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Introduction Part I: Forward Propagation Part II: Inverse Problem Conclusions

Background and Motivation

George E. P. Box, 1987

“Remember that all models are wrong;
the practical question is how wrong do they have to be
to not be useful.”

Paraphrasing in less drastic terms...

“All models are inaccurate in some aspects, some models are useful despite that,
and for a given purpose some models are more useful than others.”

� If not enough to convince you on using Uncertainty Quantification (UQ)...

� ...during this talk, I will try to! Specifically focusing on Molecular Dynamics (MD).
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Background and Motivation

• 1957: origin of MD pioneered by
Alder and Wainwright.

• 1964: first MD simulation based on a realistic
potential (the Lennard-Jones potential),
applied to liquid Argon (Rahman).

• 1974: first MD simulation of liquid water
(Stillinger and Rahman).
. . .

MD simulation of Na+ and Cl� in water.

• MD is suitable and cheap (vs. experiments) to
explore physical properties at the atomic level.

• Now widely employed in both industrial
and academic environments:

� variety of systems: from liquids to solids,
to proteins and nucleic acids (DNA, RNA).

• As every simulation technique, MD is an
approximation method with a few weaknesses... MD snapshot of DNA (Biophysics group, UIUC)
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Background and Motivation

• Classical MD simulation (Frenkel,2001; Allen & Tildesley,1987):

Fi,t = �rri�(r1,t , . . . , rN,t), and
d2ri,t

dt2 =
Fi,t

mi
i = 1, . . . ,N.

• � is the potential (or force-field), must be defined before starting the simulation,
and should be tailored to the target application.

• Reliability of an MD simulation mainly depends on the accuracy with which �
can reproduce the atomic interactions occurring in the real system of interest.

� e.g.: a potential providing an accurate description for solid fracture simulations
might not be suitable to simulate the atomic behavior of a fluid.

• Continuous development of potentials and experience accumulated over
the past few decades have made MD reliable for a variety of systems but...

• ...the weakness due to the potential uncertainty still poses a serious problem.

• MD potential represents the main source of uncertainty.

• One example to convince you: water...

Francesco Rizzi UQ in Molecular Dynamics



Introduction Part I: Forward Propagation Part II: Inverse Problem Conclusions

Background and Motivation

• Classical MD simulation (Frenkel,2001; Allen & Tildesley,1987):

Fi,t = �rri�(r1,t , . . . , rN,t), and
d2ri,t

dt2 =
Fi,t

mi
i = 1, . . . ,N.

• � is the potential (or force-field), must be defined before starting the simulation,
and should be tailored to the target application.

• Reliability of an MD simulation mainly depends on the accuracy with which �
can reproduce the atomic interactions occurring in the real system of interest.

� e.g.: a potential providing an accurate description for solid fracture simulations
might not be suitable to simulate the atomic behavior of a fluid.

• Continuous development of potentials and experience accumulated over
the past few decades have made MD reliable for a variety of systems but...

• ...the weakness due to the potential uncertainty still poses a serious problem.

• MD potential represents the main source of uncertainty.

• One example to convince you: water...

Francesco Rizzi UQ in Molecular Dynamics



Introduction Part I: Forward Propagation Part II: Inverse Problem Conclusions

Background and Motivation

• Classical MD simulation (Frenkel,2001; Allen & Tildesley,1987):

Fi,t = �rri�(r1,t , . . . , rN,t), and
d2ri,t

dt2 =
Fi,t

mi
i = 1, . . . ,N.

• � is the potential (or force-field), must be defined before starting the simulation,
and should be tailored to the target application.

• Reliability of an MD simulation mainly depends on the accuracy with which �
can reproduce the atomic interactions occurring in the real system of interest.

� e.g.: a potential providing an accurate description for solid fracture simulations
might not be suitable to simulate the atomic behavior of a fluid.

• Continuous development of potentials and experience accumulated over
the past few decades have made MD reliable for a variety of systems but...

• ...the weakness due to the potential uncertainty still poses a serious problem.

• MD potential represents the main source of uncertainty.

• One example to convince you: water...

Francesco Rizzi UQ in Molecular Dynamics



Introduction Part I: Forward Propagation Part II: Inverse Problem Conclusions

Background and Motivation: Uncertainty for Water

• More than 50 MD water models available trying to provide suitable descriptions of the
water molecule in the form of governing potentials, see (Guillot,2002; Wallqvist,2007).

• Only some physical properties are reproduced with a good degree of accuracy.

Acronym Date Type Sites Reference
SPC 1981 rigid 3 (Berendsen,1981)

TIP3P 1981 rigid 3 (Jorgensen,1983)
SPC/F 1985 flexible 3 (Toukan,1985)

SPC/FP 1991 flexible,polarizable 3 (Zhu,1991)
NSPCE 1998 rigid 3 (Errington,1998)
SPC/Fw 2006 flexible 3 (Wu,2006)

BF 1933 rigid 4 (Bernal,1933)
RWK 1982 flexible 4 (Reimers,1982)
TIP4P 1983 rigid 4 (Jorgensen,1983)

PTIP4P 1991 polarizable 4 (Sprik,1991)
TIP4P/FQ 1994 polarizable 4 (Rick,1994)
TIP4P-Ew 2004 rigid 4 (Horn,2004)

TIP4P/2005 2005 rigid 4 (Abascal,2005)
ST2 1973 rigid 5 (Stillinger,1974)

TIP5P 2000 rigid 5 (Mahoney,2000)
TIP5P-Ew 2004 rigid 5 (Rick,2004)

NvdE 2003 rigid 6 (Nada,2003)

Table : Reduced list of water models developed since 1933. Data are obtained from the review by
(Guillot,2002) and from listed references.
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Background and Motivation: Uncertainty for Water

a Most water models use a Lennard-Jones (LJ)
potential to describe Van der Waals forces.

�LJ(r) = 4"
⇢⇣�

r

⌘12
�
⇣�

r

⌘6
�

where r is separation between two O atoms
of two water molecules.

� Different models involve different values of
the LJ parameters ",�.

b Rigid or flexible molecule.

c Number of sites defining the water structure,
ranging from the 3-site H2O structure,
to 6 sites models.
...

• Discussion can be extended to several other
systems or materials, indicating that the MD
potential is an important source of uncertainty
to consider in the MD setting.
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Background and Motivation

Q1:
If MD is so “wrong”, why do we use it?

Q2:
Why not resorting to more reliable frameworks?
E.g. quantum mechanical calculations?
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Background and Motivation: Ab Initio versus Classical MD

• 1984: ab initio MD by Car and Parrinello.

� Newton’s law for the atoms trajectories, but the
forces are obtained by solving the full quantum
mechanical electronic structure problem.
p

No need for the potential.
X Large computational cost.
X Systems of the order of 103/104 atoms.
X Practical time scales on the order of picoseconds.

Ab initio simulation of protein folding.
Isosurface reflects electrostatic potential -, +
due to the instantaneous electron configurations.
Source: Pietro Faccioli, Univ. of Trento, Italy• Classical MD:

X Need potential.
p

Systems of about 106 atoms with current supercomputers.
p

Practical time-scales on the order of nanoseconds.

• Ideal run time for exploring atomistic systems is nanoseconds
(microseconds preferably).

) Feasible time scales is the key factor still making MD the preferred setting.
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Background and Motivation: UQ

• Quantitative estimation of uncertainty in a computational study of a physical
process of interest.

• Complex non-linear systems: small uncertainties and errors can be largely
amplified and strongly affect the model predictions.

• Key role when a high-fidelity simulation analysis is of central importance.

• Two main probabilistic methods widely used for UQ: polynomial chaos (PC)
expansion (Wiener,1938) and Bayesian inference (Bayes,1763).

PC expansion: X is a target RV - ci are coeff. -  i(⇠) polyn. of standard RV ⇠

X =
1X

i=0

ci i(⇠)

Bayes’ theorem: D is data - ✓ is set of parameters (hypothesis)

Posteriorz }| {
P(✓|D) =

Likelihoodz }| {
P(D|✓)

Priorz }| {
P(✓)

C
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Talk Overview

The talk presents two tightly connected components of UQ applied to MD.

Part I: Forward Propagation

• Quantify how uncertainty in a set of model parameters affects selected model observables.

ObservationsParameters

• Focus on MD simulations of concentration driven ionic flow in a silica nanopore.
• The heterogeneous nature of the system, due to the several components involved,

represents a key complexity of this study.

Part II: Inverse Problem

• Estimation of target model parameters based on a set of observations.

ObservationsParameters

• Focus on MD simulations of bulk water.
• Estimation of potential parameters based on noisy observations of water observables.
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Forward propagation: nanopore flow
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Computational System and Geometry

• We consider a silica pore model connecting two reservoirs containing a
1.5 mol/l solution of sodium (Na+) and chloride (Cl�) ions in H2O (white-red).

• Reservoirs communicate only through the pore and PBC are imposed along x and y .

1 ↵-quartz crystal structure for the silica.
2 Remove the atoms within a cylindrical region of

nominal diameter D.
3 Saturate dangling bonds with hydroxide groups

(OH�), to mimic real hydroxylation processes.
• Domain (xyz) 5.4⇥ 6⇥ 10.5 nm3.
• Total simulation time ⇠ 8 ns.

OH, Si,Obulk
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MD Potential

• We model the potential energy as:
�total = �bonded + �LJ + �Coulomb| {z }

non�bonded

• �bonded (bond stretching and bending) is
modeled using harmonic potential.

Stretching

Bending

• The non-bonded interactions (Van der Waals, Electrostatic) are modeled as:

�non�bonded =
natomsX

i=1,j>i


4"ij

"✓
�ij

rij

◆12

�
✓
�ij

rij

◆6
#

| {z }
�LJ (rij )

+
qiqj

4⇡✏0rij| {z }
�Coulomb(rij )

�
,

• Define the LJ parameters {"↵� ,�↵�} between atoms types ↵ and �, for each
homoatomic pair present in the system, i.e. ↵ = �.

• Calculate the cross-interaction parameters {"↵� ,�↵�}, ↵ 6= �, using the
Lorentz-Berthelot (LB) mixing rules:

�↵� =
1
2
(�↵ + ��) and "↵� =

p
"↵"�

• Parameters: silica (Lopes,2006), water (Jorgensen,1984), ions (Patra,2002).
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Concentration Control Algorithm

• Concentration difference �c(t) = c2(t)� c1(t)
⇤ ci(t) is the (molar) concentration of a target ionic species at time t in i-th reservoir.

• Inject/remove ions in two control
regions C1 and C2.

• No ion deletion, only swapping:
) N is constant.

• ��cNa+ = 30/V = �cCl� :
Flow Na+: left! right
Flow Cl�: left right

• Ionic flux magnitude:

J =
Nexchanges

⌧A
and condutance G =

J
|�c|

� Nexchanges is the (net) number of ion exchanges between C1 and C2 over a time ⌧ .
� A is the cross-sectional area of the pore.
� method was validated against a steady flux measured via integration of

the velocity profiles of the ions over the cross-section of the pore.
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Sensitivity to the pore diameter
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Sensitivity to Pore Diameter

• Values of the pore diameter:
D = 12.5, 17, 21, 27 Å.

• Total number of atoms:
� 32124 for D = 12.5
� 31630 for D = 27

• D = 12.5: smallest practical
diameter yielding a non-zero
ionic flux through the pore.

• D = 27: largest value such that
the system does not “feel” effect
of images.

D=12.5 Å D=17 Å

D=21 Å D=27 Å
• 5 replica simulations are run for each value of D

to account for the effect of the intrinsic (thermal) noise.

• These replicas are obtained using 5 different sets of random
numbers to initialize the velocity field of the atoms.
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Animation & Velocity Profile

• Animation for one replica of D = 21 Å.

• 440 ions and total of 31043 atoms.

• Ions tend to flow along the pore centerline
with net mean velocity at steady state.

• At steady state, water is stationary.

Na+ , Cl� , H2O (white-red), Obulk , Si, OH

• Perform time/spatial averaging to construct
radial profile of the axial velocity vz .

• Spatial discretization based on “tessellation”
binning and time window of 100 time steps.

• Parabolic profile for Na+; conic for Cl�.

• vz(r) ⇡ 0 for r � 7.5 due to OH groups.

• Area under vz(r) indicates larger Cl�-flux.

Francesco Rizzi UQ in Molecular Dynamics



Introduction Part I: Forward Propagation Part II: Inverse Problem Conclusions

Animation & Velocity Profile

• Animation for one replica of D = 21 Å.

• 440 ions and total of 31043 atoms.

• Ions tend to flow along the pore centerline
with net mean velocity at steady state.

• At steady state, water is stationary.

Na+ , Cl� , H2O (white-red), Obulk , Si, OH

• Perform time/spatial averaging to construct
radial profile of the axial velocity vz .

• Spatial discretization based on “tessellation”
binning and time window of 100 time steps.

• Parabolic profile for Na+; conic for Cl�.

• vz(r) ⇡ 0 for r � 7.5 due to OH groups.

• Area under vz(r) indicates larger Cl�-flux.

Francesco Rizzi UQ in Molecular Dynamics



Introduction Part I: Forward Propagation Part II: Inverse Problem Conclusions

Sensitivity to Pore Diameter: Conductance

• Time evolution of the conductance, G(t), computed for Na+ and Cl�,
obtained for all 5 replicas at each diameter D = 12.5, 17, 21 and 27.

• Initial sharp transient showing strong fluctuations.
• Steady state with stable oscillations around a well-defined mean value.

� D weakly affects the duration of the transient state.
� As D increases, the steady state value of G substantially increases.
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Sensitivity to Pore Diameter: Conductance

• Steady-state value of GNa+ and GCl� as a function of D for all 5 replicas
showing the replica values (markers) and the mean trends (solid lines).

• Clear difference is observed in the
steepness of the trend, which is sharper
for the Cl� conductance, GCl� .

• Overlapping of replica distributions for
small D.

• For D � 17: GCl� > GNa+ .

• The trend reverses for the smallest
diameter D = 12.5.

• How to explain this physically? 12.5 17 21 27
0
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Physical Explanation

• Cross-over is the result of the interplay between size effects and ionic mobility.

• D = 12.5: weak solvation shell) strong effect of pore walls and confinement
favor ions with smaller size, Na+ (result seen before in Lyndenbell,1996).

• D � 17: complete solvation shell around the ions
) ion’s mobility dominates
) the flux of Cl� is greater than Na+, because the diffusivity of Cl� is larger.

Na+, Cl�, H2O (white-red), OH, Si, Obulk
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Sensitivity to LJ potential parameters

Francesco Rizzi UQ in Molecular Dynamics



Introduction Part I: Forward Propagation Part II: Inverse Problem Conclusions

Problem Definition

• Fix D = 21 Å; choose "Na+ and "Cl� : depths of the LJ potential for Na+ and Cl�.

"Na+ = 0.002033777 + 0.0019923703 ⇠1, [eV],
"Cl� = 0.006504600 + 0.0008630547 ⇠2, [eV],

where {⇠1, ⇠2} are i.i.d. uniform random variables; values from literature.
• Directly affects the potential for Na+-Na+ and Cl�-Cl� LJ interactions.
• Since "↵� =

p
"↵"� between different atom types ↵ 6= �, it also affects all the

cross-interactions between each ion and the other atoms.

1 2 3 4 5 6 7 8 9

−8

−6

−4

−2

0

2

x 10
−3

�

LJ

(µ
✏

+)

�

LJ

(µ
✏

+ � ↵
✏

+)

�

LJ

(µ
✏

+ + ↵
✏

+)

�

LJ

(µ
✏

�)

�

LJ

(µ
✏

� � ↵
✏

�)

�

LJ

(µ
✏

� + ↵
✏

�)

Range for Na
+

Range for Cl
−

r [

˚

A]

�

L
J

[
e
V
]

�LJ (r) for Na+-Na+ and Cl�-Cl�

Francesco Rizzi UQ in Molecular Dynamics



Introduction Part I: Forward Propagation Part II: Inverse Problem Conclusions

Problem Definition

• Fix D = 21 Å; choose "Na+ and "Cl� : depths of the LJ potential for Na+ and Cl�.

"Na+ = 0.002033777 + 0.0019923703 ⇠1, [eV],
"Cl� = 0.006504600 + 0.0008630547 ⇠2, [eV],

where {⇠1, ⇠2} are i.i.d. uniform random variables; values from literature.
• Directly affects the potential for Na+-Na+ and Cl�-Cl� LJ interactions.
• Since "↵� =

p
"↵"� between different atom types ↵ 6= �, it also affects all the

cross-interactions between each ion and the other atoms.

1 2 3 4 5 6 7 8 9

−8

−6

−4

−2

0

2

x 10
−3

�

LJ

(µ
✏

+)

�

LJ

(µ
✏

+ � ↵
✏

+)

�

LJ

(µ
✏

+ + ↵
✏

+)

�

LJ

(µ
✏

�)

�

LJ

(µ
✏

� � ↵
✏

�)

�

LJ

(µ
✏

� + ↵
✏

�)

Range for Na
+

Range for Cl
−

r [

˚

A]

�

L
J

[
e
V
]

1 2 3 4 5 6 7 8 9

−8

−6

−4

−2

0

2

x 10
−3

Nominal curve

�

LJ

(✏min

N a

+, ✏min

C l

�)

�

LJ

(✏max

Na

+, ✏max

C l

�)

      LJ for cross

Na
+
−Cl

−
 interaction

r [

˚

A]

�

L
J

[
e
V
]

�LJ (r) for Na+-Na+ and Cl�-Cl� �LJ (r) for cross Na+-Cl�

Francesco Rizzi UQ in Molecular Dynamics



Introduction Part I: Forward Propagation Part II: Inverse Problem Conclusions

Objective and Methods

• Stochastic reformulation (
"Na+ = f1(⇠1)

"Cl� = f2(⇠2)

) the MD predictions of the observables extracted from the nanopore simulation
are random variables with finite variance.

• Goal: map the uncertainty from "Na+ and "Cl� to the ionic conductance, G.

• Rely on:

G ⇡
PX

i=0

ci i(⇠1, ⇠2)

• Employ a Bayesian regression approach to find coefficients.
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Regression: Collect Data

• Recall "Na+ = f1(⇠1) and "Cl� = f2(⇠2).

• Collect data using 13 nodes and 3 MD replicas.

• (�1, 1): small "Na+ , large "Cl� ; opposite for (1,�1).

• Data-set of conductance:

G =
�

Gi,j
 j=1,...,3

i=1,...,13,

where G denotes the steady-state conductance
computed for either Na+ or Cl�.
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Bayesian Regression Formulation

• Goal: represent a given set of data, G, using
a target regression function, M(⇠1, ⇠2), in the
form of a PCe:

M(⇠1, ⇠2) =
PX

k=0

gk k (⇠1, ⇠2),

• Regression model: assume additive errors as

G` = M(⇠`) + �`, ` = 1, . . . , 39.

� ⇠` denotes the coordinate of the `-th observation G`

� �` is RV capturing the discrepancy between data and model prediction.

• Assume {�`}39
`=1 to be independent and normally distributed with mean zero.

• Independence assumption is justified since the data points result of
independent runs of the MD system.

• Consider a space-dependent noise STD �` = �(⇠) by parametrizing:

�(⇠) = h0 + h1⇠1 + h2⇠2.

• We thus have: �` ⇠ N (0,�(⇠`)).
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Bayesian Regression Formulation

• Treat the coefficients {hk}2
k=0 as hyperparameters, i.e. they become

part of the set of unknowns which becomes: {g0, . . . , gP , h0, h1, h2}.

• We can construct the following likelihood

L
⇣

G
���gk

 P
k=0,

�
hl
 2

l=0

⌘
=

=
13Y

i=1

3Y

j=1

1p
2⇡[h0 + h1⇠1,i + h2⇠2,i ]2

exp

 
�
[Gi,j �

PP
k=0 gk k (⇠1,i , ⇠2,i)]

2

2[h0 + h1⇠1,i + h2⇠2,i ]2

!
,

where Gi,j is the j-th observation obtained at the i-th sampling point, ⇠i .

• Bayes’ theorem thus yields the following joint posterior

⇡
⇣�

gk
 P

k=0,
�

hl
 2

l=0

��� G
⌘
/ L

⇣
G
���gk

 P
k=0,

�
hl
 2

l=0

⌘
Prior(

�
gk
 P

k=0,
�

hl
 2

l=0),

where the priors account for the information avaiable about the unknowns
before considering the data: use uniform prior with suitably large bounds.

• The posterior ⇡ is sampled with a Markov chain Monte Carlo (MCMC) algorithm:
random walk in the {g0, . . . , gP , h0, h1, h2}-space.
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Markov chain Monte Carlo (MCMC)

• For simplicity, suppose that we were in 2D to infer {g0, h0}.

⇡
⇣

g0, h0

��� data
⌘
/ L

�
data

��g0, h0
�

Ug0 Uh0 ,

1 Let (g0, h0)c be an initial guess.

2 Draw a candidate point (g0
0, h

0
0) from

a Gaussian centered on the current
state: (g0

0, h
0
0) ⇠ N ((g0, h0)c ,Cov).

3 Calculate the ratio:

r =
⇡(g0

0, h
0
0|data)

⇡((g0, h0)c |data)

h0

g
0

h0
g
0,( )
c

4 Draw a sample ✓ ⇠ U(0, 1).

5 The chain then moves according to:

(g0, h0)t=1 =

(
(g0

0, h
0
0) if ✓ < r ,

(g0, h0)c otherwise.

6 Repeat the loop.
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Regression: Results

• Results of MCMC is a “chain” of samples for each unknown:
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. . .

• Samples can be used to derive posterior statistics:
mean, variance, joint distributions ...

• ... of the posterior distribution ⇡(g0, . . . , gP , h0, h1, h2).
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Which order of the regression function?

• Run the inference using constant, linear, quadratic and cubic PCe M(⇠1, ⇠2).

• Which order is the most appropriate?

• Bayes factor: non-dimensional number that allows one to compare and
discriminate between two “models” describing a given set of data.

• ✓p = {g0, . . . , gP , h0, h1, h2}: parameter vector using a p-th order PCe M(⇠).
• Given ✓p1 and ✓p2 , associated with regression functions of order p1 and p2,

respectively, the (ln) of Bayes factor, B(✓p1 ,✓p2), is given by:

ln(B(✓p1 ,✓p2)) = ln

R
⌦1

⇡
�
✓p1

��G
�

d✓p1R
⌦2

⇡
�
✓p2

��G
�

d✓p2
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�
✓p1

��G
�

d✓p1R
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⇡
�
✓p2

��G
�

d✓p2

Na+ Cl�

p2 = 0 p2 = 1 p2 = 2 p2 = 3 p2 = 0 p2 = 1 p2 = 2 p2 = 3
p1 = 0 – -19.341 -19.933 -16.285 – 2.484 2.737 6.499
p1 = 1 19.341 – -0.593 3.055 -2.284 – 0.254 4.015
p1 = 2 19.933 0.593 – 3.648 -2.737 -0.254 – 3.761
p1 = 3 16.285 -3.055 -3.648 – -6.499 -4.015 -3.761 –
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Posterior Uncertainty & Response Surface for Na+

• Quadratic (p = 2) PCe, M(⇠1, ⇠2), for GNa+ :

M = g0 + g1 1 + . . .+ g5 5

• “Information” is mainly contained in g0, g1.

• Bayesian regression) uncertain PCe.

• Generate {gi}5
i=1 by sampling ⇡(g0, ..., g5) and

plot response surfaces: clear trend present.
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Posterior Uncertainty & Response Surface

• MAP estimate of response surface for Na+:
GNa+ increases as "Na+ (i.e. ⇠1) increases.

• For Cl� Bayes factor suggested to
use a constant M to represent GCl� .

• Can we explain this difference?
• GCl� ⇠ "Cl� similarly to GNa+ ⇠ "Na+ but:

� smaller range of uncertainty chosen for "Cl�
gives a smaller absolute variation.

� trend of GCl� with respect to "Cl� is obscured
by the substantial noise level.
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Transport Coefficients

• Separate MD study to compute transport coefficients for the fluid using Green-Kubo.
• For instance, the Green-Kubo formula for dynamics viscosity, µ, is:

µ =
V

3kBT

Z 1

0

D
&(0) · &(t)

E
dt (2)

where &(t) is the deviatoric stress, and kB is the Boltzmann’s constant.
• Construct PC expansion, F ("Na+(⇠1), "Cl�(⇠2)), for µ and Na+ diffusivity D++

MAP of PCe response for µ MAP of PCe response for D++
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Correlations between Ionic Conductance and Transport

• Let F (⇠1, ⇠2) = f  be the PCe of one transport coefficient, µ or D++.

• Let M(⇠1, ⇠2) = g  be the PCe of the Na+ conductance, GNa+ .

Cov(M,F ) = E
⇥
(M � E[M])(F � E[F ])

⇤

=

min(P,PF )X

k=1

fk gk E
⇥
 2

k (⇠)
⇤
,

• Sample ⇡(g) and ⇡(f)) {gi}50000
i=1 and {fi}50000

i=1 .

• Each (gi , fi) gives one value of covariance.

• Plot histogram of correlation coefficient ⇥.

• (GNa+ , µ) correlation is mainly negative: ion flow
decreases when the viscosity increases.

• Strong correlation between GNa+ and D++:
convincing result, since we expect the flux of Na+

to be mostly affected by the diffusivity of Na+.
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Inverse problem for MD simulations of water
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Problem Statement

• Focus on MD simulations of bulk water at ambient conditions: T = 298 K, P = 1 atm.

• Let {↵1,↵2,↵3} be three potential parameters of interest.

• Objective: given data of one or more macroscale observables, infer {↵1,↵2,↵3}.

• Test case: synthetic problem based on
presumed “true” values of the parameters:

↵̂1 = 0.17,
↵̂2 = 3.15,
↵̂3 = 0.14,

• Run multiple MD replicas to generate a set
of noisy density observations ⇢ = {⇢i}N=10

i=1 .

Density observations: {⇢i}10
i=1

Using the data {⇢i}N=10
i=1 how well can we recover the “true” parameters?
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“Expensive” Inference

• Bayes’ theorem: ⇡
�
↵1,↵2,↵3

�� ⇢
�

| {z }
Posterior

/ L
�
⇢
�� ↵1,↵2,↵3

�
| {z }

Likelihood

P(↵1,↵2,↵3)| {z }
Prior

• A direct (expensive) likelihood:

⇢i = F(↵1,↵2,↵3) + �i ) LF
�
⇢
��↵1,↵2,↵3

�
=

NY

i=1

p
�

(⇢i � F(↵1,↵2,↵3))

� F represents a full MD run
� �i : RV capturing the discrepancy between data, ⇢i , and the MD prediction, F .

• MCMC exploration of ⇡ requires ⇠ 104 evaluations of F : prohibitive due to the
large computational cost associated with a single MD computation.

• Replace the full MD prediction with a suitable surrogate model.

• A surrogate representation is a model relating the observables to the
parameters such that:

• the accuracy of the representation is comparable to the high fidelity system
• the evaluation cost is considerably reduced
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“Cheap” Inference

• Following Marzouk et al. (2007), we can use a PC expansion of density as a
surrogate model:

M⇢(↵1,↵2,↵3) =
PP

k=0 ck  ̃k (↵1,↵2,↵3)

• Given ↵1,i ,↵2,i ,↵3,i , evaluating M⇢(↵1,i ,↵2,i ,↵3,i) yields a corresponding
prediction for the target observable, density.

• M⇢(↵1,↵2,↵3) is a surrogate representation of the “expensive” MD run F .
• The “cheap” likelihood becomes

⇢i = M
⇢

(↵1,↵2,↵3)+�i ) LM

⇣
⇢
��� ↵1,↵2,↵3

⌘
=

NY

i=1

p
�

(⇢i � M
⇢

(↵1,↵2,↵3))

• M⇢ is a polynomial: substantial improvement in the computational efficiency.

• Problem reduces to sampling the posterior:

⇡(↵1,↵2,↵3 | ⇢) / LM

⇣
⇢
��� {↵1,↵2,↵3}

⌘
P(↵1,↵2,↵3)
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Noise Model

• A set of observations, ⇢ = {⇢i}N
i=1, for density to use for the inference.

• A surrogate (i.e. cheap) model directly relating the observable to the parameters:

M⇢(↵1,↵2,↵3) =
PX

k=0

ck  ̃k (↵1,↵2,↵3) = c0 + c1↵1 + c2↵2 + c3↵3 + . . .

where (c0, c1, ...) are deterministic coefficients.
• Gaussian noise model with noise variance �2 as hyperparameter yields:

⇡(↵1,↵2,↵3,�
2 | ⇢) /

NY

i=1

1p
2⇡�2

exp

 
� [⇢i �M⇢(↵1,↵2,↵3)]

2

2�2

!

| {z }
Likelihood

P(↵1,↵2,↵3,�
2)

| {z }
Prior

� where �2 is the hyperparameter
� priors for ↵1,↵2,↵3 are uniform distributions, prior for �2 is: P(�2) = 1/�2.

• Sample the posterior using a MCMC method: it involves a random walk in the
(↵1,↵2,↵3,�

2)-space.
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Single Observable: Density

• Inference is performed using a cubic
PC expansion as surrogate model.

• Plots of 20000 MCMC samples.

• Underdetermined problem, yielding
large posterior uncertainties.

• Posterior densities are nearly uniform.

↵1 ↵2 ↵3
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Single Observable: Density

• Result can be explained by analyzing the structure of the surrogate model.

• Compute the mean of the observations of density ⇢.

• Extract from the surrogate model, M(↵1,↵2,↵3), the isosurface connecting
points such that: M(↵1,↵2,↵3) = ⇢.
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Single Observable: Density

• Superimposing the chain to the isosurface
reveals the overlapping.

• The chain is constrained by the structure
of the surrogate model.

• Suggests that using one observable to infer
three parameters leaves two additional degrees of
freedom missing.
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Three Observables: Density, Self-diffusion and Enthalpy

• Run inference using data of two more
observables, i.e. {⇢i ,Di ,Hi}10

i=1.
• Surfaces of constant density, self-diffusivity,

and enthalpy intersect in a point, leading to
a well-defined problem.

• Chain localizes at the intersection of the
isosurfaces extracted from the PC
surrogate of each observable.

• True parameters are recovered with
excellent accuracy.

↵1 ↵2 ↵3
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Posterior Correlations

• 3D-joint posterior based on the MCMC samples.

• Advantage of Bayesian approach:

(a) joint PDFs for the potential parameters,
whose spread stem from the noise in the data.

(b) correlation structure, a priori unknown because
originally assumed independent parameters.

⇡(↵1,↵2) ⇡(↵1,↵3) ⇡(↵2,↵3)
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Inverse Problem based on Non-Deterministic Surrogate

• Non-deterministic surrogate:

M(↵1,↵2,↵3) = c0 0(↵1,↵2,↵3) + . . .+ cP P(↵1,↵2,↵3)

where the set of PC coefficients {cl}P
l=0, is a random vector defined by a

(P + 1)-dimensional joint probability density.

• The surrogate model prediction, M(↵1,↵2,↵3), depends on:
1 the parametric uncertainty through the uncertain parameters ↵1,↵2,↵3.
2 the uncertainty in the PC coefficients.

• Interpretation:
• Draw m samples of the parameters

�
{↵1,↵2,↵3}(j)

 m
j=1

• For any given {↵1,↵2,↵3}(j), we can draw n different sample-spectra of
PC coefficients

�
ci
 n

i=1, from their joint distribution.

• We thus obtain n ⇥ m predictions for the target observable
��

M
�

i,j

 n,m
i,j=1.

• In other words, each realization of the parameters ({↵1,↵2,↵3}(j), due to the
uncertainty in the coefficients, can be associated with an arbitrary number of
predictions of the observable M.
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Inverse Problem based on Non-Deterministic Surrogate

• The uncertainty in the coefficients may be an important information and should be
taken into account in the inverse problem.

• Given a sample ↵ = {↵1,↵2,↵3}(j), we can construct the constant row vector

y = { 0
�
↵(j)�, . . . , P

�
↵(j)�},

• We can interpret each non-deterministic PC representation, M(↵(j)), as a linear
combination of the random vector c = {c0, . . . , cP}T , according to

M(↵(j)) = c0 0(↵
(j)) + c1 1(↵

(j)) + . . .+ cP P(↵
(j)) = yc.

• If the (P + 1)-distribution of the random vector c can be approximated by a
MVN (µ,Z), then

yc =  0
�
↵(j)�c0 + . . .+ P

�
↵(j)�cP ,

is distributed as a univariate gaussian with mean (yµ) and variance
�
yZyT �,

in short notation N ((yµ),
�
yZyT �).
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Inverse Problem based on Non-Deterministic Surrogate

• With an independent additive error model, the discrepancy between each
observation and the non-deterministic surrogate model prediction is

Gi = yc + � i , i = 1, . . . ,N,

where {� i}N
i=1 are i.i.d. RV’s with density p� . With p� = N (0, �̃2), we have:

L
�
{G}N

i=1

���⇠
�
=

NY

i=1

1p
2⇡ (yZyT + �̃2)

exp

0

B@�

h
Gi � yµ)

i2

2 (yZyT + �̃2)

1

CA,

• Combines both surrogate uncertainty and data noise in a self-consistent manner.
For each data point, the likelihood reaches its maximum if the data and the surrogate
mean coincide. Deviations from this mean are weighted by the sum of variances of
the noise and the uncertain surrogate.

• Regions of high data-noise or large surrogate-uncertainty are both penalized with
lower weighting on discrepancies between the data and the mean-surrogate model.
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Inverse Problem based on Non-Deterministic Surrogate

• From Bayes’ theorem, the joint posterior distribution is given by

⇡
⇣
{↵1,↵2,↵3}, hyperp

��� {G}N
i=1

⌘
/ L

⇣
{G}N

i=1
��{↵1,↵2,↵3}, hyperp

⌘
Priors

• The problem then reduces to sampling the posterior using a suitable algorithm,
e.g. Adaptive Metropolis.
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NON-DETERMINISTIC PC surrogate

• Chain localizes at the intersection of the
isosurfaces extracted from the PC surrogate
of each observable according to:
MAP(Mk )(⇠), k = 1, 2, 3.

• True value is recovered with good accuracy.

• Results look similar to the deterministic
setting.

↵1 ↵2 ↵3
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DETERMINISTIC vs. NON-DETERMINISTIC surrogates.

• Joint posteriors based on Deterministic and Non-Deterministic surrogates.
• Substantial correlations stemming from the forward model solution, and

manifested during the inference through the PC surrogate.

⇡(↵1,↵2) ⇡(↵1,↵3) ⇡(↵2,↵3)
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Summary & Conclusions

• UQ can be successfully applied to MD simulations.

• Two distinct sources of uncertainty were investigated:
parametric uncertainty in the potential and intrinsic (thermal) noise.

• PC expansions and Bayesian inference were exploited to develop a framework
to isolate the impact of parametric uncertainty on the MD predictions and, at the
same time, properly quantify the effect of the intrinsic noise.

• Uncertain PC surrogates provide a suitable tool, especially in the presence of
noisy data.

• We addressed the UQ problem in both its main components, the forward
propagation and the inverse problem, focusing on two different MD systems.

• Specifically, we showed to suitability of using PCe in the MD context
for both the forward propagation and inverse problem.

• In part I: we described few important physical mechanisms occurring in a
nanopore flow, due to physical parameter effects (diameter, gating charge) as
well as effects stemming from potential uncertainty.

• In part II: we successfully showed how to use PCe to infer atomistic quantities
using macroscale observables, obtaining a PDF on the potential parameters.
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Thank you for your attention
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