General service distribution G

– c servers

– Infinite population

– Infinite capacity

– FIFO service discipline

• ⇒ ρ = λE[S]/c, with

– λ mean arrival rate, i.e. mean number of arrivals per unit time

– E[S] mean service time
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STABILITY

• For ρ > 1, then, on average,

• ⇒ arrivals occur at a faster rate than can be handled by the servers

• ⇒ queue size will tend to grow over time

• For ρ = 1, equilibrium cannot be reached except for both arrival and service deter-
ministic distributions

• For ρ < 1, proved (see, e.g., Wolfson, 1986)

– distributions of N(t),Nq(t),Nb(t),W(t) and Wq(t) approach equilibrium dis-
tributions

• N : equilibrium queue size

– P (N = n) = lim
t→∞

P (N(t) = n)
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STABILITY

• W : equilibrium time spent by an arriving customer in the system

– FW(w) = P (W ≤ w) = lim
t→∞

P (W(t) ≤ w)

• Similar definitions for Nb, Nq and Wq

• Little’s (1961) laws relating mean numbers of clients in the system and queue to
average waiting or queueing time

– E[N ] = λE[W ]

– E[Nb] = λE[Wq]

• Variables of interest related with total work of servers

– B length of a server’s busy period, i.e. time between arrival of a client in an
unoccupied server system and first instant in which the server is empty again

– I length of a server’s idle period, i.e. length of time that a server is unoccupied
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MAIN QUEUEING MODELS

• Probabilistic properties

– M/M/1 and Related Systems

– GI/M/1 and GI/M/c Systems

– M/G/1 System

– GI/G/1 Systems

• Use P (N = n) instead of P (N = n|λ, µ)
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M/M/1 AND RELATED SYSTEMS

• M/M/1 system

– Arrivals according to HPP with parameter λ

– Service time i.i.d. exponential with parameter µ

– One server

• Birth-death process

– Birth as arrival in the queue

– Death as service completion

• Traffic intensity ρ = λE[S]/c = λ/µ

• ⇒ system stable if ρ < 1
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M/M/1 AND RELATED SYSTEMS

• Stable system ⇒ equilibrium distributions available (Gross and Harris, 1998)

• Number of clients in the system

– N ∼ Ge(1− ρ), with E[N ] =
ρ

1− ρ
(↑ ∞ for ρ ↑ 1)

• Number of clients in the queue waiting to be served

– P (Nq = n) =

{

P (N = 0)+ P (N = 1) if n = 0
P (N = n+ 1) for n ≥ 1

• Time spent by an arriving customer in the system

– W ∼ Ex(µ− λ), with E[W ] =
1

µ− λ
=

1

µ(1− ρ)
(↑ ∞ for ρ ↑ 1)

• Time spent queueing

– P (Wq ≤ t) = 1− ρe−(µ−λ)t for t ≥ 0 (⇒ P (Wq = 0) = 1− ρ)
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M/M/1 AND RELATED SYSTEMS

• M/M/1 system: one of the few with analytical expression for short term distribution
of number of clients N(t) (Clarke, 1953)

• Suppose n0 clients in the system at time 0

P (N(t) = n) = e−(λ+µ)t
[

ρ(n−n0)/2In−n0

(

2
√

λµt
)

+ρ(n−n0−1)/2In+n0+1

(

2
√

λµt
)

+(1− ρ) ρn/2
∞
∑

j=n+n0+1

ρ−j/2Ij

(

2
√

λµt
)



 ,with

Ij(c) modified Bessel function of the first kind, i.e.

Ij(c) =

∞
∑

k=0

(c/2)j+2k

k!(j + k)!
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M/M/1 AND RELATED SYSTEMS

• Density function of the duration, B, of a busy period

fB(t) =

√

µ/λ e−(µ+λ)t I1
(

2
√
λµt

)

t
, for t ≥ 0

• Density function of the length of a server’s idle period I

fI(t) = λe−λt, for t ≥ 0

• Many results available for other Markovian systems

– multiple or infinite servers

– finite capacity

– bulk arrivals

• See, e.g., Gross and Harris (1998) or Nelson (1995)

13



GI/M/1 AND GI/M/c SYSTEMS

• GI/M/1 system

– Independent, generally distributed interarrival times

– Service time i.i.d. exponential with parameter µ

– One server

• For a stable GI/M/1 system ⇒ stationary distributions

– Number of clients in the system found by an arriving customer

P (Na = n) = (1− η)ηn for n = 0,1,2, . . . ,with

∗ η smallest positive root of f∗
A(µ(1− s)) = s

∗ f∗
A(s) Laplace-Stieltjes transform of the inter-arrival time distribution

∗ Laplace-Stieltjes transform of a continuous variable, X, with cdf FX(·)

f∗
X(s) =

∫ ∞

−∞
e−sxdF (x)

for s ∈ C, wherever this integral exists
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GI/M/1 AND GI/M/c SYSTEMS

• For a stable GI/M/1 system ⇒ stationary distributions

– Number of clients in the system

P (N = n) =

{

1− ρ if n = 0
ρP (Na = n− 1) for n > 0

,with

ρ traffic intensity of the system

– Time spent in the system

P (W ≤ t) = 1− e−µ(1−η)t for t ≥ 0

• Extension from GI/M/1 system to multi-server GI/M/c systems

– Number c of channels taken in account in finding η, smallest positive root of
f∗
A(cµ(1− s)) = s

– Given the root ⇒ formulae for waiting time and queue size distributions (see,
e.g., Allen, 1990, or Gross and Harris, 1998)
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M/G/1 SYSTEM

• M/G/1 system

– Arrivals according to HPP with parameter λ

– Independent, general service times

– One server

• Stable system ⇒ equilibrium distributions available (Gross and Harris, 1998)

– Distribution of number of clients in the system found recursively through

P (N = n) = P (N = 0)P (Y = n)+

n+1
∑

j=1

P (N = j)P (Y = n− j +1),with

∗ P (N = 0) = 1− ρ

∗ Y represents the number of arrivals during a service time, i.e.

P (Y = y) =

∫ ∞

0

(λt)ye−λt

y!
fS(t) dt

∗ fS(t) service time density
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M/G/1 SYSTEM

• Stable system ⇒ equilibrium distributions available (Gross and Harris, 1998)

– Distributions of waiting time and other variables of interest derived, in general,
only in terms of Laplace-Stieltjes transforms

∗ Laplace-Stieltjes transform of time spent queueing, Wq, given by

f∗
Wq

(s) =
(1− ρ)s

s− λ[1− f∗
S(s)]

,with

f∗
S(s) Laplace-Stieltjes transform of service time density

– Pollaczek-Khintchine formula: general result for M/G/1 systems expressing
mean queueing time in terms of average arrival rate λ and service rate µ, and
the variance σ2

s of service time distribution

[Wq] =
λ
(

σ2
s + 1

µ2

)

(1− ρ)
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GI/G/1 SYSTEMS

• Except for some very specific systems, there are very few exact results known con-
cerning the distributions of queue size, busy period etc. for GI/G/1 queueing sys-
tems

• When exact results are unavailable, one way of estimating the distributions of these
variables is to use Discrete Event Simulation techniques (see, e.g., Ch.9 of DRI, FR,
MPW, 2012)

– Interarrival and service times simulated over a sufficiently large time period T ⇒
system assumed in equilibrium

– Computation of corresponding performance measures based on a sufficiently
large sample size

– ⇒ Reasonable approximations for small traffic intensity

– ⇒ Inefficient with traffic intensity close to 1 since a very large time period T is
needed before assuming equilibrium
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BAYESIAN INFERENCE

• Queueing theory dates back to Erlang (1909)

• Inference for queueing systems more recent (Clarke, 1957)

• First Bayesian approaches to inference for Markovian systems in early
1970’s (Bagchi and Cunningham, 1972, Muddapur, 1972 and Reynolds,
1973)

• Advantages of Bayesian approach in Armero and Bayarri (1999 et at.)

• Rios Insua, FR and Wiper (and his coauthors)
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ADVANTAGES OF BAYESIAN APPROACH

• Uncertainty about system stability easily quantified

– P (ρ < 1|data): probability of stable (single server) queueing system

– From a classical viewpoint

∗ Point and interval estimators for ρ but ...

∗ ... not clear how to measure uncertainty about whether or not a queueing
system is stable

• Restrictions in parameter space easily handled

– Often queueing system assumed stable

– ⇒ take prior distribution for traffic intensity on [0,1)

– For heavy traffic, stable system ⇒ possible MLE ρ̂ ≥ 1

– ⇒ how to compute equilibrium probabilities of queue size, etc. assuming equi-
librium?
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ADVANTAGES OF BAYESIAN APPROACH

• Straightforward prediction

– E.g. System size at a given time

P (N(t) = n|data) =

∫

θ
P (N(t) = n|θ)f(θ|data) dθ

– Equilibrium incorporated by conditioning on system stability

– Standard classical approach of using plug in estimates can fail to produce sen-
sible predictions for equilibrium probabilities specially under conditions of heavy
traffic (see, e.g., Schruben and Kulkarni, 1982)

• Straightforward design

– Bayesian decision making techniques used to find optimal decision about, e.g.,

∗ number of servers

∗ capacity of the system

– ⇒ to meet some specified cost or utility condition
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PROBLEMS WITH BAYESIAN APPROACH

• Main practical difficulty concerns the experiment to be carried out

• In practice, easy to observe aspects of a queueing system, like

– queue sizes at given times, customer waiting times and busy period lengths

• BUT their distributions

– usually unknown or available as Laplace-Stieltjes transforms

• ⇒ Likelihood function hard, if not impossible, to derive

• ⇒ Inferential techniques which do not depend on the likelihood may be needed

• ⇒ Most Bayesian papers assume arrival and service processes observed separately

– ⇒ (Usually) straightforward likelihood

– ⇒ Separate observation of the processes usually more expensive and time con-
suming in practice than simply observing, e.g., lengths of busy periods
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INFERENCE FOR M/M/1 SYSTEMS

• Most Bayesian work (e.g. McGrath and Singpurwalla, 1987, and Armero and Bayarri,
1996) on M/M/1 or related Markovian systems

• M/M/1 with unknown arrival and service rates, λ and µ respectively

• Simple experiment of observing first na and ns interarrival and service times, respec-
tively

– Fixed number of arrivals, decided a priori

– Observed number of arrivals in a given time period, decided a priori

• Both cases ⇒ similar likelihood
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INFERENCE FOR M/M/1: MLE

• ta: total time taken for the first na arrivals

• ts: total time taken for the first ns service completions

• Sum of n i.i.d. exponential random variables has ⇒ Erlang distribution

• ⇒ Likelihood

l(λ, µ|data) =
λna

Γ(na)
tna−1
a e−λata

µns

Γ(ns)
tns−1
s e−µsts ∝ λnae−λataµnse−µsts

• ⇒ MLE for λ and µ

– λ̂ = 1/t̄a, with mean inter-arrival t̄a = ta/na

– µ̂ = 1/t̄s, with mean service times t̄s = ts/ns

• ⇒ ρ̂ = λ̂/µ̂ MLE of traffic intensity ρ

• If ρ̂ < 1 ⇒ ρ̂ can replace ρ in the formulae for predictive distributions of queue size,
waiting time etc. in stable systems

24



INFERENCE FOR M/M/1: BAYES

• Likelihood

l(λ, µ|data) =
λna

Γ(na)
tna−1
a e−λata

µns

Γ(ns)
tns−1
s e−µsts ∝ λnae−λataµnse−µsts

• ⇒ Gamma conjugate prior distributions for λ and µ

λ ∼ Ga(αa, βa) and µ ∼ Ga(αs, βs),

with αa, βa, αs, βs > 0

• Methods to elicit αa, βa, αs, βs seen earlier

• Jeffreys priors as alternatives, under little prior information

f(λ, µ) ∝ 1

λµ

• ⇒ limiting case of gamma priors when αa, βa, αs and βs approach zero

25



INFERENCE FOR M/M/1: BAYES

• Given likelihood and gamma priors ⇒ λ and µ independent a posteriori

λ|data ∼ Ga(α∗
a, β

∗
a) and µ|data ∼ Ga(α∗

s, β
∗
s),

with α∗
a = αa + na, β∗

a = βa + ta, α∗
s = αs + ns and β∗

s = βs + ts

• Jeffreys prior ⇒ λ|data ∼ Ga(na, ta) and µ|data ∼ Ga(ns, ts)

• Posterior distribution of ρ (Armero, 1985)

– From 2β∗
aλ|data ∼ χ2

2α∗
a
, 2β∗

sµ|data ∼ χ2
2α∗

s
and

– ratio of two χ2 distributions divided by their degrees of freedom ⇒ F distributed

– ⇒ α∗
sβ

∗
a

α∗
aβ

∗
s

ρ

∣

∣

∣

∣

data ∼ F2α∗
s

2α∗
a

– Jeffreys prior ⇒ nsta

nats
ρ

∣

∣

∣

∣

data ∼ F2ns

2na

– Jeffreys prior ⇒ Bayesian credible intervals for ρ coincide with frequentist ones
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INFERENCE FOR M/M/1: BAYES

• Posterior mean of ρ for gamma prior

E[ρ|data] =
α∗
aβ

∗
s

(α∗
s − 1)β∗

a

• Posterior mean of ρ for Jeffreys prior

E[ρ|data] =
tsna

ta(ns − 1)
=

ns

ns − 1
ρ̂

different from MLE ρ̂

• Posterior probability of stable system

P (ρ < 1|data) =
(β∗

a/β
∗
s)

α∗
a

α∗
aB(α∗

a, α
∗
s)

2F1

(

α∗
a + α∗

s, α
∗
a;α

∗
a +1;−β∗

a

β∗
s

)

,

where 2F1(a, b; c; d) is the Gauss hypergeometric function

2F1(a, b; c; d) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

xb−1(1− x)c−b−1(1− dx)−1 dx
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TESTING FOR STABILITY

• Posterior on ρ ⇒ assess stability of queueing system (Armero and Bayarri, 1994)

• Formal test for stationarity: H0 : ρ < 1 vs. H1 : ρ ≥ 1

• p0 posterior probability for H0

• p1 = 1− p0 posterior probability for H1

• Two types of error

– Assume H0 is true when H1 is true

– Assume H1 is true when H0

• First error associated with loss l01 and second with loss l10

• Losses determined by gravity of each error

• Minimizing the expected loss, H0 optimal decision if l01p1 < l10p0 or
p0

p1
>

l01

l10
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PREDICTIVE DISTRIBUTIONS GIVEN EQUILIBRIUM

• Suppose a stable system

• From
α∗
sβ

∗
a

α∗
aβ

∗
s

ρ

∣

∣

∣

∣

data ∼ F2α∗
s

2α∗
a

and

• P (ρ < 1|data) = (β∗
a/β

∗
s)

α∗a

α∗
aB(α∗

a,α
∗
s)
2F1

(

α∗
a + α∗

s, α
∗
a;α

∗
a +1;−β∗

a

β∗
s

)

• ⇒ density of traffic intensity conditional on stability condition, 0 < ρ < 1

f(ρ|data, ρ < 1) =
α∗
a

2F1

(

α∗
a + α∗

s, α
∗
a;α

∗
a +1;−β∗

a

β∗
s

)ρα
∗
a−1

(

1+
β∗
a

β∗
s

ρ

)−(α∗
a+α∗

s)
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PREDICTIVE DISTRIBUTIONS GIVEN EQUILIBRIUM
• Predictive distribution of number of clients in a system

– From N ∼ Ge(1− ρ), with E[N ] = ρ
1−ρ

⇒

P (N = n|data, ρ < 1) =

∫ 1

0

(1− ρ)ρnf(ρ|data, ρ < 1) dρ

=
α∗
aΓ(α

∗
a + n)

Γ(α∗
a + n+2)

2F1

(

α∗
a + α∗

s, α
∗
a + n;α∗

a + n+2;−β∗
a

β∗
s

)

2F1

(

α∗
a + α∗

s, α
∗
a;α

∗
a + 1;−β∗

a

β∗
s

)

• Predictive distribution of number of clients queueing in equilibrium, obtained from

– P (N = n|data, ρ < 1)

– P (Nq = n) =

{

P (N = 0)+ P (N = 1) if n = 0
P (N = n+ 1) for n ≥ 1
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PREDICTIVE DISTRIBUTIONS GIVEN EQUILIBRIUM

• Nonexistence of mean of the predictive distribution of N

– From N ∼ Ge(1− ρ), with E[N ] = ρ
1−ρ

E[N |data, ρ < 1] = E

[

ρ

1− ρ

∣

∣

∣

∣

data, ρ < 1

]

=
1

P (ρ < 1|data)

∫ 1

0

ρ

1− ρ
f(ρ|data) dρ,

divergent integral as f(ρ|data) does not approach 0 when ρ tends to 1

• Predictive means of the equilibrium waiting time W and queueing time Wq distribu-
tions do not exist either, applying Little’s laws

– E[N ] = λE[W ] and E[Nb] = λE[Wq]

• Nonexistence of these moments not only in Bayesian approach: similar result for
MLE (see Schruben and Kulkarni, 1982)
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PREDICTIVE DISTRIBUTIONS GIVEN EQUILIBRIUM

• Alternative approaches:

– ρ < 1− ǫ in a Bayesian approach (Lehoczky, 1990)

∗ finite moments

∗ very sensitive to choice of ǫ (Rios Insua, FR, Wiper)

– More later on

∗ assumption of equilibrium

∗ prior distributions going to zero as ρ approaches unity
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PREDICTIVE DISTRIBUTIONS GIVEN EQUILIBRIUM

• Explicit forms for limiting waiting time and queueing time (but not busy period or tran-
sient queue size) densities and distribution functions available in terms of complex
functions (Armero and Bayarri, 1994)

• Monte Carlo sampling: simple alternative to estimate these distributions

– Random sample of size R, ((λ1, µ1), . . . , (λR, µR)) drawn from posterior

– Predictive distributions estimated through sample averages

– Full Monte Carlo sample used for, e.g., duration of a busy period or size of queue
at a fixed time in future, when no assumption on equilibrium is needed

∗ Predictive, busy period density function

fB(t) =

√

µ/λ e−(µ+λ)t I1
(

2
√
λµt

)

t
, for t ≥ 0

estimated through

fB(t|data) ≈ 1

R

R
∑

r=1

√

µr/λre−(µr+λr)tI1
(

2
√
λrµrt

)

t
for t ≥ 0
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PREDICTIVE DISTRIBUTIONS GIVEN EQUILIBRIUM

• Predictive, busy period density function

fB(t) =

√

µ/λ e−(µ+λ)t I1
(

2
√
λµt

)

t
, for t ≥ 0

estimated through

fB(t|data) ≈ 1

R

R
∑

r=1

√

µr/λre−(µr+λr)tI1
(

2
√
λrµrt

)

t
for t ≥ 0

• Using this method, all predictive density and distribution functions can be estimated

• Equilibrium condition taken into account considering only pairs λr, µr s.t. λr < µr
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PREDICTIVE DISTRIBUTIONS GIVEN EQUILIBRIUM

• No need for Monte Carlo sampling for predicting idle time distribution

– Given posterior on λ

– ⇒ Predictive distribution of length of a server’s idle period, I, easily evaluated

∗ fI(t) = λe−λt, for t ≥ 0

∗ ⇒ A posteriori, for t > 0,

fI(t|data) =

∫ ∞

0

λe−λt β∗
a
α∗

a

Γ(α∗
a)

λα∗
a−1e−β∗

aλ dλ =
α∗
aβ

∗
a
α∗

a

(β∗
a + t)α

∗
a+1

,

∗ ⇒ I + β∗
a|data ∼ Pa (α∗

a, β
∗
a), shifted Pareto distribution
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AUTOMATIC TELLER MACHINE

• Inter-arrival and service time data for 98 users of an automatic teller machine in
Berkeley, California (Hall, 1991)

• M/M/1 system reasonable choice, because of Poisson arrivals and exponential
services (Hall, 1991)

• Sufficient statistics: na = ns = 98, ta = 119.71 and ts = 81.35 minutes

• Jeffreys’ prior

– Posterior probability of stable system: 0.9965

P (ρ < 1|data) =
(β∗

a/β
∗
s)

α∗
a

α∗
aB(α∗

a, α
∗
s)

2F1

(

α∗
a + α∗

s, α
∗
a;α

∗
a +1;−β∗

a

β∗
s

)

– Posterior mean of ρ: 0.668

E[ρ|data] =
α∗
aβ

∗
s

(α∗
s − 1)β∗

a

– High probability of stable system ⇒ estimation of system properties under equi-
librium
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AUTOMATIC TELLER MACHINE

• Stable system

• Nq number of clients queueing for service in equilibrium

• Wq time spent queueing for service by an arriving customer
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Predictive probability function of Nq (left hand side) and cumulative distribution function of

Wq (right hand side)
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AUTOMATIC TELLER MACHINE

• Estimation of busy period and transient distributions

• ⇒ Monte Carlo sample of 1000 data generated from posteriors of λ and µ
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Predictive density function of duration of a busy period
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AUTOMATIC TELLER MACHINE

• System initially empty

• Transient probability function appears to converge to a limit over time

• In fact, probabilities after 50 minutes very close to predictive equilibrium probabilities
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Predictive density function of numbers of clients in system after 1, (solid line) 10 (dashed

line) and 50 (dot dash line) minutes
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ALTERNATIVE PRIOR FORMULATIONS

• Assume a priori stable queueing system

• ⇒ Choose a prior s.t. traffic intensity ρ < 1

• Reparameterization using ρ and µ instead of λ and µ (Armero and Bayarri, 1994)

µ|ρ ∼ Ga(α, β + γρ)
ρ ∼ GH(δ, ǫ, α, ν),

i.e. a Gauss Hypergeometric distribution: X ∼ GH(α, β, γ, ν) if

f(x) =
1

B(α, β)2F1(γ, α;α+ β;−ν)

xα−1(1− x)β−1

(1 + νx)γ
x > 0

for α, β, γ, ν > 0, where 2F1(a, b; c; d) is the Gauss hypergeometric function

2F1(a, b; c; d) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

xb−1(1− x)c−b−1(1− dx)−1 dx

• ⇒ Reparameterized likelihood

l(µ, ρ|data) ∝ ρnaµna+nse−(ts+taρ)µ.

40



ALTERNATIVE PRIOR FORMULATIONS

• ⇒ posterior distribution of same form

µ|ρ, data ∼ Ga(α∗, β∗ + γ∗ρ)
ρ|data ∼ GH(δ∗, ǫ∗, α∗, ν∗)

where α∗ = α + na + ns, β∗ = β + ts, γ∗ = γ + ta, δ∗ = δ + na, ǫ∗ = ǫ and

ν∗ =
γ∗

β∗

• Predictive probability function of number of clients in the system

P (N = n|data) = E [(1− ρ)ρn | data]

=
B (δ∗ + n, ǫ∗ + 1)

B (δ∗, ǫ∗)
2F1 (α∗, δ∗ + n; δ∗ + ǫ∗ + n+ 1;−ν∗)

2F1 (α∗, δ∗; δ∗ + ǫ∗;−ν∗)
.

• Predictive mean number of clients in the system in equilibrium exists for ǫ > 1

E[N |data] =
δ∗

ǫ∗ − 1

2F1 (α∗, δ∗ +1; δ∗ + ǫ∗;−ν∗)

2F1 (α∗, δ∗; δ∗ + ǫ∗;−ν∗)

• k-th moment of N exists ⇔ ǫ > k
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ALTERNATIVE PRIOR FORMULATIONS

• Similarly (see Armero and Bayarri, 1994)

– Expressions for waiting time and queueing time distributions

– k-th moments of these distributions also exist ⇔ ǫ > k

• Choice of ǫ in Gauss hypergeometric prior for ρ: very important

– ǫ not updated given the experimental data

– Default non-informative prior (Armero and Bayarri, 1994)

f(µ, ρ) ∝ 1

µ

(1− ρ)2

ρ

corresponding to α = β = γ = δ = ν = 0 and ǫ = 3 in the conjugate prior
formulation

– ⇒ Existence, a posteriori, of predictive means and variances of system size,
waiting times, etc.
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AUTOMATIC TELLER MACHINE

• Inter-arrival and service time data for 98 users of an automatic teller machine in
Berkeley, California (Hall, 1991)

• Posterior density of ρ based on prior f(µ, ρ) ∝ 1

µ

(1− ρ)2

ρ
vs

• Posterior, truncated F density of ρ conditional on equilibrium based on Jeffreys prior

f(λ, µ) ∝ 1

λµ
for λ and µ
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AUTOMATIC TELLER MACHINE
Posterior densities of ρ given the Gauss hypergeometric (solid line) and Jeffreys (dashed
line) priors
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• ⇒ GH posterior concentrated on slightly lower values of ρ than truncated F posterior
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AUTOMATIC TELLER MACHINE
Posterior predictive density of N given the Gauss hypergeometric (solid line) and conju-
gate (dashed line) priors
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• ⇒ Distribution of N shorter tailed for GH prior (expected from previous plot with
posterior shifted towards lower values of ρ)
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AUTOMATIC TELLER MACHINE

• Sensitivity to prior parameters

• ⇒ values of expected posterior values of N for priors of the form

f(µ, ρ) ∝ 1

µ

(1− ρ)ǫ−1

ρ

for different values of ǫ

ǫ 1.0 1.7 1.8 1.9 2.0 3.0 4.0
E[N |data] ∞ 168.6 7.3 2.3 2.1 1.9 1.7

• ⇒ High sensitivity to changes in ǫ

• Sensitivity w.r.t. ǫ, power of (1 − ρ) ⇒ major drawback in using Gauss hypergeo-
metric prior (FR, Rios Insua, Wiper, 1996)
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ALTERNATIVE EXPERIMENTS

• Observing arrival and service processes separately ⇒ straightforward inference

• BUT, in practice, often easier to observe number of clients in the system at given
times, or waiting times of clients or durations of busy periods

• ⇒ Drawback of such experiments: likelihood with complicated form, like in

– Empty system at time t0 = 0

– Numbers of clients in system, (n(t1), . . . , n(tm)), observed at m time periods,
(t1, . . . , tm)

– Short term distribution of number of clients N(t) (Clarke, 1953)

P (N(t) = n) = e−(λ+µ)t
[

ρ(n−n0)/2In−n0

(

2
√

λµt
)

+ρ(n−n0−1)/2In+n0+1

(

2
√

λµt
)

+(1− ρ) ρn/2
∞
∑

j=n+n0+1

ρ−j/2Ij

(

2
√

λµt
)




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ALTERNATIVE EXPERIMENTS

• Numbers of clients in system

– ⇒ Likelihood

l(λ, µ|data) =

m
∏

i=1

e−(λ+µ)(ti−ti−1)
[

ρ
n(ti)−n(ti−1)

2 In(ti)−n(ti−1)

(

2
√

λµ(ti − ti−1)
)

+

ρ
n(ti)−n(ti−1)−1

2 In(ti)−n(ti−1)−1

(

2
√

λµ(ti − ti−1)
)

+

(1− ρ) ρn(ti)−n(ti−1)
∞
∑

j=n(ti)+n(ti−1)+2

ρ−j/2Ij

(

2
√

λµ(ti − ti−1)
)]

,with

Ij(c) modified Bessel function of first kind, i.e. Ij(c) =

∞
∑

k=0

(c/2)j+2k

k!(j + k)!

– Usual prior distributions

– ⇒ approximate methods such as numerical integration or MCMC necessary to
evaluate the posterior distribution
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ALTERNATIVE EXPERIMENTS

• Stable system and observed data sufficiently spaced in time

• ⇒ data assumed to be generated approximately independently from equilibrium dis-
tribution N ∼ Ge(1− ρ)

• ⇒ likelihood approximated through

l(λ, µ|data) ≈
m
∏

i=1

(

1− λ

µ

)(

λ

µ

)n(ti)

=

(

1− λ

µ

)m(

λ

µ

)

∑m

i=1
n(ti)

= (1− ρ)mρ
∑m

i=1
n(ti).

• Conjugate beta prior ρ ∼ Be(a, b)

• ⇒ Posterior ρ|data ∼ Be
(

a+
∑m

i=1 n(ti), b+m
)
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ALTERNATIVE EXPERIMENTS

• ⇒ Predictive distribution of N easy to evaluate

• Problems with this approach

– Likelihood approximation poor for values of ρ close to 1

– Approximate likelihood as function only of ρ

∗ ⇒ no information about arrival and service rates individually

∗ ⇒ strong prior knowledge of at least one of these parameters necessary for
inferences on waiting times or transient distributions dependent on both pa-
rameters
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INFERENCE FOR NON MARKOVIAN SYSTEMS

• Systems where either the arrival or service process is not Markovian

• ⇒ Start with GI/M/1 and GI/M/c systems

• Basic experiment

– na interarrival times with sums ta and ns service times with sums ts

• Gamma prior µ ∼ Ga(αs, βs) for service rate

• ⇒ Gamma posterior µ|data ∼ Ga(α∗
s, β

∗
s), with α∗

s = αs + ns and β∗
s = βs + ts

• Parametric model for the interarrival times ⇒ straightforward inferences

– Generation of posterior distributions

– Monte Carlo samples taken from these distributions

– For each set of sampled parameters, computation of distribution of queue size,
waiting time etc. using earlier formulae

– Predictive distributions estimated by averaging over all samples
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INFERENCE FOR Er/M/1 SYSTEMS

• Erlang interarrival times (Wiper, 1998)

• Arrivals occur in ν i.i.d exponential stages with rate λ/ν

• ⇒ Interarrival time X|ν, λ ∼ Er(ν, λ) with E[X|ν, λ] = 1/λ

• Single exponential server with rate µ

– Traffic intensity ρ = λ/µ

– Stable system if ρ < 1
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INFERENCE FOR Er/M/1 SYSTEMS

• For a GI/M/1 stable system

– ⇒ Number of clients in the system found by an arriving customer Na ∼ Ge(η)

∗ η smallest positive root of f∗
A(µ(1− s)) = s

∗ f∗
A(s) Laplace-Stieltjes transform of the inter-arrival time distribution

– ⇒ Number N of clients in the system

P (N = n) =

{

1− ρ if n = 0
ρP (Na = n− 1) for n > 0

• For an Er/M/1 stable system

– ⇒ geometric stationary distribution of N with parameter η, where

η

(

1− (η − 1)

ρν

)ν

= 1

– ⇒ Time spent in the system by an arriving customer W |µ, η ∼ Ex(µ(1− η))
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INFERENCE FOR Er/M/1 SYSTEMS

• Conjugate prior for (ν, λ), for λ > 0, ν = 1,2, . . .

f(ν, λ) ∝ θν−1
a ν(λν)αaν−1e−βaνλ

((ν − 1)!)
αa

– ⇒ Conditional distribution λ|ν ∼ Ga(ναa, βaν)

– ⇒ Marginal P (ν) ∝ Γ(αaν)

((ν − 1)!)
αa

(

θa

βαa
a

)ν−1

• Default prior, setting θa = 1 and αa = βa = 0 in conjugate ⇒ f(λ, ν) ∝ 1

λ

• Conjugate prior ⇒ posterior

λ|ν, data ∼ Ga(να∗
a, β

∗
aν),

P (ν|data) ∝ Γ(α∗
aν)

((ν − 1)!)
α∗

a

(

θ∗a
β∗
a
α∗

a

)ν−1

,

α∗
a = αa + na, β∗

a = βa + ta, θ∗a = θaTa, Ta product of observed inter-arrival times
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INFERENCE FOR Er/M/1 SYSTEMS

• Posterior expected traffic intensity

E[ρ|data] =
α∗
aβ

∗
s

β∗
a(α

∗
s − 1)

• Posterior predictive probability of stable system

P (ρ < 1|data) =
∑

ν

P (ν|data)
(β∗

aν/β
∗
s)

α∗
aν

α∗
aνB(α∗

aν, α
∗
s)

2F1

(

α∗
aν + α∗

s, α
∗
aν;α

∗
aν + 1;−β∗

aν

β∗
s

)

• Impossible to derive exact expressions for predictive distributions of numbers of
clients in the system or a clients waiting time, even under stability
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INFERENCE FOR Er/M/1 SYSTEMS

• Alternative approach

– For each (integer) ν (up to some fixed maximum) use Monte Carlo to sample the
joint posterior distribution of λ, µ given ν

– For each ν get a sample (of size M sufficiently large) λ(ν)
i , µ(ν)

i s.t. λ(ν)
i < µ(ν)

i
for i = 1, . . . ,M

– ⇒ Distribution of N estimated through

P (N |data) ≈ 1

M

∑

ν=1

P (ν|data)

[

M
∑

i=1

P (N |λ(ν)
i , µ(ν)

i )

]

– Similarly for other quantities of interest
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Er/M/1: SIMULATED DATA
• 100 inter-arrival times simulated from Er(5,0.5)

– Sufficient statistics na = 100, ta = 191.93, logTa = 55.34

• 100 service data simulated from Ex(1)

– Sufficient statistics ns = 100, ts = 101.70

• Non-informative priors: f(ν, λ) ∝ 1
λ

and f(µ) ∝ 1
µ

• ⇒ Posterior for µ: µ|data ∼ Ga(100,101.70)

• Posterior distribution of λ, ν straightforward from

λ|ν, data ∼ Ga(να∗
a, β

∗
aν),

P (ν|data) ∝ Γ(α∗
aν)

((ν − 1)!)
α∗

a

(

θ∗a
β∗
a
α∗

a

)ν−1

,

• Expected value of ρ: 0.535 (true value: 0.5)

• P (ρ < 1|data) = 0.9999
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Er/M/1: SIMULATED DATA
Predictive (solid line) and true (dashed line) distributions of N and W
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• In both cases, true and predictive distributions are similar but predictive distribution
has longer tail (expected since estimated ρ larger than true one)
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NON-EXISTENCE OF PREDICTIVE MOMENTS

• Theorem (Wiper, 1998)

Consider a G/M/1 queue with arrival rate λ and service rate µ; if a prior density
f(λ, µ) such that f(λ, µ = λ) > 0 is used, then the expected queueing time in
equilibrium does not exist

• Using Little’s theorems, the result can be generalized to N , W and so on
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OUTLINE

• Description of the problem: Phytoseiulus persimilis (predator) vs. Tetranychus ur-
ticae (prey) in a strawberry field in Sicily

• Interest in functional response, i.e. outcome of stochastic search and capture pro-
cesses

• Stochastic model with linear functional response: Lotka-Volterra

• Stochastic model with nonlinear functional response: Ivlev

• Current research
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INTEGRATED PEST MANAGEMENT

• IPM programs implemented to

– minimise losses due to plant pests

– control insect vectors of important plant, animal, and human diseases

– reduce impact of control techniques on environment and human health

• Biological control techniques, based on manipulation of inter-specific relationships
(use of predators, parasites, diseases and plant resistance to suppress pest popula-
tions)

• Population dynamics models can provide insight into the complexity of interacting
populations systems under the effect of control operations and contribute to the eval-
uation and improvement of IPM tactics and strategies
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BIOLOGICAL CONSIDERATIONS
• Goal: Study of functional response (i.e. response of predator to prey abundance

[consumption rate of a single predator]) in an acarine predator-prey system

• Functional response is system specific (i.e. depends on predator, prey and environ-
ment)

• Analysis of functional response usually performed in laboratory or in simple arenas

• Do lab experiments represent the behaviour of functional response in natural sys-
tems?

• Extension to natural systems should consider

– scale problems: different animal behaviour in small environments w.r.t. large
ones

– characteristics of environment organisation (plants layout might affect predator-
prey interaction)

– degree of artificiality introduced by the experimental setup

• Increasing interest on field observations and analysis of time series
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ASSUMPTIONS

• closed system (no immigration and/or emigration)
⇒ only local dynamics considered

• system protected against interference of factors not represented in the model (e.g.
presence of other alternative preys or competitive predators)

• functional response unaffected by abiotic variations (temperature, humidity, etc.)

• interest in a single cycle of the population and not in the long term behaviour (i.e.
in the prompt control of the prey by the predator and not in the persistence of the
predator)

• knowledge of all biodemographic parameters characterising prey and predator pop-
ulations
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CHOICE OF THE MODEL

Selection of an appropriate model for the functional response is critical

• Models should mimic the qualitative behaviour of predator-prey populations system,
i.e. admitting stable solutions with prey extinction or an equilibrium

• Models may be prey dependent or depend on both prey and predator densities (e.g.
their ratio, like in Arditi and Ginzburg, 1989), and take into account different be-
havioural and physiological aspects

• Parameter estimation for the functional response is the most problematic aspect
because of the complexity of behavioural and physiological responses related to the
predation process occurring in a heterogeneous environment

• Plant dynamics not taken into account by the model that only focuses on interaction
between prey and predator

• Behavioural, demographic and environmental stochasticities introduced in the model
through noise terms affecting each population as well as their interaction
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CHOICE OF THE MODEL
Factors affecting the functional response

• Prey density

• Prey behaviour (more defensive at high density)

• Predator density (conflict among predators at high density)

• Spatial distribution of prey and predator

• Limited consumption capacity for each predator

• Environmental factors (e.g. weather, interactions with humans and/or other animals,
predators of the predator)
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CHOICE OF THE MODEL
Per capita predator consumption and prey mortality rates: Holling types I, II and III
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0
Pictures from Asseburg (2005)
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CHOICE OF THE MODEL
We are not going to consider spatial features explicitly, unlike Nachman (1987) who
performed many computer simulations for a non-stochastic model, using a mix of data
about an acarine predator-prey system obtained from a laboratory or collected in three
glasshouses over a 6 months period. He found out that the population dynamics of an
acarine predator-prey system is influenced by spatial features such as

• the number of plants

• short and long distance dispersal (i.e. movement away from an existing population)

• degree of spatial association between the two mite populations within plants

At the local level, he proved that long-term balance between extinctions and colonisations
can be achieved if

• the predator efficiency is not too high

• the dispersal rates of both prey and predators are low or moderate

• only a small fraction of the migrants perform long-distance dispersal (depending on,
e.g. the frequency of plant/human contacts)
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DETERMINISTIC MODEL

{

dxt = [rxtG (xt)− ytF (xt, yt; q)] dt x(0) = x0
dyt = [cytF (xt, yt; q)− uyt] dt y(0) = y0

• xt normalised biomass of prey

• yt normalised biomass of predator

• r = specific growth rate of the prey

• c = specific production rate of the predator

• u = specific loss rate of predator

• q = efficiency of the predation process

• G(x) = growth of the prey in absence of predators

• F (x, y; q) = functional response of the predator to the prey abundance

10



LOTKA-VOLTERRA SYSTEM

• G(x) = 1− x: overcrowding penalises prey growth in absence of predators

• F (x, y; q) = qx: efficacy of predation proportional to predation efficiency and prey
abundance (but not dependent on predator abundance, as suggested by some au-
thors)

⇒ Deterministic system becomes
{

dxt = [rxt (1− xt)− qxtyt] dt
dyt = [cqxtyt − uyt] dt

• Main limit: no saturation of the predator when the ingested prey increases

• Main advantage: the model is simple and limits the number of parameters to be
taken into account

11



LOTKA-VOLTERRA SYSTEM

{

dxt = [rxt (1− xt)− qxtyt] dt
dyt = [cqxtyt − uyt] dt

Three steady state solutions (Buffoni et al., 1995)

• the null state E
0
= (0,0), always unstable (small changes in E0 may imply large

changes in the system)

• the noncoexistence state E
1
= (1,0), stable if q < u

c

• the coexistence state E
∗
= ( u

qc
, r
q
(1− u

qc
)) exists and is stable iff q > u

c

(c production rate of predator, u loss rate of predator, q predation efficiency)

12



STOCHASTIC MODEL
q subject to noise and dependent on time ⇒ qt = q0 + σξt

• σ positive constant

• q
0

unknown parameter to be estimated

• ξt Gaussian white noise process

⇒ (early) stochastic model






dxt = [rxt (1− xt)− q
0
xtyt] dt− σxtytdw

(1)

t

dyt = [cq0
xtyt − uyt] dt+ cσxtytdw

(1)

t

w(1)
t : Wiener process affecting the prey-predator interaction xtyt in the system

⇒ demographic stochasticity (i.e. variability in population growth rates due to differences

among individuals in survival and reproduction)

13



STOCHASTIC MODEL

Environmental stochasticity affects prey and predator (i.e. different birth
and death rate in different period because of weather, diseases, etc.) and
sampling error affecting population abundance estimates

• w
(2)
t : Wiener process independent of w(1)

t

• ε and ρ positive parameters

⇒ stochastic model
{

dxt = [rxt(1− xt)− q0xtyt]dt− σxtytdw
(1)
t + εxtdw

(2)
t

dyt = [cq0xtyt − uyt]dt+ cσxtytdw
(1)
t + ρytdw

(2)
t

Solutions not necessarily in the compact [0,1]× [0,1]
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STOCHASTIC MODEL
Function χ(z)

• continuously differentiable and Lipschitz

• equal to 1 in the compact [η,1− η]

• decreasing in (1− η,+∞)

• increasing in (−∞, η)

• limz→−∞ χ(z) = limz→+∞ χ(z) = 0

• χ(0) = χ(1) = η

⇒ (final) stochastic model
{

dxt = [rxt(1− xt)− q0xtyt]χ(xt)dt− σxtytχ(xt)dw
(1)
t + εxtχ(xt)dw

(2)
t

dyt = [cq0xtyt − uyt]χ(yt)dt+ cσxtytχ(yt)dw
(1)
t + ρytχ(yt)dw

(2)
t

15



STOCHASTIC MODEL
(Bivariate) diffusion process

dXt = µ (Xt, q0) dt+ β (Xt) dWt, X0 = x0, t ≥ 0

• Xt = [xt, yt]
T

• Drift coefficient: µ (Xt, q0) =

[

[rxt(1− xt)− q0xtyt]χ(xt)
[cq0xtyt − uyt]χ(yt)

]

• Diffusion coefficient: β (Xt) =

[

−σxtytχ(xt) εxtχ(xt)
cσxtytχ(yt) ρytχ(yt).

]

Coefficients µ and β

• bounded and continuously differentiable w.r.t. Xt and q0

• satisfy conditions for existence and uniqueness of a strong solution of a stochastic
differential equation (see e.g. Øksendal, 1998)

16



LIKELIHOOD

• Log-likelihood logL(q0) =

−
∫ T

0
µT (Xt, q0)

[

β(Xt)βT(Xt)
]−1

dXt+
1
2

∫ T

0
µT (Xt, q0)

[

β(Xt)βT(Xt)
]−1

µ (Xt, q0) dt

• q0 linear in the model ⇒ µ decomposed into µ(Xt; q0) = a(Xt)q0 + b(Xt), with

a(Xt) =

[

−xtytχ(xt)
cxtytχ(yt)

]

; b(Xt) =

[

rxt(1− xt)χ(xt)
−uytχ(yt)

]

• Score function S (q0)(i.e. derivative of logL(q0) w.r.t. q0) =

−
∫ T

0
aT (Xt)

[

β (Xt)βT (Xt)
]−1

dXt+
∫ T

0
aT (Xt)

[

β (Xt)βT (Xt)
]−1

µ (Xt; q0) dt

• X̂ = (X0, X1, ...,Xp) observations at times t0, t1, ..., tp

• Discretised score function SN(q0)

= −∑p
i=1 a

T(Xi−1)
[

β(Xi−1)βT(Xi−1)
]−1

[Xi −Xi−1 − µ(Xi−1)∆i]

approximates well the continuous score function for small intervals ∆i = ti − ti−1

17



ESTIMATION
Given X̂ = (X0, X1, ...,Xp) at times t0, t1, ..., tp ⇒ replace the system

dXt = µ (Xt, q0) dt+ β (Xt) dWt, X0 = x0, t ≥ 0

with the Euler-Maruyama approximation, given by

Xti+1
= Xti + µ (Xti, q0)∆ti + β (Xti) (Wti+1

−Wti),

where ∆ti = ti+1 − ti.

The approximation is much better when ∆ti’s are small.
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ESTIMATION
Maximum likelihood estimator (for discrete sampled data)

q̂
0,p =

1

T

p
∑

i=1

1

ρyi−1 + cεxi−1

[

−ρ (xi − xi−1)

xi−1χ(xi−1)
+ rρ(1− xi−1)∆i +

ε(yi − yi−1)

yi−1χ(yi−1)
+ εu∆i

]

Drawback: MLE consistent and asymptotically Gaussian only if time between 2 observa-
tions small w.r.t. total observation time (here very few observations!)

Bayesian estimator (posterior mean or median)

Posterior π
(

q0|X̂
)

∝ π(q0)
∏p

i=1 f (Xi|Xi−1, q0)

• prior distribution π(q0)

• f (Xi|Xi−1, q0) ∝
∣

∣

∣

[

β (Xi−1)βT (Xi−1)
]−1

∣

∣

∣

1

2

exp
{

−1
2
[Xi −Xi−1 − µ(Xi−1, q0)∆i]

T ·

·
[

∆i β (Xi−1)βT (Xi−1)
]−1

[Xi −Xi−1 − µ(Xi−1, q0)∆i]
}
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BAYESIAN ESTIMATION
Priors on q0

• Prior N
(

µI, σ
2
I

)

⇒ posterior N
(

σ2
IµX+µIσ2

X

σ2
I+σ2

X

,
σ2

Xσ
2
I

σ2
I+σ2

X

)

, with µX = q̂
0,p

and σ2
X = σ2

T

⇒ Bayesian estimator σ2
IµX+µIσ2

X

σ2
I+σ2

X

, i.e. weighted average of MLE and prior mean

• Improper prior π (q0) ∝ I(0,∞)(q0)

⇒ posterior 1√
2πσ2

X

[

1−Φ
(

−µX
σX

)]e
− 1

2σ2
X

(q0−µX)
2

I(0,∞)(q0)

• Gamma prior (more later)

20



MCMC AND DATA AUGMENTATION
Problem: discrete observations and Euler approximation of SDE ⇒ use sufficiently large
number of (real and latent) data to ensure arbitrarily small discretization bias (see Elerian
et al., 2001, for a discussion)

M latent data generated (using Euler-Maruyama discretisation) between two consecutive
observations

Matrix of all data

Y =

(

x(t0) x∗(t1) ... x∗(tM) x(tM+1) ... x∗(tn−1) x(tn)
y(t0) y∗(t1) ... y∗(tM) y(tM+1) ... y∗(tn−1) y(tn)

)

n = (p− 1)M + p total number of observations

• Xi = (x(ti), y(ti)) the real datum at time ti

• X∗
i = (x∗(ti), y∗(ti)) the latent datum at ti

• Yi both a real and a latent datum at time ti
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GENERATION OF LATENT DATA
(Minor) novelty: random block size (as in Elerian et al., 2001) for multivariate models (as
in Golightly and Wilkinson, 2005)

1st step: we generate latent data by means of a linear interpolation

s-th iteration: we generate the latent datum X∗
i from the conditional distribution

π(X∗
i |Yi−1, Yi+1; q0

) where Yi−1 is obtained at iteration s and Yi+1 at iteration s− 1.

π (X∗
i |Yi−1, Yi+1; q0) ∝

exp

{

−1

2
[X∗

i − Yi−1 − µ(Yi−1; q0)∆t]
T (

∆tβ(Yi−1)β
T(Yi−1)

)−1

[X∗
i − Yi−1 − µ(Yi−1; q0)∆t]

}

exp

{

−1

2
[Yi+1 −X∗

i − µ(Xi; q0)∆t]
T (

∆tβ(X∗
i )β

T(X∗
i )
)−1

[Yi+1 −X∗
i − µ(X∗

i ; q0)∆t]} .
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BLOCK SIZE SAMPLING
Fixed or random block size m from M − 1 ∼ Poisson(λ)

Update latent observations in block of length m (Elerian et al., 2001)

X∗
(k,m)

=
(

X∗
k , X

∗
k+1, ...,X

∗
k+m−1

)

f
(

X∗
(k,m)|Yk−1, Yk+m; q0

)

∝
k+m−1
∏

j=k

π
(

X∗
j |Yj−1, Yk+m; q0

)

Simulation from f
(

X∗
(k,m)

|Yj−1, Yk+m; q0

)

, i.e. depending on 2 observations: one before

the datum and other after the block. M-H algorithm with proposal density proportional to

k+m−1
∏

j=k

N t

(

1

2
(Yj−1 + Yk+m) ,

1

2
∆t · ββT(Yj−1)

)

N t: truncated normal distribution proposed by Eraker (2001) and used also by Golightly

and Wilkinson (2005)
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SIMULATION OF q0

• Gamma prior on q0

• At each step of the MCMC simulation

– after simulation of Y ⇒ simulation of q0

– M-H to generate q0 from π(q0|Y ) ∝ π(q0)
∏n

i=1 π(Yi|Yi−1, q0)
⇒ gamma proposal

• Usual checks

– Burn-in

– Decorrelation, acceptance probability, mixing properties

– Diagnostic tests for convergence
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APPLICATION
Interaction between prey Tetranychus urticae and predator Phytoseiulus persimilis

{

dxt = [rxt(1− xt)− q0xtyt]χ(xt)dt− σxtytχ(xt)dw
(1)
t + εxtχ(xt)dw

(2)
t

dyt = [cq0xtyt − uyt]χ(yt)dt+ cσxtytχ(yt)dw
(1)
t + ρytχ(yt)dw

(2)
t

x(0) = x0 y(0) = y0

• r = 0.11 c = 0.35 u = 0.09 (Buffoni and Gilioli, 2003)

• σ̂ = 0.321, ε̂ = 0.079, ρ̂ = 0.106, q̂0 = 2.4767 (estimated through least squares
after extensive survey of 8 separated local predator-prey dynamics)

• Gamma prior on q0: mean = 2.4767 and variance = 2

• Block size

– (initial): M − 1 Poisson with λ = 3, but rejected because of slow convergence
and poor mixing

– (final) M equal to number of latent data between points

25



APPLICATION

Two cases

• simulated data (to test method performance)

• field data

26



SIMULATED DATA

• Initial conditions: x0 = 0.1 y0 = 0.007

• Total time: T = 180 days

• q0 = 1.5

• 10 data simulated from the system

• MLE compared with posterior median (preferred to posterior mean)

• MLE: 1.7176

• Posterior median without latent data: 1.7174 (very close to MLE)

• Posterior median for 2 latent data: 1.5656

• (Visual) inspection of trajectories ⇒ MLE underestimates maximum values of prey
and predators and display anticipated cycles

• Improper prior leads to similar posterior
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DYNAMICS OF THE SYSTEM
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Prey and predator biomass as function of time

(x0 = 0.1, y0 = 0.007, q0 = 1.5, T = 180)
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NO LATENT DATA
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Posterior density with median 1.7174, obtained using a gamma prior

29



LATENT DATA
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(d)     M = 4

Gamma prior and MCMC with 100000 simulations. Latent data: (a) 1 with median 1.6114;

(b) 2 with median 1.5656; (c) 3 with median 1.6737; (d) 4 with median 1.8070
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LATENT DATA
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Simulated trajectory for prey and predator biomass as function of time, for initial conditions

x0 = 0.1, y0 = 0.007, obtained with MLE q0 = 1.7176 (dashed) and Bayesian estimate

q0 = 1.5656 (continuous). Asterisks denote simulated data
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LATENT DATA
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Mean over 1000 trajectories of prey and predator biomass as function of time, for ini-
tial conditions x0 = 0.1, y0 = 0.007, obtained with MLE q0 = 1.7176 (dashed) and
Bayesian estimate q0 = 1.5656 (continuous). Asterisks denote simulated data
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FIELD DATA
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13 data collected in a one-hectare strawberry crop in Ispica (Ragusa, Italy)
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FIELD DATA

• Data from intensive sampling of 12 separated local predator-prey dynamics

• To minimise the sampling efforts, only adult mites were collected to avoid leaves
collection and laboratory observation of larvae

• Only first cycle of the prey (48 days) ⇒ no interest in predator persistence ⇒ reject
data 8-13

• Rarity conditions strongly affecting functional response ⇒ reject data 1

• MLE: 2.6218, very close to posterior median with no latent data (and gamma prior
with mean 2.4767 and variance 2 from a different extensive survey of 8 separated
local predator-prey dynamics)
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NO LATENT DATA
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INDEXES
No knowledge about true q0
⇒ comparison between estimates using ad hoc indexes on prey population dynamics

• M : maximum size of the population
⇒ related to impact (damage) of the prey population on the plants

• Tmax: time to reach maximum size
⇒ related to capability of the predator to restrain prey population exponential growth

• T0.5 (or T0.1): time to halve (or reduce to one tenth) maximum size
⇒ related to capability of the predator to cause a rapid decrease of the prey popula-
tion

• I: integral of the population up to T0.1

⇒ measurement of population pressure on the resource

Similar definitions for predator population dynamics

M and I most important indexes for biologists
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INDEXES: PREY

Lat. post. M Tmax M0.5 T0.5 M0.1 T0.1 I
data median (dd) (dd) (dd)

1 2.03 .610 22.93 .305 30.67 .0610 39.26 14.09
2 1.94 .613 23.72 .306 31.23 .0613 40.47 14.53
3 1.90 .615 23.72 .307 31.49 .0614 41.03 14.73
4 1.86 .616 23.72 .308 31.78 .0616 41.68 14.95
5 1.83 .617 23.72 .309 32.01 .0617 42.30 15.15
6 1.82 .618 24.07 .309 32.11 .0618 42.56 15.24
7 1.80 .618 24.07 .309 32.21 .0618 42.76 15.31
8 1.80 .618 24.07 .309 32.21 .0618 42.69 15.28
9 1.81 .618 24.07 .309 32.14 .0618 42.43 15.26
10 1.82 .617 24.07 .309 32.08 .0618 42.47 15.20
11 1.83 .617 23.72 .309 32.01 .0617 42.30 15.15
12 1.83 .617 23.72 .309 32.98 .0617 42.27 15.14
13 1.84 .617 23.72 .308 32.88 .0617 41.98 15.05
15 1.85 .616 23.72 .308 32.85 .0616 41.85 15.01
20 1.87 .615 23.72 .308 32.69 .0616 41.49 14.88

MLE 2.62 .601 21.89 .300 28.03 .0601 33.87 12.09
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INDEXES: PREDATOR

Lat. post. M Tmax M0.5 T0.5 M0.1 T0.1 I
data median (dd) (dd) (dd)

1 2.03 .168 34.69 .0842 47.33 .0168 70.23 3.47
2 1.94 .168 34.69 .0839 48.25 .0168 72.55 3.51
3 1.90 .167 35.31 .0837 48.71 .0167 73.73 3.53
4 1.86 .167 35.57 .0836 49.20 .0167 75.13 3.54
5 1.83 .167 36.00 .0835 49.62 .0167 76.34 3.56
6 1.81 .167 36.00 .0834 49.78 .0167 77.09 3.56
7 1.80 .167 36.42 .0834 49.95 .0167 77.78 3.57
8 1.80 .167 36.42 .0834 49.91 .0167 77.58 3.57
9 1.81 .167 36.42 .0834 49.85 .0167 77.32 3.57
10 1.82 .167 36.00 .0834 49.72 .0167 76.73 3.56
11 1.83 .167 36.00 .0835 49.62 .0167 76.31 3.56
12 1.83 .167 36.00 .0835 49.59 .0167 76.31 3.56
13 1.84 .167 35.57 .0835 49.39 .0167 75.75 3.55
15 1.85 .167 35.57 .0835 49.29 .0167 75.43 3.55
20 1.87 .167 35.57 .0836 49.03 .0167 74.74 3.54

MLE 2.62 .174 31.36 .0869 43.02 .0174 62.72 3.23
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INDEXES
Findings (compared with empirical data):

• Best I (integral of population) and M (maximum size of population) for MCMC with
7 latent data

• Differences between 5 to 12 latent data are negligible

• I quite similar for all latent data sizes

• MLE and Bayesian with no latent data good at approximating T (one day delay) but
underestimate I and M

• I for predator best for MLE

• From the trajectories: Tmax approximated well for prey but anticipated for predator
(although M is fine)

• Sensitivity study: small variations in q0 do not affect trajectories
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LATENT DATA
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(f)     M = 20

Gamma prior for q0 and 100000 simulations in MCMC. (number of latent data, median):

(a) (1, 2.03) (b) (4, 1.86) (c) (7, 1.80) (d) (10, 1.82) (e) (15, 1.85) (f) (20, 1.8733)
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LATENT DATA
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Classical estimate. Continuous line: mean of 1000 trajectories of prey and predator for

q0 = 2.6218. Asterisks: field observations
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LATENT DATA
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MCMC estimate with 7 latent data between two consecutive observations. Continuous

line: mean of 1000 trajectories of prey and predator for q0 = 1.8008. Asterisks: field

observations
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LOTKA-VOLTERRA VS. IVLEV

• Lotka-Volterra provides the advantage of linearity at the cost of the simplified biolog-
ical assumption of an unlimited predator per-capita consumption rate

• Ivlev overcomes the previous drawback and keeps just one parameter

• Ivlev displays qualitative properties that well interpret the behaviour of the predator-
prey system of interest for biological control

• Like Lotka-Volterra, Ivlev presents three equilibrium points, characterised by extinc-
tion of both prey and predator, extinction of the predator, coexistence of prey and
predator (under suitable condition for the parameters - see, e.g., Buffoni and Gilioli,
2003)
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IVLEV MODEL
{

dxt =
[

rxt(1− xt)− byt
(

1− e−q0xt

)]

dt+ bσyte−xtdw(1)
t + εxtdw

(2)
t

dyt = yt
[

b′
(

1− e−q0xt

)

− u
]

dt− b′σyte−xtdw(1)
t + ρytdw

(2)
t

• Initial conditions: (x(0), y(0)) = (x0, y0)

• xt and yt: biomass of prey and predator at time t per habitat unit (plant) normalised
w.r.t. prey carrying capacity per habitat unit

• r: maximum specific growth rate of the prey

• b: maximum specific predation rate

• b′: maximum specific predator production rate

• u: specific predator loss rate due to natural mortality

• q0: measure of the efficiency of the predation process
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IVLEV MODEL

• Functional response
(

1− e−q0xt

)

of the deterministic term is subject to random fluc-
tuations

• q0 only affects the slope of the curve but not its shape. All the possible functional
responses, obtained for different values of q0, are similar for large values of xt

• Consider an effect of random fluctuations more pronounced for small values of xt

and then decreasing for large values of xt

•
(

1− e−q0xt

)

⇒
(

1− e−q0xt

)

+ σe−λxtξt

• Parameter λ allows to set the threshold at which the fluctuations become negligible
(we put λ = 1)

• Here we estimate 4 parameters: θ = (q0, σ, ε, ρ)
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MCMC FOR IVLEV MODEL

• MCMC with minor differences w.r.t. Lotka-Volterra about data augmentation (a dif-
ferent proposal distribution for latent data)

• Estimation of 3 further parameters induces various M-H steps

• As before, forecasting property of performed numerical experiments evaluated com-
paring simulated trajectories and observed biomass

• Data collected in 3 similar fields (A, B, and C)

• Parameters estimated from data in field A and posterior used to forecast trajecto-
ries in field B (same area, crop and agronomic conditions but slightly different initial
conditions)

• Comparison of trajectories over field B obtained directly from data in B and from data
in A
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FORECASTS FOR FIELD A
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Prey and predator biomass as function of time in field A, for different values of latent data.

Trajectories as mean over 100 simulations and 50 values of q0, σ, ε and ρ from posterior

distributions. Asterisks denote field data
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FORECASTS FOR FIELD B
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Prey and predator biomass in field B. Trajectories as mean over 100 simulations and 50
values of q0, σ, ε and ρ from posterior distributions for 20 latent data. ⋆ denotes field data.
Continuous line: direct estimate on field B. Dashed line: predicted trajectories, starting
from posterior distribution on A.
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OTHER WORKS

• Generalist predators, consuming more than one prey and switching among them,
induce multi-species functional responses; Negative binomial distribution for con-
sumption of prey i at location j (see Asseburg, 2005)

• Bayesian nonparametrics (see Gaussian process for functional response in Patil,
2007)

• Boys, Wilkinson and Kirkwood (2008) proposed a Markov jump process s.t. in the
interval (t, t+ dt) jumps are possible from (xt, yt) to (xt + 1, yt), (xt − 1, yt + 1)
and (xt, yt − 1), con probability linearly dependent on parameters θ1, θ2 and θ3
for which gamma priors are taken. When data are discretely observed, they have
to generate latent data as well (using MCMC, block updating and Poisson process
approximation)
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WHAT WE WOULD LIKE TO DO

• Consider other forms of functional response (e.g. Holling models)

• Introduction of a third equation (e.g. resources, i.e. evolution of plants)

• More data to be collected in new planned experiments

• Similar problems with covariates (e.g. olive tree fly at different stages
and altitudes/temperature/humidity)
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WHAT WE ARE DOING
DeAngelis-Beddington functional response F (x, y; q) =

qxy

1+ k1x+ k2y






dxt =
[

rxt (1− xt)− qxtyt

1+k1xt+k2yt

]

dt

dyt =
[

c qxtyt

1+k1xt+k2yt
− uyt

]

dt

• r = specific growth rate of the prey

• c = specific production rate of the predator

• u = specific loss rate of predator

• q = efficiency of the predation process

• k1 = effect of handling time on feeding rate

• k2 = magnitude of interference among predators

Joint work with Sara Pasquali, Laura Martin Fernandez and Ettore Lanzarone
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WHAT WE ARE DOING
Heat equation

ρ
∂T(x, t)

∂t
− λ

∂2T(x, t)

∂x2
= q̇(x, t)

• Interest in thermal conductivity λ

• Approximation of second derivative with difference of first derivatives

• λ affected by noise

• Data from experiment (working on it ...) on a polymer slab

Joint work with Sara Pasquali and Ettore Lanzarone
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OUTLINE

• Models review

• Problem: possible introduction of new bugs

• Hidden Markov model

• Current research: Self-exciting process with latent variables
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SOFTWARE RELIABILITY: MODELS

• Software reliability can be defined as the probability of failure-free operation of a
computer code for a specified mission time in a specified input environment

• Seminal paper by Jelinski and Moranda (1972)

• More than 100 models after it (Philip Boland, MMR2002)

• Many models clustered in few classes

• Search for unifying models (e.g. Self-exciting process, Chen and Singpurwalla,
1997)
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SOFTWARE RELIABILITY: MODELS

Most software reliability models fall into one of two categories (Singpur-
walla and Wilson, 1994)

• [Type I]: models on times between successive failures based on

– [Type I-1] failure rates (e.g. Jelinski-Moranda)

– [Type I-2] inter-failure times as function of previous inter-failure
times (e.g. random coefficient autoregressive model, Singpurwalla
and Soyer, 1985)

• [Type II] models (counting processes) on observed number of failures
up to time t (e.g. NHPP)

Boland, MMR2002
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SOFTWARE RELIABILITY: MODELS

Failures at T1, T2, . . . , Tn

Inter-failure times Ti − Ti−1 ∼ E(λi), independent, i = 1, . . . , n

• λi = φ(N − i+1), φ ∈ R+, N ∈ N, (Jelinski-Moranda, 1972)

– Program contains an initial number of bugs N

– Each bug contributes the same amount to the failure rate

– After each observed failure, a bug is detected and corrected

Straightforward Bayesian inference with priors N ∼ P(ν) and φ ∼
G(α, β)
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SOFTWARE RELIABILITY: MODELS

• λi = φ(N − p(i− 1)), φ ∈ R+, N ∈ N, p ∈ [0,1],
(Goel and Okumoto, 1978)

– Imperfect debugging

• λi = φδi, φ ∈ R
+, δ ∈ (0,1), (Moranda, 1975)

– Failure rate (geometrically) decreasing

Failure rate constant between failures; different from

• h(t) =
α

β0 + β1i+ (t− ti−1)
, t ∈ (ti−1, ti] (Littlewood and Verall, 1973)

• h(t) = (N − i+1)φ(t− ti−1), t ∈ (ti−1, ti] (Schick and Wolverton, 1973)

based on hazard rate h(t) (with ti’s failure times)
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FAILURE RATES

Chen and Singpurwalla, Adv. Appl. Prob., 1997
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SOFTWARE RELIABILITY: MODELS

Random coefficient autoregressive model
(Singpurwalla and Soyer, 1985)

• Ti interfailure times and Yi = logTi, i = 1, n

• Yi = θiYi−1 + ǫi, i = 1, n

• ǫ1, . . . , ǫn ∼ N (0, σ21), i.i.d.

• θ1, . . . , θn ∼ N (λ, σ22), i.i.d.

• λ ∼ N (µ, σ23)
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SOFTWARE RELIABILITY: MODELS

Martingale processes
(Basu and Ebrahimi, 2003)

Interfailure times Ti ∼ E(λi), i = 1, n, conditionally independent given
λ1, . . . , λn

• λ1 ∼ G(α, β1) and λi|λ(−i) ∼ G(α, α/λi−1), i > 1,

⇒ E(λi|λi−1) = λi−1

• λ1 ∼ G(α1, β1) and λi|λ(−i) ∼ G(τλ2i−1, τλi−1), i > 1,

⇒ E(λi|λi−1) = λi−1

9



BAYESIAN SOFTWARE RELIABILITY

Kuo, Handbook of Statistics, 2005

Review paper

• Models

• Bayesian inference

• Model selection

• Optimal release policy

Limited number of faults ⇒ room for Bayesian analysis
10



BAYESIAN SOFTWARE RELIABILITY
Ravishanker, Liu and Ray, 2008

• Count of number of failures in intervals [t0, t1), . . . , [tT−1, tT), with t0 = 0 and
tT = T (possibly divided into categories with different gravities)

• NHPP with m.v.f M(ti−1, ti) = θ {F (ti)− F (ti−1)}, i = 1, T

– θ unknown expected number of failures over infinite horizon

– F c.d.f., here Weibull

• Different parameters of Poisson r.v.’s in different intervals

– θ
{

∏i−1
j=1(1− ptj)

}

pti, for interval [ti−1, ti) as i = 1, . . . , T

– pti = 1− exp{βSti
(ti − ti−1)

α}
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BAYESIAN SOFTWARE RELIABILITY
Ravishanker, Liu and Ray, 2008

• Evolution between L, possibly ordered, parameters through a transition matrix

βSti
= βj if Sti = j

• ⇒ NHPP model with Markov switching mean value function

• Estimation and prediction via MCMC

• Model selection about L via BIC or other criterion

Major differences w.r.t. our work

• Count data w.r.t. actual failure times

• Easier interpretation of the parameter measuring reliability changes (here β, later λ)

• No need for us to estimate θ

12



STATEMENT OF THE PROBLEM

Bugs in software induce failures

Fixing current bugs sometimes implies introduction of new bugs

Lack of knowledge about effects of bugs fixing

⇒ need for models allowing for possible, unobserved introduction of new
bugs in a context aimed to reduce bugs

13



BUGS INTRODUCTION: MODELS

Failures at T1, T2, . . . , Tn

Inter-failure times Ti − Ti−1 ∼ E(λi), independent, i = 1, . . . , n

• λi+1 = λie
−θi, λi, θi ∈ R

+, independent
(Gaudoin, Lavergne and Soler, 1994)

– θi = 0 ⇒ no debugging effect

– θi > 0 ⇒ good quality debugging

– θi < 0 ⇒ bad quality debugging

14



BUGS INTRODUCTION: MODELS

• λi+1 = (1− αi − βi)λi + µβi, λi, µ ∈ R+, (Gaudoin, 1999)

– Imperfect debugging

– αi good debugging rate

– βi bad debugging rate

15



BUGS INTRODUCTION: MODELS

Birth-death process (Kremer, 1983)

• pn(t) = Pr{X(t) = n}

• ν(t) birth rate

• µ(t) death rate

• a initial population

p
′
n(t) = (n−1)ν(t)pn−1(t)−n[ν(t)+µ(t)]pn(t)+(n+1)µ(t)pn+1(t), n ≥ 0

with p−1 ≡ 0 and pn(0) = 1{n=a}
16



HIDDEN MARKOV MODEL

Failure times t1 < t2 < . . . < tn in (0, y]

Yt latent process describing reliability status of software at time t (e.g.
growing, decreasing and constant)

Yt may change only after a failure
⇒ Yt = Ym for t ∈ (tm−1, tm], m = 1, . . . , n+1

with t0 = 0, tn+1 = y and Yt0 = Y0 given for now
⇒ consider {Yn}n∈N Markov chain with discrete state space E

Xm interarrival time of m-th failure, m = 1, . . . , n

17



HIDDEN MARKOV MODEL

Markov chain Y = {Yn}n∈N

• E discrete state space (card(E) = k < ∞)

• P transition matrix with rows Pi = (Pi1, . . . , Pik), i = 1, . . . , k

Interarrival times Xm|Ym = i ∼ E(λ(i)), i = 1, . . . , k,m = 1, . . . , n

P and λ(i) unknown

18



HIDDEN MARKOV MODEL

(Durand and Gaudoin, 2005)

Parameter estimation

• Data partially observed (only Xm but not Ym)
⇒ difficult parameter estimation by maximum likelihood

• ⇒ EM algorithm for likelihood maximisation in the context of missing values (McLach-
lan and Krishnan, 1997)

• ⇒ sequence of values converging to the consistent solution of the likelihood equa-
tion, provided the starting point is close to the optimal point

• ⇒ start from many initial values

19



HIDDEN MARKOV MODEL

(Durand and Gaudoin, 2005)

Hidden states number estimation

• Take any k ∈ [Kmin,Kmax]

• For each k compute MLE via EM algorithm

• Choose k with lowest BIC

• Selection possibly affected by starting point of EM algorithm

20



HIDDEN MARKOV MODEL

(Durand and Gaudoin, 2005)

Selection of transition matrix via BIC

E.g. ordered λ(1) > λ(2) > . . . > λ(k)

• Upper triangular matrix ⇒ failure rates can only decrease

• Tridiagonal matrix ⇒ only small increase and decrease in failure rate

21



HIDDEN MARKOV MODEL

Xm’s independent given Y ⇒ f(X1, . . . , Xn|Y ) =
n
∏

m=1

f(Xm|Y )

Pi ∼ Dir(αi1, . . . , αik),∀i ∈ E, i.e. π(Pi) ∝
k
∏

j=1

P
αij−1
ij

Independent λ(i) ∼ G(a(i), b(i)), ∀i ∈ E

Interest in posterior distribution of Θ = (λ(k),P, Y (n))

• λ(k) = (λ(1), . . . , λ(k))

• Y (n) = (Y1, . . . , Yn)

22



LIKELIHOOD

For observed Y , joint density given by

f(X1, . . . , Xn, Y1, . . . , Yn) = f(X1, . . . , Xn|Y1, . . . , Yn)f(Y1, . . . , Yn)

=
n
∏

m=1

PYm−1Ymλ(Ym)e−λ(Ym)Xm

Here unobserved Y treated as parameter

⇒ L(Θ) =
n
∏

m=1

λ(Ym)e−λ(Ym)Xm, with Θ = (λ(k),P, Y (n))

Posterior distribution π(Θ|X1, . . . , Xn) proportional to

n
∏

m=1

[

PYm−1Ymλ(Ym)e−λ(Ym)Xm
]

·
k
∏

i=1



[λ(i)]a(i)−1e−b(i)λ(i)
k
∏

j=1

P
αij−1
ij




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FULL CONDITIONAL POSTERIORS

• Pi|Y (n) ∼ Dir(αij +
n
∑

m=1

1{Ym−1=i,Ym=j}; j ∈ E),∀i ∈ E

• λ(i)|Y (n), X(n) ∼ G(a∗(i), b∗(i)), ∀i ∈ E

⋆ a∗(i) = a(i) +

n
∑

m=1

1{Ym=i} & b∗(i) = b(i) +

n
∑

m=1

1{Ym=i}Xm

⋆ X(n) = (X1, . . . , Xn)

• π(Ym|Y (−m), λ(Ym), X(n),P) ∝ PYm−1,Ymλ(Ym)e−λ(Ym)XmPYm,Ym+1

⋆
∑

j∈E
PYm−1,jλ(j)e

−λ(j)XmPj,Ym+1
normalizing constant

⋆ Y (−m) = (Y1, . . . , Ym−1, Ym+1, . . . , Yn)
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POSTERIOR SAMPLE AND QUANTITIES

Gibbs sampling: posterior sample from π(Θ|X(n)) by iteratively drawing
from the given full conditional posterior distributions

Posterior predictive distribution of Xn+1 after observing X(n)

π(Xn+1|X(n)) =
∑

j∈E

∫

π(Xn+1|λ(j))PYn,jπ(Θ|X(n))dΘ,

approximated as a Monte Carlo integral via

π(Xn+1|X(n)) ≈ 1
G

G
∑

g=1

π(Xn+1|λg(Y g
n+1))

with Y
g
n+1 sampled, given the posterior sample Y

g
n , using the Dirichlet

posterior on PY
g
n
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ORDERING OF STATES

• Independent λ’s ⇒ no ordering among states

• No 0 in transition matrix ⇒ jumps possible from any state to any state

⇒ difficult ranking of states in terms of reliability

• prior on ordered λ’s ⇒ identification of different levels of reliability

• Bi-(or tri-) diagonal transition matrix allowing only jumps into the near-
est best (nearest best and worst) state

26



EXTENSION: PRIOR ON ORDERED λ’S

• X ∼ G(α, β) ⊥ (Y1, . . . , Ym) ∼ Dir(a1, . . . , am) :
∑m

i=1 ai = α

• Take (λ1, . . . , λm) : λm = X & λj = X
∑j

i=1 Yi, j = 1,m− 1

• ⇒ X = λm & Yj =
λj−λj−1

λm
, j = 1,m− 1 (with λ0 = 0)

• f(λ1, . . . , λm) = βαe−βλm
∏m
j=1

(λj−λj−1)
aj−1

Γ(aj)
I{λ1<λ2<...<λm}

• ⇒ λj|λ(−j) ∼ Be(aj, aj+1) on (λj−1, λj+1), j < m

27



EXTENSION: UNKNOWN NUMBER OF STATES

Selection of number of hidden states via Reversible Jump MCMC (Green,
1995) ⇒ allows for simulation of posterior distributions in parameter spaces
of variable size

Ordered λ(1) > λ(2) > . . . > λ(k)

RJMCMC with steps

• [Move] λi changed to another value in (λi−1, λi+1)

• [Death] Merge λi and λi+1 into λ∗i and rearrange indices

• [Birth] Split λi into λi,1 and λi,2 and rearrange indices

28



EXTENSION: UNKNOWN NUMBER OF STATES

• Models Mk, with k hidden states, k = 1,K

• Choice among models via Bayes factor f(t|Mi)
f(t|Mj)

, with data t

• Basic marginal identity (Chib 1995):
log f(t|M) = log f(t|θ∗,M) + log f(θ∗|M)− log(θ∗|t,M)

• ⇒ need to find adequate θ∗ from MCMC output
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ACTUAL IMPLEMENTATION

• Simulations with actual and simulated data evidenced some drawbacks

– Prior with ordered λ’s was leading to parameters too close each other

– RJMCMC was hardly moving from k = 2

• ⇒ prior with unordered λ’s and different models with different state space sizes,
despite

– computation of Bayes factors

– label switching about λ’s
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ACTUAL IMPLEMENTATION

• Different state space size ⇒ different models

• Pairwise comparison by Bayes factor
p(D|i)
p(D|j) for models i, j and data D

• D = x(n) = (x1, x2, . . . , xn)

• p(D) (dependence on i omitted) not available in analytical form and nontrivial eval-
uation using posterior Monte Carlo samples

• p(D) =
p(D|Θ)p(Θ)

p(Θ|D)
holds for any Θ, say Θ∗

• log marginal likelihood estimated using Monte Carlo samples

̂ln p(D) = ̂ln p(D|Θ∗) + ̂ln p(Θ∗)− ln ̂p(Θ∗|D)

• p(D|Θ∗) and p(Θ∗) can be evaluated at Θ∗ whereas p(Θ∗|D) not immediately
available
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ACTUAL IMPLEMENTATION

• p(D) = p(x(n)) =
p(x(n)|λ(k),Y (n))p(λ(k))p(Y (n)|P ) p(P )

p(λ(k), P ,Y (n)|x(n))

evaluated at posterior modes of (λ(k), P , Y (n)) =(λ∗(k), P ∗, Y ∗(n))

• Numerator evaluated very easily (densities and parameters are known)

• Chain’s rule for the denominator

p(λ∗(k), P ∗, Y ∗(n)|x(n)) = p(λ∗(k)|Y ∗(n), x(n))p(P ∗|Y ∗(n))p(Y ∗(n)|x(n))

– p(λ∗(k)|Y (n), x(n)) product of independent gamma densities

– p(P ∗|Y ∗(n)) product of independent Dirichlet densities

– Still to evaluate p(Y ∗(n)|x(n))
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ACTUAL IMPLEMENTATION

• Set Y (t−1) = (Y1, . . . , Yt−1) and Y (s>t) = (Yt+1, . . . , Yn)

• Chain’s rule

p(Y ∗(n)|x(n)) = p(Y ∗
1 |x(n)) p(Y ∗

2 |Y ∗
1 ,x(n)) · · · p(Y ∗

t |Y ∗(t−1), x(n)) · · · p(Y ∗
n |Y ∗(n−1),x(n))

• Use MCMC draws to estimate (t = 1 or t > 1)

– p(Y ∗
1 |x(n)) ≈ 1

G

∑G
g=1 p(Y ∗

1 |(λ(k))(g), (Y −1)(g),P (g),x(n))

for any (λ(k))(g), (Y −1)(g),P (g) ⇒ known conditional density of fixed Y ∗
1

– p(Y ∗
t |Y ∗(t−1),x(n)) ≈ 1

G′

∑G′

g=1 p(Y ∗
t |(λ(k))(g),P (g),(Y (s>t))(g),Y ∗(t−1),x(n))

∗ p(Y ∗
t |Y ∗(t−1), x(n)) =

∫

p(Y ∗
t |λ(k),P ,Y (s>t),Y ∗(t−1), x(n))·

·p(λ(k),P ,Y (s>t)|Y ∗(t−1), x(n))dλ(k) dP dY (s>t)

∗ chain’s rule to split second density in r.h.s.

∗ additional sampling from p(λ(k),P ,Y (s>t)|Y ∗(t−1), x(n)) with further split
(skipped here) of densities
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JELINSKI-MORANDA DATA

34 software failure times

2 states for Ym

Pi ∼ Beta(1, 1), i = 1,2 (uniform)

λ(i) ∼ G(0.01,0.01), i = 1,2 (diffuse)

5000 iterations

Convergence of Gibbs sampler pretty good
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JELINSKI-MORANDA DATA

Posterior Distribution of Lambda[1]
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JELINSKI-MORANDA DATA

Posterior Distribution of P[1,1]
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Posterior Distribution of P[2,1]
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JELINSKI-MORANDA DATA

Posterior Predictive Density of X[35]
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JELINSKI-MORANDA DATA

Posterior Probabilities of State 1 over Time

m Xm P (Ym = 1|D) m Xm P (Ym = 1|D) m Xm P (Ym = 1|D)
1 9 0.8486 2 12 0.8846 3 11 0.9272
4 4 0.9740 5 7 0.9792 6 2 0.9874
7 5 0.9810 8 8 0.9706 9 5 0.9790
10 7 0.9790 11 1 0.9868 12 6 0.9812
13 1 0.9872 14 9 0.9696 15 4 0.9850
16 1 0.9900 17 3 0.9886 18 3 0.9858
19 6 0.9714 20 1 0.9584 21 11 0.7100
22 33 0.2036 23 7 0.3318 24 91 0.0018
25 2 0.6012 26 1 0.6104 27 87 0.0020
28 47 0.0202 29 12 0.2788 30 9 0.2994
31 135 0.0006 32 258 0.0002 33 16 0.1464
34 35 0.0794

Expected posterior probability of the ”bad” state decreases as we observe
longer failure times
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JELINSKI-MORANDA DATA

• p(D|k) =
∏k
i=1

Γ(a∗(i))
Γ(a(i))

b(i)a(i)

b∗(i)a∗(i)
×Γ(k)k

k

∏k
i=1

∏k
j=1Γ(1+mij)

Γ(k+mi)
× 1

p(Y ∗(n)|D)

with mij =
∑

t 1(Yt = i, Yt+1 = j) and mi =
∑

j mij

• log p(D|k) = −148.92, −139.81, −142.43, −144.63 for k =

1,2,3,4

⇒ choose k = 2
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JELINSKI-MORANDA DATA

• Estimation of state Yt at time t affected by label switching, i.e. non-preserved order-
ing of λ’s (e.g. Yt = 1 6⇒ λ(1) best, i.e. smallest)

– k = 2 ⇒ Y ∗
t most frequent value in sequence {Y g

t }g≥1 (label switching never
occurs during Gibbs sampling)

– Label switching occurs for k > 2

∗ keep information consistent throughout iterations, i.e. rank of λg(Y g
t ) within

the vector of sorted rates (λg((1)), . . . , λg((k)))

∗ build table of frequencies for sequence of ranks (1 to k) of {λg(Y g
t )}g≥1

∗ relative frequency of, say, rank 2 is the sample average estimate of the pos-
terior probability that the environment is the second best at epoch t

∗ ⇒ Y ∗
t rank with highest frequency
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MUSA SYSTEM 1 DATA

136 software failure times

2 states for Ym

Pi ∼ Beta(1, 1), i = 1,2 (uniform)

λ(i) ∼ G(0.01,0.01), i = 1,2 (diffuse)

5000 iterations

Convergence of Gibbs sampler pretty good
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MUSA SYSTEM 1 DATA

Time Series Plot of Failure Times
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MUSA SYSTEM 1 DATA

Posterior Distribution of Lambda[1]
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MUSA SYSTEM 1 DATA

Posterior Distribution of P[1,1]
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MUSA SYSTEM 1 DATA

Posterior Predictive Density of X[137]
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MUSA SYSTEM 1 DATA

Time Series Plot of Posterior Probabilities of Y(t)=1

Period
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Expected posterior probability of the ”good” state increases as we observe
longer failure times
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MUSA SYSTEM 1 DATA
Marginal likelihoods

k avg. of log ̂p(D|k) no. of runs st. dev.
1 −1023.549 0 (exact) 0
2 −997.9537 2 0.23
3 −988.5743 5 0.64
4 −990.1471 5 0.39
5 −992.4615 7 1.54

• repeated computations of denominator of P (D|i) to improve accuracy of estimates

• k = 3 best model but ...

– identical posterior distributions of two smallest λ

– largest lambda due to three failure times very very close to 0

• ⇒ choose more parsimonious k = 2
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ACTUAL IMPLEMENTATION
Comparison between conditional and unconditional prior on λ’s

• Conditional prior avoids in principle the label switching problem but, in practice, un-
conditional one works well, for both our simulated and actual data, with the tricks we
used about ranking

• Similar computational efforts: easier simulation from unconditional prior but, then,
need to look at rankings at each epoch to address label switching problem

• Conditional prior tends to favour merging of parameters: need to further check with
other data

• No significant difference in computing Bayes factors
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CURRENT WORK

• Introduction of covariates (namely software metrics) in HMM
Pievatolo, F.R., Soyer and Wiper

• Self-exciting process with latent variables
Landon, F.R. and Soyer
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SELF-EXCITING PROCESS WITH LATENT VARIABLES

NHPPs widely used in (software) reliability, characterised by an intensity
function µ(t)

Self-exciting processes (SEPs) add extra terms g(t− ti) to the intensity as
a consequence of events at ti (e.g. introduction of new bugs)

Binary latent variables modelling the introduction of new bugs
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SELF-EXCITING PROCESS WITH LATENT VARIABLES

⇒ SEP with intensity λ(t) = µ(t) +
N(t−)
∑

j=1

Zjgj(t− tj)

• µ(t) intensity of process w/o introduction of new bugs

• N(t−) number of failures right before t

• t1 < t2 < . . . < tn failures in (0, T ]

• Zj = 1 if bug introduced after j–th failure and Zj = 0 o.w.

• gj(u) ≥ 0 for u > 0 and = 0 o.w.

51



SELF-EXCITING PROCESS WITH LATENT VARIABLES
t = (t1, . . . , tn) failures in (0, T ]

Z = (Z1, . . . , Zn) latent variables at t = (t1, . . . , tn)

Likelihood L(θ; t, Z) = f(t|Z, θ)f(Z|θ)

f(t|Z, θ) =

n
∏

i=1

λ(ti)e
−
∫ T

0
λ(t)dt

=

n
∏

i=1



µ(ti) +

i−1
∑

j=1

Zjg(ti − tj)



 e
−
∫ T

0
µ(t)dt−

∑N(T−)

j=1
Zj

∫ T−tj

0
gj(t)dt

[θ omitted]

Posterior distribution on (θ, Z) through MCMC
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OUTLINE OF THE TALK

• General issues on call centers data

• Some models for call centers data

• Efficacy of advertising campaigns

• Bayesian models

• Example

• Future research



CALL CENTER

• Centralised hub aimed to make or get calls to/from (prospective) cus-
tomers

• (Often) primary point of contact between customers and businesses

• Major investment for many organisations

• 2.86 million operator positions in over 50,000 call centers in the US, with
some locations employing over 1000 agents

• Not only businesses, but also governments, etc.

Some citations from Weinberg, Brown and Stroud, 2006



CALL CENTER OPERATIONS

• Different functions

– Only inbound calls (e.g. requests for assistance)

– Only outbound calls (e.g. promotions)

– Both of them (possibly, outbound calls when idle from inbound ones,
including answers to previous inbound calls)

• Different structures

– All issues handled by equally trained agents

– Various levels, e.g.

∗ automated answers to simple issues

∗ contact with lowly trained agents for ordinary issues

∗ contact with highly trained agents (e.g. supervisors) for the most
complex issues



CALL CENTER OPERATIONS

• Different technologies

– Direct phone calls to agents

– Phone calls to a computerised system, routing calls, e.g., to auto-
mated answers and different levels of agents

– Computer-phone integration, allowing for identification of customers
and immediate availability of his/her data (personal and past com-
munications)

– Contact center : Computer supporting agents via a full range of media
(e-mail, fax, web pages, chat)

• Different policies

– No customer must be lost

– No premium customer must be lost

– Trade between losses due to customer losses and center staffing



CALL CENTER QUALITY

• Qualitative measures, e.g.

– Customer satisfaction about

∗ user-friendly system

∗ length of hold-in-line

∗ effectiveness of answers

– Company image affecting future businesses

• Quantitative measures, e.g.

– Abandonment, as fraction of customers leaving the queue before ser-
vice

– Retrial, as average number of calls needed to solve a problem

– Waiting, as its average or some percentiles of the waiting-time dis-
tribution

– Profit



CALL CENTER DATA CLASSIFICATION

• Operational data

– Typically, aggregated data over some periods (minutes/daily/weekly/yearly)
from history of each call, e.g.

∗ total number of calls served or abandoned

∗ average waiting time

∗ agents’ utilisation level

• Marketing data

– Combination of phone data with customer’s profile and past history

– Euro-figures for past sales and future marketing targets

• Psychological data

– Surveys of customers, agents and managers about subjective percep-
tion of service level and working environment

Classification taken from Koole and Mandelbaum, 2001



CALL CENTER DATA USE

• Customer level

– Future marketing target based on past transactions of existing cus-
tomers

– Identification of possible (and profitable) new customers

• Company level

– Quality of service (lost calls, waiting times, etc.)

– Staffing of call center

– Monitoring of agents’ performance (might be unlawful)

– Training of agents



CALL CENTER

(Statistical) interest in

• Forecasting demand in different periods (e.g. from hourly to

yearly)

• Customer loss

• Optimal number of agents (possibly time-dependent)

• Customers’ (both current and perspective) profiles

• etc.



MODELS FOR CALL CENTER ARRIVAL DATA

Customer level

• Customer profile, using CRM (Customer Relations Manage-

ment) and Data Mining

• Degree of satisfaction, mostly via surveys



MODELS FOR CALL CENTER ARRIVAL DATA

Company level

• Time series (especially ARIMA processes)

– arrivals over periods of time

– detection of different patterns in different periods (e.g. before and
after Xmas)

– normalised (w.r.t. total daily calls) arrivals during each day

• Queueing models

– arrival time

– system availability

– (optimal) number of channels

– service policy (e.g. premium customers)



MODELS FOR CALL CENTER ARRIVAL DATA

Poisson processes with time dependent arrival rates

• Doubly stochastic Poisson models

• Nonhomogeneous Poisson processes (NHPPs)

Focus on forecasting models for optimal scheduling and staffing

of telephone operators in a call center, using aggregate arrival

data



BACKGROUND

• Consumer Electronics Producer

– Limited variety of products

– Long life cycle

– Aging products, sporadic upgrades

– Targeted advertising

• Sales

– Average sale is around $ 500.00

– Almost all the sales are through the sales call center

– Call return is very low if first time the customer is denied the call

• Advertisement

– Many media venues used, although print media is majority

– Each ad is targeted and urging customers to place calls



OBJECTIVES

• Evaluation of different advertisement policies from a marketing viewpoint
through call center arrival data

• Analysis of effects of relevant covariates, e.g.

– Media expense (in $’s)

– Venue type (monthly magazine, daily newspaper, etc.)

– Ad format (full page, half page, colour, etc.)

– Offer type (free shipment, payment schedule, etc. )

– Seasonal indicators

• Prediction of calls volume generated by specific ad over any interval of
interest

• Arrival data are not aggregated



DATA
Typical call arrival data for an ad

Time interval (in days) Number of calls
(0,1] 6
(1,2] 5
(2,3] 1
(3,4] 3
(4,5] 2
(5,6] 2
(6,7] 3
(7,8] 0
(8,9] 2
(9,10] 2
(10,18] 0

• Number of calls for ad in unit intervals

• Features of the ad (media, cost, etc.)

• Corresponding ad known for each call in earlier work



GOALS OF THE ONGOING RESEARCH

• Handling calls unassigned to any ad

• Different models for covariates

• Bayesian nonparametrics



NOTATIONS

• C1, . . . , Cm: m campaigns (ad)

• T1, . . . , Tm: campaigns starting times, T1 ≤ T2 ≤ . . . ≤ Tm

• Calls recorded as number of arrivals in Ij = (tj−1, tj], j = 1, n
(starting times coincide with one of the endpoints of the intervals Ij)

• nij: number of calls in Ij related to campaign Ci, i = 1,m, j = 1, n

• uj: number of unallocated calls in Ij (0 in earlier work)
(in each Ij consider only campaigns Ci with Ti ≤ tj−1)



NONHOMOGENEOUS POISSON PROCESS

• Nt, t ≥ 0 # events by time t

• N(y, s) # events in (y, s]

• Λ(t) = ENt mean value function

• Λ(y, s) = Λ(s)− Λ(y) expected # events in (y, s]

Nt, t ≥ 0, NHPP with intensity function λ(t) iff

1. N0 = 0

2. independent increments

3. P{# events in (t, t+ h) ≥ 2} = o(h)

4. P{# events in (t, t+ h) = 1} = λ(t)h+ o(h)

⇒ P{N(y, s) = k} =
Λ(y, s)k

k! e−Λ(y,s),∀k ∈ N



NONHOMOGENEOUS POISSON PROCESS

λ(t) ≡ λ ∀t ⇒ HPP

• λ(t): intensity function of Nt

• λ(t) := lim
∆→0

P{N(t, t+∆] ≥ 1}
∆

, ∀t ≥ 0

• µ(t) :=
dΛ(t)
dt : Rocof (rate of occurrence of failures)

Property 3. ⇒ µ(t) = λ(t) a.e. ⇒ Λ(y, s) =

∫ s

y
λ(t)dt



MODULATED NHPP MODEL

• NHPP’s with intensity dependent on covariates

• λi(t, Zi) = λ0(t) exp{γ
′
Zi}

• λ0(t) baseline intensity and γ parameter

• λi(t,Zi)
λj(t,Zj)

= exp{γ′
(Zi − Zj)}

⇒ Proportional Intensities Model

Cox, 1972



MODEL

Call center arrival data

• modeled as NHPP

• dependent on the campaign (i.e. covariates Zi)

• dependent on the starting point Ti

⇒ for campaign Ci

• λi(t) = λ0(t− Ti) exp{γ ′
Zi}I[Ti,∞)(t)

• Λi(t) = Λ0(t− Ti) exp{γ ′
Zi}I[Ti,∞)(t)



MODEL

Superposition Theorem

Sum of independent NHPP with intensity functions λi(t) is still

a NHPP with intensity function λ(t) =
∑

λi(t)



MODEL

Number of calls decreasing to zero ⇒ Power Law Process (PLP)

• λ(t) = Mβtβ−1

• Λ(t) = Mtβ

M,β, t > 0 but here 0 < β < 1 ⇒ λ(t) ↓ 0 for t → ∞

Alternative: λ(t) = β0
log(1+β1t)
(1+β1t)

(increasing from 0 and then decreasing to 0)



MODEL

• Cumulative number of arrivals approximates Λ

• PLP ⇒ logΛ(t) = logM + β log t

• ⇒ plot of logΛ(t) v.s. log t to check appropriateness of PLP
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MODEL WITH PERFECT LINKAGE OF CALLS

• No further details on the previous model to avoid repetitions

with the model with unallocated calls

• Random effects model, accounting for differences unexplained

by covariates

– Model similar to the previous one, but

– NHPPs with Λi(t) = Mit
β

– logMi = θ + φi, φi random effect terms

– φi’s conditional independent N (0,1/τ) and τ ∼ G(aτ , bτ)



DIGRESSION: MODEL FOR UNASSIGNED CALLS

• Unassigned calls define a new process with Λu(t) = δuMtβ

• δu r.v. rescaling the baseline mean value function

• Model describes arrivals of unallocated calls but not their

assignment to campaigns and, consequently, these data are

less useful to measure effectiveness of campaigns



A POSSIBLE (BUT INCONVENIENT) MODEL

• Arrivals in the interval Ij, j = 1, n:

– nij related to campaign Ci, i = 1,m

– uj unallocated

• Interest in P(n1j ∈ C1, . . . , nmj ∈ Cm, uj ∈ Ij)

• All possible allocations: uj = {u1j ∈ C1, . . . , umj ∈ Cm}, with
∑m

l=1 ulj = uj

• Specify a distribution P(uj) (e.g. multinomial) on the allocation

• Compute

P(n1j ∈ C1, . . . , nmj ∈ Cm, uj ∈ Ij) =
∑

all uj
P(n1j + u1j ∈ C1, . . . , nmj + umj ∈ Cm|uj)P(uj)



ASSUMPTIONS

• Latent variables Y j = (Y1j, . . . , Ymj) ∼ Mult(uj, p1j, . . . , pmj), for each Ij
⇒ unknown number of unallocated calls assigned to each campaign

• Drop the notations ∈ Ci from the probabilities

• ∆ij = Λi(tj)− Λi(tj−1), for each i, j

• For each interval Ij, P(n1j + Yij, . . . , nmj + Ymj, Y j, uj) =

= P(n1j + Yij, . . . , nmj + Ymj|Y j, uj)P(Y j|uj)P(uj)

=

{

m
∏

i=1

∆
nij+Yij

ij

nij + Yij!
e−∆ij

}{

( uj

Y1j, . . . , Ymj

)

m
∏

i=1

p
Yij

ij

}

P(uj)

• No interest in P(uj) ⇒ partial likelihood



PARTIAL LIKELIHOOD

For any NHPP

∏n
j=1

(

uj

Y1j,...,Ymj

)

{

∏m
i=1

∆
nij+Yij
ij

nij+Yij!
e−∆ijp

Yij

ij

}

= e−
∑m

i=1
Λ(tn)

∏n
j=1

(

uj

Y1j,...,Ymj

)

{

∏m
i=1

∆
nij+Yij
ij

nij+Yij!
p
Yij

ij

}

For a PLP

• ∑m
i=1 nij = nj (j = 1, n),

∑n
j=1 nij = N∗

i and
∑n

j=1 Yij = U∗
i (i = 1,m)

• ∑n
j=1 nj = N and

∑n
j=1 Yj = U

MN+Ue−M
∑m

i=1
(tn−Ti)βeγ

′
Zi

m
∏

i=1

eγ
′
Zi(N ∗

i +U ∗
i )

n
∏

j=1

( uj

Y1j, . . . , Ymj

)

·

·
{

m
∏

i=1

{

[(tj − Ti)
β − (tj−1 − Ti)

β]
}nij+Yij

nij + Yij!
p
Yij

ij

}



PRIORS

• Intervals Ij, j = 1, n ⇒ Independent pj ∼ Dir(α1j, . . . , αmj)

• αij = αe−δ(tj−Ti)I(Ti,∞)(tj)

– αij = 0 for unstarted campaigns (⇒ degenerate Dirichlet)

– decreasing αij from an interval to next ones
(calls unlikely from older ads: Epij = αij

∑m

l=1
αlm

)

– α, δ: either known or prior

• M ∼ G(a, b)

• any π(β) (nothing convenient for simulations)

• any π(γ) (nothing convenient for simulations)



POSTERIORS

• n(j) = (n1j, . . . , nmj), for interval Ij, j = 1, n

• n = (n(1), . . . , n(n))

• pj|Y j, n ∼ Dir(α1j + Y1j, . . . , αmj + Ymj), j = 1, n

• γ|M,n, β, Y j: π(γ)e−
∑m

i=1

{

M(tn−Ti)
β−(N∗

i +U∗
i )

}

eγ
′
Zi



POSTERIORS

• M |β, n, γ ∼ G(a+N + U, b+
∑m

i=1(tn − Ti)
βeγ

′
Zi)

• β|M,n, γ, Y j ∝

π(β)e−M
∑m

i=1(tn−Ti)
βeγ

′
Zi ∏n

j=1

∏m
i=1[(tj−Ti)

β−(tj−1−Ti)
β]nij+Yij

• P(Y j|β,M, γ, n) ∝
(

uj
Y1j,...,Ymj

)

∏n
i=1

∆
nij+Yij
ij

(nij+Yij)!
p
∆ijYij
ij , j = 1, n

⇒ MCMC simulation (Gibbs with Metropolis steps within)



EXAMPLE

• Weekly time intervals

• 10 campaigns

• Cost of the campaign (in $1000) as unique covariate

• Actual data considered and missing links randomly assigned

• Interest in interval 4 with 3 active campaigns and 4 missing

links



EXAMPLE

Posterior probabilities

Yij Ad1 Ad2 Ad3

0 0.1362 0.5070 0.2766
1 0.2732 0.3414 0.2654
2 0.2756 0.1246 0.2406
3 0.2208 0.0228 0.1556
4 0.0942 0.0042 0.0618

Posterior means and actual values

Ad1 Ad2 Ad3

Mean 1.86 0.67 1.50
Actual 1 0 3

Predictive distribution of calls in future intervals



EXAMPLE

Posterior density of γ (covariate coefficient)
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• Z = 0 for campaign cost above a threshold and Z = 1 under it

• High probability of negative γ

• ⇒ higher λ(t) for expensive campaign ⇒ more calls for it



EXAMPLE

Posterior density of M (PLP parameter: λ(t) = Mtβ)
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EXAMPLE

Posterior density of β (PLP parameter: λ(t) = Mtβ)
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FUTURE RESEARCH

• More detailed data analysis

• Other models including covariates

• Nonparametric approach



HIERARCHICAL NHPP MODELS

• m campaigns Ci ⇒ m PLPs with parameters (Mi, βi), i = 1,m

• Possible priors

– βi|ρ, δ ∼ G(ρ exp{XT
i δ}, ρ)

– Mi|ν, σ ∼ G(ν exp{XT
i σ}, ν)

• ρ, ν, δ, σ

– Priors

– Empirical Bayes



NONPARAMETRIC APPROACH

# events in [T0, T1] ∼ P(Λ[T0, T1]),Λ[T0, T1] = Λ(T1)− Λ(T0)

Parametric case: Λ[T0, T1] =
∫ T1

T0
λ(t)dt

Nonparametric case: Λ[T0, T1] ∼ G(·, ·)
=⇒ Λ d.f. of the random measure M

Notation: µB := µ(B)

Definition 1 Let α be a finite, σ-additive measure on (S,S). The random
measure µ follows a Standard Gamma distribution with shape α (denoted by
µ ∼ GG(α,1)) if, for any family {Sj, j = 1, . . . , k} of disjoint, measurable subsets
of S, the random variables µSj are independent and such that µSj ∼ G(αSj,1),
for j = 1, . . . , k.

Definition 2 Let β be an α-integrable function and µ ∼ GG(α,1). The
random measure M = βµ, s.t. βµ(A) =

∫

A
β(x)µ(dx), ∀A ∈ S, follows a

Generalised Gamma distribution, with shape α and scale β (denoted by
M ∼ GG(α, β)).



NONPARAMETRIC APPROACH

Consequences:

• µ ∼ Pα,1,Pα,1 unique p.m. on (Ω,M), space of finite measures on (S,S),
with these finite dimensional distributions

• M ∼ Pα,β, weighted random measure, with Pα,β p.m. induced by Pα,1

• EM = βα, i.e.
∫

Ω
M(A)Pα,β(dM) =

∫

A
β(x)α(dx), ∀A ∈ S



NONPARAMETRIC APPROACH

Theorem 1 Let ξ = (ξ1, . . . , ξn) be n Poisson processes with intensity mea-

sure M . If M ∼ GG(α, β) a priori, then M ∼ GG(α +
∑n

i=1 ξi, β/(1 + nβ)) a
posteriori.

Data: {yij, i = 1 . . . kj}nj=1 from ξ = (ξ1, . . . , ξn)

Bayesian estimator of M : measure ˜M s.t., ∀S ∈ S,

˜MS =

∫

S

β(x)

1 + nβ(x)
α(dx) +

n
∑

j=1

kj
∑

i=1

β(yij)

1 + nβ(yij)
IS(yij)

Constant β =⇒ ˜MS =
β

1+ nβ
[αS +

n
∑

j=1

kj
∑

i=1

IS(yij)]



NONPARAMETRIC APPROACH

Data (calls) recorded as number of events in disjoint intervals

• Comparison between parametric and nonparametric models

• Update of the Gamma process
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PROBLEM DESCRIPTION

• Evaluation of the performance of storage systems
⇒ design and implementation of computers with
heavy I/O workloads
⇒ optimal size of storage systems in a company

– cost of storage systems and handling

– cost of failed I/O operations

• Actual measurements of disk usage (e.g. length
of transferred packets (in bytes), read/write flag)
are difficult and expensive

• Very difficult tasks:

– model to describe I/O

– parameter estimation

– generation of traces (i.e. disk usage history)



FEATURES OF THE DATA

• empirical studies show a slow power-law decrease
of the autocorrelation function
⇒ Long range dependence

• Similar behaviour at different scales
⇒ Self-similarity ?(possibly attenuated)

• High, abrupt jumps
⇒ Burstiness



FEATURES OF THE DATA

• Data dependent not only on the last jump
⇒ no Markov models

• High jumps quite likely
⇒ no Poisson models

• Data not strictly self-similar and nonnegative
⇒ no Fractional Brownian motion

unique Gaussian process with

– stationary increments

– statistically self-similar:
B(at) ≡ aHB(t) (in the sense of finite distributions)

– H: Hurst parameter (1/2 ≤ H ≤ 1)

• H changes over time
⇒ multifractals?



METHOD

Ht varies erratically ⇒ Multifractals

We consider an example of multifractal: Multiplicative
cascade based on Haar wavelet transform

Work originated by Ribeiro et al (Proceedings ACM
Sigmetrics, 1999) and by Hang and Madhyastha (Pro-
ceedings MSST 2005), aimed at

• modeling of the process

• statistical estimation of the parameters in a Bayesian
fashion

• forecast of other data (i.e. generation of ”similar”
data)



INTRODUCTION TO WAVELETS

ψ ∈ L2(R) :

• ∫

Rψ(x)dx = 0

• ∫

Rψ
2(x)dx = 1

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z

ψ wavelet iff

{ψj,k}j,k∈Z orthonormal basis in L2(R), i.e.

∀f ∈ L2(R) ⇒ f(x) =
∑

j,k∈Z dj,kψj,k(x)

with dj,k =< f, ψj,k >=
∫

f(x)ψj,k(x)dx



INTRODUCTION TO WAVELETS

φ(x) scaling function s.t.

• ∫

R φ(x)dx = 1

• φ(x) =
√
2
∑

k∈Z hkφ(2x− k)

hk filter coefficients (∃ many)

⇒ ψ(x) wavelet s.t.

ψ(x) =
√
2
∑

k∈Z(−1)kh1−kφ(2x− k)

⇒ wavelet system

φj,k(x) = 2j/2φ(2jx− k) and

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z



MULTIRESOLUTION ANALYSIS

Vj, j ∈ Z, closed subspaces of L2(R):

• . . . V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 . . .

• ⋂

j Vj = ∅ and
⋃

j Vj = L2(R)

• f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1

V0 = {f ∈ L2(R) : f(x) =
∑

k αkφ(x− k)}
from scaling function φ

⇒ {φj,k}j,k orthonormal basis for Vj

⇒ Pjf =
∑

k < f, φj,k > φj,k

Vj-approximation (orthogonal projection) of f ∈ L2(R)

⇒ Wj orthogonal complement of Vj in Vj+1, spanned
by details ψj,k, k ∈ Z

⇒ f(x) =
∑

k∈Z cj0,kφj0,k(x)+
∑

j≥j0
∑

k∈Z dj,kψj,k(x)

Finite approximations



INTRODUCTION TO WAVELETS

[Haar (1910)]: ∀f ∈ C([0,1]) =⇒

• f(x) ≈ fn(x) =< ξ0, f > ξ0(x) +

+ < ξ1, f > ξ1(x) + . . .+ < ξn, f > ξn(x),

with < ξi, f >=
∫

ξi(x)f(x)dx, ∀i
• fn converges uniformly to f , as n→ ∞

ξ0(x) = 1(0 ≤ x ≤ 1)

ξ1(x) = 1(0 ≤ x ≤ 1/2)− 1(1/2 ≤ x ≤ 1)

ξ2(x) =
√
2[1(0 ≤ x ≤ 1/4)− 1(1/4 ≤ x ≤ 1/2)]

. . .

ξn(x) = 2j/2[1(k2−j ≤ x ≤ (k+1/2)2−j)−
−1((k+1/2)2−j ≤ x ≤ (k+1)2−j)]

n = 2j + k, j ≥ 0,0 ≤ k ≤ 2j − 1

Note:

ξn(x) = ξjk(x) = 2j/2ξ1(2
jx− k), n = 2j + k

ξ0 → ”average” and ξn(x), n > 0 → ”details”
ξ0 scaling function and ξ1(x) wavelet



Therefore we can describe our data (in our case bytes
in I/O in some time units) at different scales

Suppose we have data observed in 1024 intervals of
length 1ms, we can consider 512 intervals of length 2
ms, and so on.

Our goals will be:

• describe the process that splits the bytes arrived
in 1024 ms in two groups (those arrived in the first
512 ms and those in the last ones) and so on

• generate ”similar” data for intervals of size
”. . . ,512,1024,2048, . . .” ms



CASCADE MODEL

• Haar scaling coefficient ujk:
local mean of signal at different scales and shifts

• Scaling and wavelet coefficients by recursion . . .

– uj−1,k = 2−1/2(uj,2k + uj,2k+1)

– wj−1,k = 2−1/2(uj,2k − uj,2k+1)

• . . . which becomes

– uj,2k = 2−1/2(uj−1,k + wj−1,k)

– uj,2k+1 = 2−1/2(uj−1,k − wj−1,k)

• Signal X(t) non negative ⇔ uj,k ≥ 0, for all j, k

⇒ X(t) ≥ 0 ⇔ |wj,k| ≤ uj,k,∀j, k



CASCADE MODEL

Wavelet coefficients: realizations of r.v.’s W and U
and recursively computed by

Wj−1,k = Aj−1,kUj−1,k

Aj−1,k r.v. on [−1,1] ⇒ |Wj,k| ≤ Uj,k

• Uj,2k = 2−1/2(1 +Aj−1,k)Uj−1,k

• Uj,2k+1 = 2−1/2(1−Aj−1,k)Uj−1,k

Ribeiro et al. (1999):

• symmetric Beta distributions for Aj−1,k with parameters de-
termined heuristically, e.g. to match the signal’s theoretical
wavelet-domain energy decay

• coefficients simulated using such distributions

• real data compared with simulated ones

Main difference: we perform a standard statistical anal-
ysis



CASCADE MODEL

Bj−1,k = (1+Aj−1,k)/2, r.v.’s on [0,1] for all j, k

⇒ Wj−1,k = (2Bj−1,k − 1)Uj−1,k

• Uj,2k =
√
2Bj−1,kUj−1,k

• Uj,2k+1 =
√
2(1−Bj−1,k)Uj−1,k

Correspondence between Haar scaling coefficientsUj,k
and number of packets Vj,k transferred in the intervals
[k2−j, (k+1)2−j), j ≥ 0,0 ≤ k ≤ 2j − 1:

• U0,0 = V0,0

• Uj,k = 2j/2Vj,k



CASCADE MODEL

• Vj,2k = Bj−1,kVj−1,k

• Vj,2k+1 = (1−Bj−1,k)Vj−1,k

⇒ Bj−1,k =
Vj,2k

Vj,2k + Vj,2k+1

Therefore, we start with a total number of packets
V0,0 (V0, from now on) in the interval [0,2T ), and
we split their number in the intervals [0,2T−1) and
[2T−1,2T ) according to B0,0, and we keep splitting
intervals in halves with Bj,k determining the propor-
tion of packets assigned to each interval. Therefore,
we model the event history, i.e. the number of trans-
ferred packets, using a cascade algorithm.



LIKELIHOOD

V j = (Vj,0, . . . , Vj,2j−1), j ≥ 0

P (V n, . . . , V 0) = P (V n|V n−1) . . . P (V 1|V 0)P (V 0)

=

n
∏

j=1

2j−1−1
∏

k=0

P (Vj,2k, Vj,2k+1|Vj−1,k) · P (V 0)

=

n
∏

j=1

2j−1−1
∏

k=0

P (Bj−1,k) · P (V 0)

• V0 ∼ P(λ), with λ > 0

(alternative: Geom)

• Bj,k ∼ π0jδ0+π1jδ1+(1−π0j−π1j)Be(pj, pj)

0 ≤ k ≤ 2j − 1, π0j ≥ 0, π1j ≥ 0 and π0j + π1j ≤ 1

⇒ possibility of all mass either to left or right



LIKELIHOOD

2j−1
∏

k=0

P(Bj,k) = 1N2j · πN0j
0j · πN1j

1j · (1− π0j − π1j)
N3j

·
∏

k∈Nj

[B
pj−1

j,k (1−Bj,k)
pj−1]

B(pj, pj)

N0j = {#k : Vj+1,2k = 0, Vj+1,2k+1 6= 0, Vj,k 6= 0}
N1j = {#k : Vj+1,2k 6= 0, Vj+1,2k+1 = 0, Vj,k 6= 0}
N2j = {#k : Vj+1,2k = 0, Vj+1,2k+1 = 0, Vj,k = 0}
N3j = 2j −N0j −N1j −N2j

Nj = {k : Vj+1,2k 6= 0, Vj+1,2k+1 6= 0, Vj,k 6= 0}

Approximation: Vj,k should be integer but Beta distri-
butions ⇒ noninteger values



MAXIMUM LIKELIHOOD ESTIMATION

• π̂0j = N0j/(N0j +N1j +N3j)

• π̂1j = N1j/(N0j +N1j +N3j)

• p̂j numerical solution of
∑

k∈Nj

log[Bj,k(1−Bj,k)]− 2N3j[Ψ(pj)−Ψ(2pj)] =

with Ψ the digamma function

• λ̂ = V0



BAYESIAN ESTIMATION

Prior distributions

• (π0j, π1j) ∼ Dir(α0j, α1j, α2j)

• pj ∼ G(ρj, µj)

e.g. ρj = cθ−2j and µj = cθ−j

mean θ−j and variance 1/c

⇒ link between different levels of the cascade

• λ ∼ G(α, β)



BAYESIAN ESTIMATION

Posterior distributions

• (π0j, π1j) ∼ Dir(α0j +N0j, α1j +N1j, α2j +

N3j)

• π(pj) ∝ p
ρj−1

j e
−{µj−

∑

k∈Nj log[Bj,k(1−Bj,k)]}pj

B(pj,pj)
N3j

• λ ∼ G(α+ V0, β+1)



BAYESIAN ESTIMATION

Bayesian estimators, under squared losses

• λ̂ = α+V0
β+1

• π̂0j =
α0j+N0j

α0j+N0j+α1j+N1j+α2j+N3j

• π̂1j =
α1j+N1j

α0j+N0j+α1j+N1j+α2j+N3j

• p̂j can be only computed numerically



FORECASTING AND SIMULATION

Real traces (i.e. data on disk usage) are expensive
⇒ interest in simulating data

• at finer (than observed) levels

• in future intervals

• for ”similar” traces

Forecasting of packets in future intervals and simula-
tion of similar traces, without going to finer than ob-
served levels imply:

• Simulation of total number of packets

• Use of same models, i.e. Bj,k, parameters and posteriors
as for observed data (under suitable condition), e.g.

– same interval in ”similar” traces

– in, say, (0,512] and (1024,1536], when (0,1024] is
observed and (1024,2048] is the future interval

Details only on simulation at finer levels



FORECASTING AND SIMULATION

Simulation of total number of packets

V0 ∼ P(λ) and λ ∼ G(α, β)
⇒ λ|V0 = v0 ∼ G(α+ v0, β+1)

Posterior predictive distribution, v ∈ N:

P(V0 = v) =

∫ ∞

0

P(V0 = v|λ)π(λ|α, β, v0)dλ

=

∫ ∞

0

λv

v!
e−λ

λα+v0−1(β+1)α+v0e−(β+1)λ

Γ(α+ v0)
dλ

=
1

v!

Γ(α+ v0 + v)

Γ(α+ v0)

(β+ 1)α+v0

(β+ 2)α+v0+v



FORECASTING AND SIMULATION

Simulation at finer, unobserved levels

• Observed data at levels j = 0, . . . , J
⇒ models for Bj,k and inference on parameters of their dis-
tributions

• Goal: split data in smaller intervals at unobserved level J+
1

• Model for r.v.’s BJ+1,k, 0 ≤ k ≤ 2J+1 − 1:
π0,J+1δ0+π1,J+1δ1+(1−π0,J+1−π1,J+1)Be(pJ+1, pJ+1)

• Parameter ωJ+1 = (π0,J+1, π1,J+1, pJ+1)

• Data at levels j = 0, . . . , J
⇒ f(ωJ+1|data) (different choices)

• Simulation of BJ+1,k:
f(BJ+1,k|data) =

∫

f(BJ+1,k|ωJ+1)f(ωJ+1|data)dωJ+1



FORECASTING AND SIMULATION

Consider pJ+1 and predictive f(pJ+1|data)
(similar for π0,J+1 and π1,J+1)

Exchangeable pj ’s

• Same distribution f(pj|ρ, µ) for all pj ’s, j ≥ 0

• Prior on (ρ, µ)

• Data at levels j = 0, . . . , J ⇒ posterior π(ρ, µ|data)

• Simulation of pJ+1:
f(pJ+1|data) =

∫

f(pJ+1|ρ, µ)π(ρ, µ|data)dρdµ



FORECASTING AND SIMULATION

Markovian pj ’s

(More complex Markovian structures can be consid-
ered as well)

• p0 given

• pj = pj−1λ, j ≥ 1

• Prior on λ, updated by data up to level J

• Simulation of pJ+1:
f(pJ+1|data) =

∫

f(pJ+1|λ)π(λ|data)dλ



FORECASTING AND SIMULATION

Empirical Bayes

• Prior pj ∼ G(cθ−2j, cθ−j) (as before)

• p and π: all π0,j, π1,j and pj at levels j = 0, . . . , J

• Look for θ̂ maximising
f(data) =

∫

f(data|p, π)f(p|θ)f(π)dpdπ

• Consider the prior pJ+1 ∼ G(cθ̂−2j, cθ̂−j)



FUTURE RESEARCH

• Application to actual I/O data (Bellcore and UCSC)

– exploratory data analysis to check assump-
tions (non-Markov, non-Poisson, etc.)

– estimation

– forecast

• Possible extension to other data: monthly rainfall
in different Venezuelan areas

– forecast future monthly rainfall in the same ar-
eas

– estimation of monthly rainfall at finer level (smaller
areas) ⇒ rely on expert opinion on the choice
of prior parameters!



FUTURE RESEARCH

• Links with Polya Trees, a nonparametric model
to assign probability measures on the space of
probability measures, through a sequence of Beta
r.v.’s on a dyadic expansion of [0,1]

– established theory for Beta r.v.’s (Lavine, 1992,
1994)

– mixture of Beta and two Dirac instead of Beta
r.v.’s ⇒ changes in the PT theory?

– Data recorded in intervals and not pointwise

– Random total mass

• Discrete distribution for Bj,k instead of mixture of
Dirac and Beta

– Poisson distribution?
⇒ link with Gamma Process (Lo, 1982)?



FUTURE RESEARCH

• Similarity between actual and simulated data?
⇒ look at different aspects, e.g.

– distribution of queue length, if possible

– divergence measures (e.g. Kullback-Leibler),
Lorenz curve and concentration function

– autocovariance function

– spectrum estimation, related to multi-fractality
and occurrence of values of Ht

• Decision problem, through expected utility max-
imisation, e.g. optimal size of a storage system

– probability of number of concurrent packets
exceeding the system size

– cost for failed I/O operations and system size
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Long-range dependence and performance in telecom networks
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SUMMARY

Telecommunications systems have recently undergone significant innovations. These call for suitable
statistical models that can properly describe the behaviour of the input traffic in a network. Here we use
fractional Brownian motion (FBM) to model cumulative traffic network, thus taking into account the
possible presence of long-range dependence in the data. A Bayesian approach is devised in such a way that
we are able to: (a) estimate the Hurst parameter H of the FBM; (b) estimate the overflow probability which
is a parameter measuring the quality of service of a network: (c) develop a test for comparing the null
hypothesis of long-range dependence in the data versus the alternative of short-range dependence. In order
to achieve these inferential results, we elaborate an MCMC sampling scheme whose output enables us to
obtain an approximation of the quantities of interest. An application to three real datasets, corresponding
to three different levels of traffic, is finally considered. Copyright # 2004 John Wiley & Sons, Ltd.

KEY WORDS: fractional Brownian motion; long-range dependence; overflow probability; teletraffic data

1. INTRODUCTORY ASPECTS AND MOTIVATIONS

The introduction of new technologies for telecommunications, based on packet switched
networks, has led to new teletraffic problems. Due to the exponential growth of the Internet, the
study and analysis of telecommunications is of considerable and increasing importance. In
Internet communications, the transmission of data files, e-mail, video signals, etc. generates an
information stream. The user generating such a stream is commonly referred to as a traffic
source. The information stream produced by a traffic source is segmented into variable size
packets called datagrams, according to the Internet Protocol (IP, for short); see Reference [1]. A
datagram is composed by a header area and a data area. The header area essentially contains
routing information, i.e. the source and destination IP addresses, as well as the information to
interpret the data area. IP datagrams are routed through IP routers, which interconnect input
links with output links. Output links are equipped with buffers to store and schedule IP
datagrams for transmission.
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Apart from the case of dedicated telephone lines, IP packets are transmitted using standard
commercial telephone lines. The common transport tool in telephone lines is the asynchronous
transfer mode (ATM) technique; see, e.g. Reference [2]. In ATM, the information stream
produced by a user (traffic source) is split into fixed-length packets. To identify both the source
and the destination, a fixed-length label is added to each information packet, to form an ATM
cell. According to their labels, cells are routed through ATM nodes connecting input links with
output links. The typical behaviour of a traffic source consists of alternating activity (ON) and
silence (OFF) periods. The transmission rate is usually constant during each ON period.
Because of the presence of several traffic sources simultaneously connected, it is far from being
unusual that different cells simultaneously require the same output link. To overcome the
competition among these cells, a buffer is used, and cells that cannot be immediately transmitted
are stored in it. This means that an ATM element is characterized by a queue of cells at the
output link. Since the buffer size is finite, a cell entering the system when the buffer is already full
cannot be either transmitted or stored in the buffer and, then, it is lost.

New standards have been recently defined in order to transmit IP datagrams by ATM
technique via ‘Cell switch routers’ (see References [1,3,4]). The basic idea consists in
interconnecting IP routers by ATM links. IP datagrams are first fragmented into ATM cells,
then transmitted by an ATM link and finally reassembled. If one ATM cell originated by the
fragmentation of an IP datagram is lost in the output buffer, then all the other ATM cells
belonging to the same IP datagram are lost, and the IP datagram must be retransmitted.

Packet switching networks are essentially networks of queues. The evaluation of the performance
of a single server queue, the ATM multiplexer, composed by an ATM link with buffer, is a
fundamental step in assessing the performance of ATM networks and, because of the use of ATM
switching fabrics in IP routers, of IP networks. This last point is particularly relevant, because of
the recent growth of applications using Internet protocol. IP technology does not eliminate the
need to deploy ATM networks, because ATM offers a standard set of traffic management
mechanisms that can inter-operate among different providers to allow efficient support for different
types of services and effectively guarantee a good quality of service (QoS) to the connections.

Telecommunication networks are characterized by QoS requirements. A fundamental QoS
parameter is the cell loss probability, as suggested in Reference [5] and the ITU-T
Recommendation I.356 Reference [6]. The cell loss probability is defined as the ‘long term
fraction of lost cells’. As a convenient approximation of it, the overflow probability is commonly
used; see, e.g. Reference [5]. It is defined as the probability that the number of cells in an infinite
queue exceeds the buffer size. Cell loss probability is the most important QoS parameter in ATM
and/or IP networks. As already stressed, in applications using the IP protocol, if an ATM cell is
lost, then the corresponding IP datagram is completely lost, and must be retransmitted. This may
clearly cause the congestion of communications networks and delay in the transmission. The
higher the cell loss probability, the stronger the phenomena of congestion and transmission delay.

In order to guarantee an acceptable QoS, it is of primary importance to have at least an idea
of the corresponding cell loss probability (or better, of the overflow probability). In ATM
networks, the traffic is controlled by the connection admission control (CAC) function. Before
establishing a new connection, the corresponding source is asked to declare some standard
intensity traffic parameters. On the basis of such parameters, the CAC function computes the cell
loss probability, and then checks if the system has enough resources to accept the new
connection without infringing QoS requirements. On the other hand, in IP networks there is no
preventive traffic control. Sources do not declare any intensity traffic parameters, so that the cell
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loss probability cannot be computed. This motivated the need of estimating the cells loss
probability on the basis of observed data. In fact, the evaluation of the cell loss probability
allows one to answer some basic problems, such as determining the utilization level of a link such
that the QoS requirements are met. Therefore the statistical estimation of the buffer overflow
probability is unavoidable if one wants to assess the performance of ATM and/or IP networks.

The main contribution of the present paper is a Bayesian approach to the estimation of the
overflow probability. In detail, Section 2 contains a description of the model and the related and
related statistical problems. In Section 3, a Bayesian technique to estimate the overflow probability is
developed. Finally, in Section 4 an application to real data is considered. Data come from
measurements made in Italy by Telecom Italia, in the framework of the European ATM Pilot Project.
The applications considered are videoconference, teleteaching, and transport of routing information
between IP network routers. All applications use the Internet Protocol over ATM, as described above.

2. THE MODEL AND ITS MOTIVATIONS

Stochastic models for packed switched traffic traditionally fall into one of two categories: burst
scale models, and cell scale models; see Reference [5, pp. 309, 310, 389] for a good description.
Burst scale models are based on the fluid flow approximation for the packet stream produced by
a source. Cell level models are primarily useful for ATM traffic data; cf. e.g. Reference [7]. They
are essentially based on the idea that all transmission systems work in discrete time. In fact,
there exists an elementary time unit, the time slot, such that no more than one cell per time slot
can be transmitted. The relative merits of these two different approaches to modelling teletraffic
phenomena is briefly discussed, for instance, in Reference [5, Chapters 16, 17]. We adopt here
the burst scale approach, which proves useful especially when studying the characteristic of the
aggregated traffic produced by several users simultaneously connected.

Suppose that N sources are simultaneously connected to a traffic node, and let Ai(t) be the
amount of traffic generated by the ith source during the time interval (0, t], t > 0, i ¼ 1; . . . ;N:
Furthermore, let

XðtÞ ¼
XN
i¼1

AiðtÞ ð1Þ

be the global amount of traffic generated by the N sources up to time t. In the sequel, the
stochastic process (X(t); t>0) will be referred to as the ‘cumulative arrival process’. Suppose
that the service time (i.e. the channel capacity) is constant, and equal to c, and let V be the
unfinished work of the system. It is not difficult to show (cf. Reference [8]) that the following
equality in distribution holds true:

V ¼d sup
t50

ðXðtÞ � ctÞ ð2Þ

Relationship (2) is of basic importance in studying the performance of telecommunication
systems. Let u be the buffer size. Then, the overflow probability, closely related to the loss
probability, is equal to

QðuÞ ¼ PðV > uÞ ¼ P sup
t50

ðXðtÞ � ctÞ > u

� �
ð3Þ
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As mentioned before, the overflow probability is the most important measure of performance
for telecommunication systems, since it is a good approximation of the loss probability for
buffered systems. Formula (3) shows that the problem of evaluating the overflow probability
essentially consists of studying the distribution of the supremum of a stochastic process.

Hence, some assumptions on the process (X(t); t>0) are in order. A common hypothesis is
that it is a Gaussian process with stationary increments. Such an assumption essentially rests on
(1) and the functional central limit theorem. The assumptions on the covariance function of
(X(t); t50) are more delicate. In the sequel, we will suppose that the process can be expressed in
the form

XðtÞ ¼ mtþ sZðtÞ ð4Þ

where (Z(t); t50) is a fractional Brownian motion (FBM, for short). It is characterized by the
following properties:

(i) Z(t) is a Gaussian process with stationary increments.
(ii) Z(0) =0 a.s.
(iii) E [Z(t)]=0 and E[Z(t)2]=t2H for all positive t.

The parameter H is the Hurst parameter: it takes values in the interval (1
2
; 1) and, if H ¼ 1

2
; Z(t)

reduces to the standard Brownian motion.
Model (4), with Z(t) FBM, was first proposed as a realistic model for aggregated traffic by

Norros [9,10]. Its most important feature is that it is a self-similar process: ZðatÞ ¼d aHZðtÞ for
every positive a. Clearly, the process (X(t)�mt) possesses the same property. The self-similar
nature of Ethernet traffic was first shown by statistical (frequentist) analysis of Bellcore traffic
data. See References [11,12]. A good bibliographical guide for the subject is in Reference [13].

As a consequence, the increments of Z(t) (and those of X(t), as well) are stationary with long-
range dependence whenever H > 1

2
: To be precise, let Yi =X(i)�X(i�1), i ¼ 1; . . . ;N: From the

well-known formula (see Reference [14], pp. 52, 56)

E½ZðtÞZðsÞ� ¼ 1
2
ðt2H þ s2H � jt� sj2HÞ 8t; s50

it is seen that the correlation coefficient between the increments Yi and Yi+k is equal to

rðkÞ ¼ 1
2
ððkþ 1Þ2H � 2k2H þ ðk� 1Þ2HÞ 8k51 ð5Þ

The most important property of (5) is that r(k) tends to zero very slowly as k tends to infinity.
In fact, by a Taylor expansion it is easy to see that r(k) � H(2H �l)k2(H�1) as k!1, for every
1
2
5H51.
Long-range dependence is essentially generated by ON and/or OFF periods with infinite

variance; see Reference [5]. From a practical point of view, this means that when the traffic
sources generate traffic with high variability, where the ON periods can be very long (cf.
Reference [15]), one should expect that the aggregated traffic stream entering the transmission
system, X(t), is characterized by the presence of long-range dependence. This is important not
only from a theoretical point of view. In fact, long-range dependence could potentially have a
great influence on the performance of telecommunication systems, since it could considerably
increase the overflow probability; see Reference [16]. Furthermore, stochastic models that do
not allow for long-range dependence could severely underestimate the loss probability. These
two facts provide the most important justifications to the use of model (4).
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Unfortunately, even for model (4) the loss probability (3) cannot be written in a closed form.
However, using a result by H .uusler and Piterbarg [17] it can be shown that, under the stability
condition m5c, the following holds:

quðH; m;s2Þ :¼ QðuÞ

�

ffiffiffi
p

p
ðc� mÞ1�Hð1�HÞ3=2�H�1=HH2H

H3=2�H2ðH�1Þ=ð2HÞs1=H�1
uð1�HÞ2=HCðAs�1u1�HÞ ð6Þ

as u tends to infinity, where C( � ) is the survival function of normal standard distribution,

A ¼
ðc� mÞH

HHð1�HÞ1�H

and

H2H ¼ lim
t!1

ð1=tÞE exp max
04s4t

ð�s2H þ
ffiffiffi
2

p
ZðsÞÞ

� �� �
ð7Þ

Z(t) being a FBM. Since the usual buffer size is u=500, or u=1000, the asymptotic
approximation (6) is satisfactory.

The exact value of constant (7) is not known. Luckily enough, in Reference [18] it is
shown that

0:124H2H43:1 ð8Þ

Estimate (8) will be used in the sequel.

Remark 1

The most important part of relationships (8) is the upper bound 3.1, at least from a practical
point of view. In fact, as already outlined in the Introduction, communication providers should
guarantee a loss probability smaller than a given threshold. Hence, the upper bound in (8) is
much more important than the lower bound.

Remark 2

The constant H2H is given an equivalent definition in Reference [19]. It suggests, as the author
himself points out, the possibility of evaluating H2H numerically for some values of 2H.

Observe that the unfinished work V is infinite a.s. whenever m5c, so that in our setting the
loss probability turns out to be equal to

QðuÞ �

ffiffiffi
p

p
ðc� mÞ1�Hð1�HÞ3=2�H�1=HH2H

H3=2�H2ðH�1Þ=ð2HÞs1=H�1
uð1�HÞ2=H CðAs�1u1�HÞIm5c þ Im5c ð9Þ

where Im5c is 1 if m5c and is zero otherwise (similarly one defines Im5c).
Since in applications the parameters of model (4) are unknown, they must be estimated by

the observed data. The goal of the present paper is to propose a Bayesian approach to such
an estimation problem. More specifically, in Section 3, the priors for the unknown parameters
are introduced, and updated on the basis of the sample data. Since the posteriors cannot
be expressed in a closed form, a computational scheme based on MCMC is adopted. As a
by-product, a Bayesian approach to the problem of testing for independence ðH ¼ 1

2
Þ against
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long-range dependence ðH > 1
2
Þ is obtained. Finally, in Section 4 an application to real data

is provided.

3. BAYESIAN ANALYSIS

According to guidelines provided in the previous sections, we now proceed to illustrate the
Bayesian set-up for our statistical analysis.

Let n be the sample size and let t1; . . . ; tn be fixed time instants. Correspondingly, n
observations of the process {X(t): t50} are made and they are denoted by Xðt1Þ ¼ x1; . . . ;
XðtnÞ ¼ xn: For the sake of brevity, in the sequel, we will use the vector notation

x ¼ ðx1; . . . ;xnÞ
0 t ¼ ðt1; . . . ; tnÞ

0

Moreover, OH denotes (apart from the constant s2) the covariance matrix of ðXðt1Þ; . . . ;XðtnÞÞ;
whose (i, j)th element is

oi;jðHÞ ¼ 1
2
ðt2Hi þ t2Hj � jti � tj j2HÞ

Since the process (X(t); t 50) is assumed to be a FBM, the likelihood function coincides with

f ðH; m;s2; xÞ ¼
jOH j

�1=2

ð2ps2Þn=2
exp �

1

2s2
ðx� mtÞ0O�1

H ðx� mtÞ
� �

with jOH j denoting the determinant of matrix OH : As far as prior specification for the vector of
parameters (H; m;s2Þ 2 ½1

2
; 1Þ � R� Rþ we set

p0ðdHÞ ¼ ed1=2ðdHÞ þ ð1� eÞp�0ðHÞI1=25H51 dH

p1ðmjs2Þ ¼
1

s
ffiffiffiffiffiffiffiffiffi
2pw

p exp �
m� mcÞ

2

2s2w

� �

p2ðs2Þ ¼
ln

GðnÞ
1

s2

� �nþ1

exp �
l
s2

� �

for some e 2 [0,1], and dx( � ) is the Dirac function at x. The prior specification we are adopting
deserves some further explanation. The prior p0 for the Hurst parameter H is essentially
motivated by the following important fact: the (FBM) input process does possess completely
different characteristics according to the values of H. In particular, if H ¼ 1

2
; it reduces to a

standard Brownian motion, which is an independent increments process (with short-range
dependence behaviour and strong Markov, as well). If H 2 ð1

2
; 1Þ then the (FBM) input process

possesses increments with long-range dependence and it turns out to be non-Markov. The prior
p0 takes into account this basic fact, and allows to compare short- vs long-range dependence.
The value of e measures the degree of prior belief about short-range dependence of the original
series. Moreover, the diffuse component p�0 on (1

2
;1) is taken to be a uniform distribution so to

reflect lack of prior information concerning the strength of the long-range dependence
behaviour, if present.

As far as the prior for m and s2 are concerned, they depend upon the hyperparameters l, v, w
and mc. A discussion of their choice is postponed to Section 4, where sensitivity of posterior
estimates is considered as well.

Copyright # 2004 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind., 2004; 20:305–321

P. L. CONTI, A. LIJOI AND F. RUGGERI310



3.1. Estimation of H

Since Bayes’ theorem can be applied in our case, the posterior distribution of (H, m, s2), given
the vector of observations x ¼ ðx1; . . . ;xnÞ

0; is

pðdH;dm;ds2jxÞ / p0ðdHÞp1ðmjs2Þp2ðs2Þf ðH;m;s2; xÞ dm ds2

where / means that equality holds true up to a normalizing constant. In order to obtain a
posterior estimate of the self-similarity parameter H, we determine its posterior distribution by
integrating out m and s2 in the joint posterior distribution, so that one has

pðdH jxÞ /
ejO1=2j

�1=2

z1=2
1=2M

nþn=2
1=2

d1=2ðdHÞ þ
ð1� eÞjOH j�1=2

z1=2H M
nþn=2
H

p�0ðHÞ dH

8<
:

9=
;

where

zH :¼ t0O�1
H tþ

1

w
; xH :¼ t0O�1

H xþ
mc
w
; MH :¼ lþ

x0O�1
H x

2
þ

m2c
2w

�
x2H
2zH

are, for any H in ½1
2
; 1Þ; computable. On the contrary, the normalizing constant

k�ðxÞ ¼ e
jO1=2j

�1=2

z1=2
1=2M

nþn=2
1=2

þ ð1� eÞ
Z
ð1=2;1Þ

jOH j
�1=2

z1=2H M
nþn=2
H

p�0ðHÞ dH

¼: ekdðxÞ þ ð1� eÞkcðxÞ

has to be approximated. With the posterior distribution p(dH|x) at hand, one can obtain the
posterior mean for H

EðHjxÞ ¼ ðk � ðxÞÞ�1 e
2

jO1=2j
�1=2

z1=21=2M
nþn=2
1=2

þ ð1� eÞ
Z
ð1=2;1Þ

HjOH j�1=2

z1=2H M
nþn=2
H

p�0ðHÞ dH

8<
:

9=
; ð10Þ

Since the integral appearing in the right-hand side of (10) cannot be exactly evaluated, we
approximated it numerically. Details on the approximation procedures for k*(x) and E(H|x) are
illustrated in Appendix A.1.

3.2. Estimation of loss probability

As far as the problem of evaluating posterior loss probability, as a measure of performance
of the system, is concerned, using formula (9) and the dominated convergence theorem, we
have that

P sup
t50

ðXðtÞ � ctÞ > ujx
� �

�
Z
½1=2;1Þ�R�Rþ

quðH;m; s2ÞpðdH;dm; ds2jxÞI ðm5cÞ þ Pðm5cjxÞ
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holds true for large values of u. Hence, one hasZ
½1=2;1Þ�R�Rþ

quðH; m;s2Þ1ðm5cÞpðdH; dm;ds2jxÞ

4e
kd ðxÞ
k�ðxÞ

Z
R�Rþ

%qqu
1
2
;m;s2

� 	
p� 1

2
;m;s2jx

� 	
I ðm5cÞ dm ds2

þ ð1� eÞ
kcðxÞ
k � ðxÞ

Z
ð1=2;1Þ�R�Rþ

%qquðH;m;s2Þp��ðH;m;s2jxÞI ðm5cÞ dH; dm;ds2 ð11Þ

where %qqu is an upper bound for qu, obtained by substituting H2H with 3.1. Moreover, p*( � |x)
and p**( � |x) are probability distributions on R�R+ and on ð1

2
; 1Þ �R�R+, respectively. One

easily checks that the determination of an upper bound for the loss probability requires the
numerical evaluation of kc(x) and of the two integrals appearing in (11) above. We implemented
an MCMC algorithm whose features are fully described in the appendix.

However, the algorithm we have resorted to might be computationally cumbersome in some
cases, because of the presence of the term CðAs�1u1�HÞ in (9). Considerable simplifications are
obtained by virtue of the following well-known inequality for the Mills’ ratio of the Gaussian
distribution

CðAs�1u1�HÞ5
sffiffiffiffiffiffi

2p
p

As1�H
exp �

1

2s2
A2u2�2H

� �
ð12Þ

see, e.g. Reference [20, p. 49]. Using (12), we obtain

quðH;m; s2Þ5
3:1ðc� mÞ1�2Hð1�HÞð5=2Þ�2H�ð1=HÞuðH�1Þð2H�1Þ=H

21=ð2HÞH3=2�2Hs1=H�2
exp �

A2u2�2H

2s2

� �

and integration w.r.t. s2 gives, for an appropriate function %qq�uðH;m; xÞ:Z
½1=2;1Þ�R�Rþ

quðH;m;s2ÞpðdH;dm;ds2jxÞ

5
Z
½1=2;1Þ�R

%qq�uðH; m; xÞpðdHjxÞpðmjH;xÞ dm ð13Þ

where

pðmjH;xÞ ¼
Gððnþ 2nþ 1Þ=2Þffiffiffi

p
p

Gððnþ 2nÞ=2Þ

ffiffiffiffiffiffiffiffiffiffiffi
zH

2MH

s
1þ

zH
2MH

m�
xH
zH

� �2
( )�ðnþ2nþ1Þ=2

In order to provide an approximation of the integral in the right-hand side of (13), we implement
both aMonte Carlo i.i.d. sampling and aMetropolis–Hastings scheme as described in appendix A.2.

3.3. A model comparison problem: short- vs long-range dependence

An important problem is to study the essential features of traffic, and in particular the presence/
absence of self-similarity. Apropos of this we mention that there is a great debate in the literature in
order to assess the characteristics of traffic in telecommunication systems, see the key paper by
Willinger et al. [11] and the references in Reference [13]. See also Reference [15] for further
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important remarks and bibliographic references. The classical approach [11,12] consists of cons-
tructing an asymptotic confidence interval for the Hurst parameter H, and to check whether it
contains 0.5, which implies short-range dependence, or not, this latter case implying long-range
dependence. Two points have to be stressed. First of all, in References [11,12] the (frequentist)
analysis involves Ethernet traffic packets; no analysis is made for ATM traffic, neither frequentist
nor Bayesian. In our knowledge this is the first paper where a Bayesian analysis for ATM traffic
data is carried out. As already mentioned in Section 2, the value ofH does have a great influence on
the performance of the system: the greaterH, the worse the performance in terms of loss probability.

The problem of identifying the traffic data characteristics can be formally written down as an
hypothesis problem

H0 : H ¼ 1
2
; vs H1 : H > 1

2

On the basis of results in previous section, a Bayesian test can be easily performed. In principle,
a Bayesian test is based on the probability ratio

PðH ¼ 1
2
j xÞ

PðH 2 ð1
2
; 1ÞjxÞ

ð14Þ

It is apparent from the exposition in Section 3 that the probabilities in (14) cannot be computed
analytically. Using the same notation as in Section 3, the numerator of (14) is approximated by

ejO1=2j
�1=2

#kk�ðxÞz1=2
1=2M

nþn=2
1=2

Hence ratio (14) is approximated by

ejO1=2j
�1=2

#kk�ðxÞz1=2
1=2M

nþn=2
1=2 � ejO1=2j

�1=2

4. APPLICATION TO REAL DATA

We consider data from the experimental European ATM network [21], a project jointly
developed by the leading telecommunications company in the European Union. Engineering
aspects of the measurement problem are thoroughly described in Reference [22].

Data streams are produced by superimposing the traffic generated by three different kinds of
applications: videoconference, teleteaching and transportation of routing information between
IP network routers. All these applications use IP packets over ATM, so that the overflow
probability must be estimated on the basis of the available data. The measurement process
produces the number of cells arriving in a time slot (1/80 000 s) at an ATM multiplexer,
composed by an ATM link and a buffer to store cells not immediately transmitted by the link.

The data we have used come from measurements taken for three different kind of
applications: videoconference, teleteaching, and transportation of routing information. In order
to study the effects of simultaneous transmissions from several different sources, as described in
Section 2 (see (1)), the stream corresponding to every application has been split into substreams
(1 s length), and only the data from the first quarter in each substream have been considered.
Data from different quarters can be considered approximately independent, each of them
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coming from a different ‘virtual’ source. They can be superimposed as if they were coming from
sources simultaneously connected to the same ATM multiplexer. We consider three different
traffic scenarios: light, medium and heavy traffic. In the first case (light traffic) we have
superimposed 10 ‘virtual sources’ for each kind of applications. We have obtained a medium
traffic situation by considering 30 teleteaching sources and 20 sources each for both
videoconference and transportation of routing information. Finally, the heavy traffic scenario
is obtained by superimposing 30 teleteaching sources and 34 sources each from both
videoconference and transportation of routing information.

Data from the three scenarios are depicted in Figures 1(a)–(c). Arrivals follow a typical
pattern in telecommunications, already observed in non-ATM cases; see References [11,12]. In
fact, the patterns are far from being generated by a process with independent increments (i.e.
with H=0.5). On the opposite, Figures 1(a)–(c) shows the presence of self-similarity in the
arrival processes, i.e. long-range dependence in the corresponding increments (H > 0.5). As
already mentioned in Section 2, FBM is a natural tool for modelling purposes.

Formulas in Section 3 require dealing with matrices whose dimension is given by the data
stream length, in our case more than 20 000. Computational burdens have lead us to reduce the
size by grouping the data considering the number of cells arriving in 300 consecutive time slots.
Therefore, matrices from grouped data have been inverted by FORTRAN routines and their
determinants have been computed, as well.

Figure 1. Number of cell arrivals under (a) light, (b) medium and (c) heavy traffic.
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In relationship (3) we have taken u=1000, which is a rather high buffer size, whereas the
choice c=300 follows from the link speed. Moreover, in the prior distribution of m we set
w=0.01, in order to reduce the probability of sampling negative values for m.

Our main goals are the detection of long-range dependence and the estimation of the overflow
probability Q(u). The former goal has been achieved by both estimating the parameter H and
computing the posterior probability ratio for the problem H ¼ 1

2
vs H > 1

2
: The main finding is

the detection of long-range dependence even when considering priors heavily concentrated
around H ¼ 1

2
: The values of ratio (14), for different values of prior hyperparameters, are shown

in Tables I and II as well as the Bayes estimates of Q(u). Table III shows the same quantities
when the r.h.s. of inequality (12) is considered. It is worth mentioning that plots of estimated
Q(u)’s vs number of iterations show a quick convergence.

It appears that even when the prior probability of H= 0.5 is very high (e=0.999), ratio (14)
takes small values. By the way, the smaller e, the smaller (14). Hence, our first conclusion is that
the data show the presence of strongly correlated increments in the input processes
corresponding to the three scenarios considered. Bayes’ estimates of H (Table IV) are generally
far from 0.5.

The value e=1 has been considered in order to study the effect of neglecting long-range
dependence. Such an effect is particularly relevant in case of ‘heavy’ traffic (Tables I and II),
which is the most important for applications. As expected, a value e=1 could produce a severe
underestimation of the overflow probability. The use of the bound in (13) is less expensive from
a computational point of view, but produces less accurate results. Compare Tables I and II with
Table III. As far as the sensitivity of the Bayes’ estimates of the overflow probabilities (with

Table I. Upper bound and probability ratio with n=500, l=10, m=1000.

Traffic e Upper Ratio

Heavy 1 0.0 +1
Heavy 0.999 0.267� 10�9 0.159� 10�19

Medium 1 0.0 +1
Medium 0.999 0.0 0.222� 10�21

Light 1 0.0 +1
Light 0.999 0.0 0.222� 10�21

The column labelled ‘Upper’ features posterior estimates of the upper bound of the overflow probability. The column

labelled ‘Ratio’ provides estimates of the posterior probability ratio for the Bayesian test in Section 4.

Table II. Upper bound and probability ratio with n=300, l=10, m=1000.

Traffic e Upper Ratio

Heavy 1 0.49� 10�16 +1
Heavy 0.999 0.907� 10�7 0.687� 10�12

Medium 1 0.0 +1
Medium 0.999 0.996� 10�16 0.198� 10�12

Light 1 0.0 +1
Light 0.999 0.0 0.581� 10�19

The column labelled ‘Upper’ features posterior estimates of the upper bound of the overflow probability. The column

labelled ‘Ratio’ provides estimates of the posterior probability ratio for the Bayesian test in Section 4.
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respect to the choice of the hyperparameters) is concerned, we may note that it is moderate
although not negligible.

As far as posterior estimates of H are concerned, our results are summarized in Table IV,
where all three different frameworks of heavy traffic (HT), medium traffic (MT) and light traffic
(LT) are considered. Two different procedures have been employed. The first one relies upon the
classical Monte Carlo procedure as illustrated in Section 3.1. The second one resorts to a
Metropolis–Hastings sampling scheme for drawing from the posterior p(dH|x) and the resulting
sample is used for estimating H. The estimates have been obtained after 12 000 runs and with a
burn-in of 10 000 iterations. Diagnostic tests performed with the BOA package (see Reference
[23]) have provided strong evidence of convergence of the estimation procedure. The reason for
considering an MCMC scheme in this setting is two-fold. On one hand, it is desirable to sketch
some comparison, both in terms of computational time and in terms of numerical outcomes,
with the classical Monte Carlo procedure. From a computational point of view, the Monte
Carlo method is much faster, since it requires on average 15min with a HP machine (processor
PA8000, 180MHz) to be completed, whereas the MCMC sampler has been running for 95min.
From a numerical point of view, the estimates are not significantly different. On the other hand,
having performed an MCMC algorithm one can use the MCMC output in order to get a kernel
density estimate of the posterior distribution of H. This can give some insight on the dispersion
of H around its posterior mean. In Figure 2, we provide graphs both of the histogram of the
MCMC sample and the kernel density estimate of the posterior distribution of H.

The results obtained are fairly insensitive to different choices of the parameters of the prior
for m. The situation is different as far as the prior of s2 is concerned. From Table IV, it is argued
that different values of v could have a rather strong influence on the estimation of H. However,
as it appears from Tables I and II, such a negative effect is mitigated when one considers the

Table III. Upper bound and probability ratio using Mills’ ratio, with l=10.

Traffic e n Upper Ratio

Heavy 0.999 500 0.556� 10�7 0.16� 10�20

Heavy 0.999 300 0.498� 10�4 0.66� 10�12

Heavy 1 300 0.0 +1
Medium 0.999 300 0.232� 10�13 0.193� 10�12

Light 0.999 300 0.423� 10�41 0.57� 10�19

The column labelled ‘Upper’ features posterior estimates of the upper bound of the overflow probability. The column

labelled ‘Ratio’ provides estimates of the posterior probability ratio for the Bayesian test in Section 4.

Table IV. Posterior estimates of H.

n=300, l=10 n=3, l=10

HT MT LT HT MT LT

Monte Carlo 0.665 0.666 0.726 0.867 0.865 0.894

MCMC 0.694 0.688 0.756 0.821 0.818 0.832
MC error 0.00164 0.00165 0.00159 0.0015 0.0015 0.0017

The abbreviation HT stands for ‘High Traffic’, MT for ‘Medium Traffic’ and LT for ‘Light Traffic’.
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overflow probability (which is the real goal of our analysis). In fact, large variations of v
produce only moderate variations of the Bayes’ estimates of the overflow probability. Here we
provide some tables with estimates of H corresponding to different values of E(s2) and Var(s2),
i.e. to different choices of l and v. See Table V. One can notice that the posterior estimates
of H are more sensitive to changes in E(s2) when Var(s2) than in the case in which Var(s2) is
very low.

4.1. Discussion on the choice of the hyperparameters

The Bayes estimates of the overflow probability exhibit some sensitivity w.r.t. the
hyperparameters w, l, v. For this reason, it is of interest to discuss their choice. In
telecommunications, prior information is frequently available in the form of trial samples, i.e.
small samples of traffic measurements.

Figure 2. Histogram (on the left) and kernel density estimate of H (on the right) obtained with n=10,
l=300 and e=0.999. The posterior estimate is, in this case, EðHjxÞ ¼ #HH � 0:694: The estimates are

obtained basing on the ‘heavy traffic’ data.

Table V. Sensitivity of posterior estimates of H (with heavy traffic data).

Var(s2)=0.001 Var(s2)=1

E(s2) E(H|x) Acceptance ratio (%) E(H|x) Acceptance ratio (%)

0.5 0.6831 50.14 0.8251 58.11
1 0.6828 50.06 0.8239 57.9
10 0.6827 50.04 0.6931 58.29
100 0.6828 50.01 0.6829 57.43
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Assume that the available prior data consist of k51 independent samples. Each sample is
obtained by observing the system under consideration for a (short) period of time. The whole
observation period is split into m time intervals of length D>0. Let Yi,j be the amount of traffic
entering the system in the ith time interval of the jth sample (i ¼ 1; . . . ;m; j ¼ 1; . . . ; k). From
our previous assumptions, conditionally on m, s, H, the random vectors ðYi;j; i ¼ 1; . . . ;mÞ have
independent multinormal distributions, with E[Yi,j|m,s,H]=Dm, Var[Yi,j|m,s,H]=D2s2,
Cov[Yi,j, Yi+l,j |m,s,H]=D2r(l).

As a prior for H, it is reasonable to assume a mixture of a Dirac d1/2 and a uniform
distribution. As seen in the example, the posterior of H is robust w.r.t. the weight e. As far as the
choice of mc, w, l, v is concerned, the basic idea consists in matching them with ‘empirical
quantities’ evaluated on the basis of Yi,js. First of all, let z>0, and

tðzÞ :¼ E½zH � ¼ ez1=2 þ 2ð1� eÞ
z� z1=2

log z

It is immediate to see that the equalities

E½m� ¼ mc; E½s2� ¼
l

n� 1
; E½s3� ¼

l3=2

GðnÞ
G n�

3

2

� �

VarðmÞ ¼ E½VarðmjsÞ� þ VarðE½mjs�Þ ¼ E½ws2� ¼ w
l

n� 1

E½rðlÞ� ¼ 1
2
ðtððl þ 1Þ2Þ � 2tðl2Þ þ tððl � 1Þ2ÞÞ

hold true, provided that n > 3
2
: Consider now the hth sample moments

%YYh:j ¼ m�1
Xm
i¼1

Yh
i;j ; %YYh:: ¼ k�1

Xk
j¼1

%YYh:j ; h ¼ 1; 2; 3

Their expected values are equal to

a1 ¼ E½ %YY1:j� ¼ Dmc

a2 ¼ E½ %YY2:j� ¼ EjY2
i;j� ¼ D2 l

n� 1
ð1þ wÞ þ m2c

� �

a3 ¼ E½ %YY3:j� ¼ EjY3
i;j� ¼ D2 3

l
n� 1

ð1þ wÞmc þ m3c

� �

a4 ¼VarðY1:jÞ ¼ E½Varð %YY1:j jm;s;HÞ� þ VarðmÞ

¼D2 ðm�1 þ wÞEjs2� þ
2

m2

Xm�1

l¼1

ðm� lÞE½s2rðlÞ�

 !

¼D2 l
n� 1

m�1 þ wþ
1

m2

Xm�1

l¼1

ðm� lÞðtððl þ 1Þ2Þ � 2tðl2Þ þ tððl � 1Þ2ÞÞ

( )
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respectively. A possible (and simple, as well) criterion to set the prior hyperparameters consists
in choosing mc, w, l, n in such a way that the relationships

a1 ¼ %YY1::; a2 ¼ %YY2::; a3 ¼ %YY3::; a4 ¼
1

k� 1

Xk
j¼1

ð %YY1�j � %YY1::Þ
2

hold true.

5. CONCLUSIONS

In this paper, we have proposed a new, Bayesian approach to estimate the overflow probability
in ATM networks, when FBM is used to model the traffic. We have analysed short- and long-
range dependence using Telecom Italia data and we have discussed important issues in Bayesian
analysis, like the choice of the hyperparameters and the sensitivity of the inference with respect
to changes in their values. The choice of the prior distributions has been motivated by their
flexibility and relative ease in their use. More general classes could have been used, but at the
cost of making the computational algorithm even more cumbersome. The choice of the FBM is
justified by its (relatively) tractable mathematical structure, although the request of Gaussianity
of traffic data could be attenuated. For this purpose, other self-similar processes could be
considered, but their use would be a very challenging task.

APPENDIX A

A description of the main computational issues associated with the estimation procedure set
forth in Section 3 will be now provided.

A.1. Estimation of H

In order to provide posterior estimates of the Hurst parameter H, a simple Monte Carlo
procedure is adopted. Such a choice is suggested by the expression appearing on the right-hand
side of (10). A sample of N i.i.d. observations H1; . . . ;HN from p0*(H) can be generated. Such a
sample is used to approximate the normalizing constant k*(x) by means of the empirical mean

#kk�ðxÞ ¼
ejO1=2j

�1=2

z1=21=2M
nþn=2
1=2

þ
1� e
N

XN
i¼1

jOHi
j�1=2

z1=2Hi
M

nþn=2
Hi

so that E(H|x) can be approximated by a ratio of empirical means, namely

EðH jxÞ � ð #kk�ðxÞÞ�1 e
2

jO1=2j
�1=2

z1=2
1=2M

nþn=2
1=2

þ
ð1� eÞ
N

XN
i¼1

Hi jOHi
j�1=2

z1=2Hi
M

nþn=2
Hi

8<
:

9=
;

A.2. Estimation of loss probability

An algorithm providing the desired approximations of the two integrals appearing in the right-
hand side of (11) works as follows. If, for any H in ½1

2
; 1Þ;

pðs2jH;xÞ ¼
M

nþn=2
H

Gðnþ n=2Þ
1

s2

� �nþn=2þ1

exp �
MH

s2

� �
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and

pðmjH;s2;xÞ ¼
z1=2H

s
ffiffiffi
p

p exp �
zH
2s2

m�
xH
2zH

� �2
( )

one has p�ð1
2
;m;s2jxÞ ¼ pðmj1

2
; s2; xÞpðs2j1

2
;xÞ: It follows that the first integral in the right-hand

side of (11), corresponding to the case in which H ¼ 1
2
; can be easily handled by generating an

i.i.d. sample ðs2i ;miÞ; i ¼ 1; . . . ;N; with si
2 and mi drawn from pðs2j1

2
;xÞ and from pðmj1

2
;s2i ;xÞ;

respectively. HenceZ
R�Rþ

%qqu
1
2
;m;s2

� 	
p� 1

2
;m; s2jx

� 	
I ðm5cÞ dm ds2 �

1

N

XN
i¼1

%qqu
1
2
;mi;s

2
i

� 	
I ðmi5cÞ

As far as the second integral in the right-hand side of (11) is concerned, note that
p � �ðdH;m;s2jxÞ ¼ pðHjxÞpðs2jH;xÞpðmjH; s2; xÞI1=25H51; where

pðH jxÞ /
jOH j

�1=2

z1=2H M
nþn=2
H

p0 � ðHÞ

A Metropolis–Hastings algorithm applies in this case, since it is not possible to sample
directly from p(H|x). The proposal we employ is

pðHiþ1;s2iþ1;miþ1jHi;s2i ;miÞ ¼ ZðHiþ1Þpðs2iþ1jHiþ1; xÞpðmi�1js
2
iþ1;Hiþ1; xÞ

ZðHÞ / ð1� 2HÞg�1ð1�HÞd�1 being a probability density function on ð1
2
; 1Þ: Therefore, the

adopted scheme corresponds to an independence sampler with acceptance ratio given by

aððHi;mi;siÞ; ðHiþ1; miþ1; siþ1ÞÞ ¼ min 1;
ZðHiþ1ÞpðHijxÞ
ZðHiÞpðHiþ1jxÞ

� �

The same MCMC output is used to estimate kc(x) and, then, k*(x).
Let us now move on to the problem of determining the upper bound in (13), which follows

from inequality (12) on Mills’ ratio for the Gaussian distribution. We still consider separately
the cases H ¼ 1

2
and H 2 ð1

2
; 1Þ: When H ¼ 1

2
; a simple Monte Carlo integration can be done, by

sampling i.i.d. mi’s from pðmj12;xÞ: If H 2 ð12; 1Þ; an independence sampler is employed again. In
fact, we set

pðHiþ1;miþ1jHi;miÞ :¼ ZðHiþ1Þpðmiþ1jHiþ1; xÞ

as the proposal distribution, with Z(H) as above. Acceptance ratio is

aððHi;miÞ; ðHiþ1; miþ1ÞÞ ¼ min 1;
ZðHiþ1ÞpðHijxÞ
ZðHiÞpðHiþ1jxÞ

� �
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