Parametric Problems, Stochastics, and Identification

Hermann G. Matthies ${ }^{a}$

B. Rosićab ${ }^{a b}$ O. Pajonk ${ }^{a c}$, A. Litvinenko ${ }^{a}$
${ }^{a}$ Institute of Scientific Computing, TU Braunschweig ${ }^{b}$ University of Kragujevac ${ }^{c}$ SPT Group, Hamburg
wire@tu-bs.de
http://www.wire.tu-bs.de

Overview

1. Parameter identification
2. Parametric forward problem
3. Bayesian updating, inverse problems
4. Tensor approximation
5. Bayesian computation
6. Examples

To fix ideas: example problem

Aquifier

2D Model

Simple stationary model of groundwater flow with stochastic data

$$
\begin{gathered}
-\nabla_{x} \cdot\left(\kappa(x, \omega) \nabla_{x} u(x, \omega)\right)=f(x, \omega) \quad \& \text { b.c. }, \quad x \in \mathscr{G} \subset \mathbb{R}^{d} \\
-\kappa(x, \omega) \nabla_{x} u(x, \omega)=g(x, \omega), \quad x \in \Gamma \subset \partial \mathscr{G}, \quad \omega \in \Omega .
\end{gathered}
$$

Parameter $q(x, \omega)=\log \kappa(x, \omega)$ is uncertain, the stochastic conductivity κ, as well as f and g - sinks and sources.

Realisation of $\kappa(x, \omega)$

Mathematical setup

Consider operator equation, physical system modelled by A :

$$
\begin{array}{rl}
A(u)=f & u \in \mathcal{U}, f \in \mathcal{F}, \\
\Leftrightarrow \forall v \in \mathcal{U}: & \langle A(u), v\rangle=\langle f, v\rangle,
\end{array}
$$

\mathcal{U} - space of states, $\mathcal{F}=\mathcal{U}^{*}$ - dual space of actions / forcings.
Solution operator: $u=U(f)$, inverse of A.
Operator depends on parameters $q \in \mathcal{Q}$, hence state u is also function of q :

$$
A(u ; q)=f(q) \quad \Rightarrow \quad u=U(f ; q)
$$

Measurement operator Y with values in \mathcal{Y} :

$$
y=Y(q ; u)=Y(q, U(f ; q))
$$

Forward parametric problem

Parametric elements: operator $A(\cdot ; q)$, rhs $f(q)$, state $u(q), \rightarrow r(q)$.
Goal are representations of $r(q) \in \mathcal{W}$, i.e. $r: \mathcal{Q} \rightarrow \mathcal{W}$. Help from inner product $\langle\cdot \mid \cdot\rangle_{\mathcal{R}}$ on subspace $\mathcal{R} \subset \mathbb{R}^{\mathcal{Q}}$. In case \mathcal{Q} is a measure / probability space, $\mathcal{R}=L_{2}$.

To each parametric element corresponds linear map

$$
R: \mathcal{W} \ni \hat{r} \mapsto\langle\hat{r} \mid r(\cdot)\rangle_{\mathcal{R}} \in \mathcal{R} .
$$

Key is self-adjoint positive map $C=R^{*} R: \mathcal{W} \rightarrow \mathcal{W}$.
Spectral factorisation of C leads to Karhunen-Loève representation, a tensor product rep., corresponds to SVD of R (a.k.a. POD).

Each factorisation $C=B^{*} B$ leads to a tensor representation, (ex.: smoothed white noise)
a 1-1 correspondence between factorisations and representations.

Setting for the identification process

General idea:

We observe / measure a system, whose structure we know in principle.
The system behaviour depends on some quantities (parameters), which we do not know \Rightarrow uncertainty.

We model (uncertainty in) our knowledge in a Bayesian setting: as a probability distribution on the parameters.

We start with what we know a priori, then perform a measurement.
This gives new information, to update our knowledge (identification).
Update in probabilistic setting works with conditional probabilities \Rightarrow Bayes's theorem.

Repeated measurements lead to better identification.

Inverse problem

For given f, measurement y is just a function of q. This function is usually not invertible \Rightarrow ill-posed problem, measurement y does not contain enough information.

In Bayesian framework state of knowledge modelled in a probabilistic way, parameters q are uncertain, and assumed as random.

Bayesian setting allows updating / sharpening of information about q when measurement is performed.

The problem of updating distribution-state of knowledge of q becomes well-posed.

Can be applied successively, each new measurement y and forcing f-may also be uncertain-will provide new information.

Model with uncertainties

For simplicity assume that \mathcal{Q} is a Hilbert space, and $q(\omega)$ has finite variance $-\|q\|_{\mathcal{Q}} \in \mathcal{S}:=L_{2}(\Omega)$, so that

$$
q \in L_{2}(\Omega, \mathcal{Q}) \cong \mathcal{Q} \otimes L_{2}(\Omega)=\mathcal{Q} \otimes \mathcal{S}=: \mathscr{Q}
$$

System model is now

$$
A(u(\omega) ; q(\omega))=f(\omega) \quad \text { a.s. in } \omega \in \Omega,
$$

state $u=u(\omega)$ becomes \mathcal{U}-valued random variable (RV), element of a tensor space $\mathscr{U}=\mathcal{U} \otimes \mathcal{S}$.

As variational statement:
$\forall v \in \mathscr{U}: \quad \mathbb{E}(\langle A(u(\cdot) ; q(\cdot)), v\rangle)=\mathbb{E}(\langle f(\cdot), v\rangle)=:\langle\langle f, v\rangle\rangle$.
Leads to well-posed stochastic PDE (SPDE).

Representation of randomness

Parameters q modelled as \mathcal{Q}-valued (a vector space) RV s on some probability space $(\Omega, \mathbb{P}, \mathfrak{A})$, with expectation operator $\mathbb{E}(q)=\bar{q}$.

RVs $q: \Omega \rightarrow \mathcal{Q}$ (and $u(q)$) may be represented in the following ways:
Samples: the best known representation, i.e. $q\left(\omega_{1}\right), \ldots, q\left(\omega_{N}\right), \ldots$
Distribution of q. This is the push-forward measure $q_{*} \mathbb{P}$ on \mathcal{Q}.
Moments of q, like $\mathbb{E}(q \otimes \ldots \otimes q)$ (mean, covariance, \ldots).
Functional/Spectral: Functions of other (known) RVs, like Wiener's polynomial chaos, i.e. $\left.q(\omega)=q\left(\theta_{1}(\omega)\right), \ldots, \theta_{M}(\omega), \ldots\right)=: q(\boldsymbol{\theta})$.

Sampling and functional representation work with vectors, allows linear algebra in computation.

Computational approaches

Representation determines algorithms:

- Distributions \longrightarrow Kolmogorov / Fokker-Planck equations. Needs new software, deterministic solver $u=S(f, q)$ not used.
- Moments \longrightarrow New (sometimes difficult) equations.

Needs new software, deterministic solver mostly not used.

- Sampling \longrightarrow Domain of direct integration methods; (quasi) Monte Carlo, sparse (Smolyak) grids, etc.
Obviously non-intrusive; software interface \rightarrow solve.
- Functional / Spectral \longrightarrow
(1) Interpolation / collocation. Based on samples of solution, non-intrusive, solve interface.
(2) Galerkin at first sight intrusive, but with quadrature is also non-intrusive, precond. residual interface. Allows greedy rank-1

Conditional probability and expectation

With state $u \in \mathscr{U}=\mathcal{U} \otimes \mathcal{S}$ a RV, the quantity to be measured

$$
y(\omega)=Y(q(\omega), u(\omega))) \in \mathscr{Y}:=\mathcal{Y} \otimes \mathcal{S}
$$

is also uncertain, a random variable.
A new measurement z is performed, composed from the "true" value $y \in \mathcal{Y}$ and a random error $\epsilon: z(\omega)=y+\epsilon(\omega) \in \mathscr{Y}$.

Classically, Bayes's theorem gives conditional probability

$$
\mathbb{P}\left(I_{q} \mid M_{z}\right)=\frac{\mathbb{P}\left(M_{z} \mid I_{q}\right)}{\mathbb{P}\left(M_{z}\right)} \mathbb{P}\left(I_{q}\right)
$$

expectation with this posterior measure is conditional expectation.
Kolmogorov starts from conditional expectation $\mathbb{E}\left(\cdot \mid M_{z}\right)$, from this conditional probability via $\mathbb{P}\left(I_{q} \mid M_{z}\right)=\mathbb{E}\left(\chi_{I_{q}} \mid M_{z}\right)$.

Update

The conditional expectation is defined as orthogonal projection onto the closed subspace $L_{2}(\Omega, \mathbb{P}, \sigma(z))$:

$$
\mathbb{E}(q \mid \sigma(z)):=P_{\mathscr{Q}_{\infty}} q=\operatorname{argmin}_{\tilde{q} \in L_{2}(\Omega, \mathbb{P}, \sigma(z))}\|q-\tilde{q}\|_{L_{2}}^{2}
$$

The subspace $\mathscr{Q}_{\infty}:=L_{2}(\Omega, \mathbb{P}, \sigma(z))$ represents the available information, estimate minimises $\Phi(\cdot):=\|q-(\cdot)\|^{2}$ over \mathscr{Q}_{∞}.
More general loss functions than mean square error are possible.
The update, also called the assimilated value $q_{a}(\omega):=P_{\mathscr{Q}_{\infty}} q=\mathbb{E}(q \mid \sigma(z))$, is a \mathcal{Q}-valued RV
and represents new state of knowledge after the measurement.
Reduction of variance-Pythagoras: $\|q\|_{L_{2}}^{2}=\left\|q-q_{a}\right\|_{L_{2}}^{2}+\left\|q_{a}\right\|_{L_{2}}^{2}$ Doob-Dynkin: $\mathscr{Q}_{\infty}=\{\varphi \in \mathscr{Q}: \varphi=\phi \circ Y, \phi$ measurable $\}$

Important points I

The probability measure \mathbb{P} is not the object of desire.
It is the distribution of q, a measure on \mathcal{Q}-push forward of \mathbb{P} :

$$
q_{*} \mathbb{P}(\mathcal{E}):=\mathbb{P}\left(q^{-1}(\mathcal{E})\right) \quad \text { for measurable } \quad \mathcal{E} \subseteq \mathcal{Q}
$$

Bayes's original formula changes \mathbb{P}, leaves q as is. Kolmogorov's conditional expectation changes q, leaves \mathbb{P} as is. In both cases the update is a new $q_{*} \mathbb{P}$.
\mathbb{P} (a probability measure) is on positive part of unit sphere, whereas q is free in a vector space.

This will allow the use of (multi-)linear algebra and tensor approximations.

Important points II

Identification process:

- Use forward problem $A(u(\omega) ; q(\omega))=f(\omega)$ to forecast new state $u_{f}(\omega)$ and measurement $\left.y_{f}(\omega)=Y\left(q(\omega), u_{f}(\omega)\right)\right)$.
- Perform minimisation of loss function to obtain update map / filter.
- Use innovation in inverse problem to update forecast q_{f} to obtain assimilated (updated) q_{a} with update map.
- All operations in vector space, use tensor approximations throughout.

Approximation

Minimisation equivalent to orthogonality: find $\phi \in L_{0}(\mathcal{Y}, \mathcal{Q})$

$$
\forall p \in \mathscr{Q}_{\infty}: \quad\left\langle\left\langle\mathrm{D}_{q_{a}} \Phi\left(q_{a}(\phi)\right), p\right\rangle\right\rangle_{L_{2}}=\left\langle\left\langle q-q_{a}, p\right\rangle\right\rangle_{L_{2}}=0,
$$

Approximation of \mathscr{Q}_{∞} : take $\mathscr{Q}_{n} \subset \mathscr{Q}_{\infty}$

$$
\mathscr{Q}_{n}:=\left\{\varphi \in \mathscr{Q}: \varphi=\psi_{n} \circ Y, \psi_{n} \text { a } n^{\text {th }} \text { degree polynomial }\right\}
$$

i.e. $\varphi={ }^{0} H+{ }^{1} H Y+\cdots+{ }^{k} H Y^{\otimes k}+\cdots+{ }^{n} H Y^{\otimes n}$, where ${ }^{k} H \in \mathscr{L}_{s}^{k}(\mathcal{Y}, \mathcal{Q})$ is symmetric and k-linear.

With $q_{a}(\phi)=q_{a}\left(\left({ }^{0} H, \ldots,{ }^{k} H, \ldots,{ }^{n} H\right)\right)=\sum_{k=0}^{n}{ }^{k} H z^{\otimes k}=P_{\mathscr{Q}_{n}} q$, orthogonality implies

$$
\forall \ell=0, \ldots, n: \quad \mathrm{D}_{\left(\ell_{H}\right)} \Phi\left(q_{a}\left({ }^{0} H, \ldots,{ }^{k} H, \ldots,{ }^{n} H\right)\right)=0
$$

Determining the n-th degree Bayesian update

With the abbreviations

$$
\left\langle p \otimes v^{\otimes k}\right\rangle:=\mathbb{E}\left(p \otimes v^{\otimes k}\right)=\int_{\Omega} p(\omega) \otimes v(\omega)^{\otimes k} \mathbb{P}(\mathrm{~d} \omega)
$$

$$
\text { and }{ }^{k} H\left\langle z^{\otimes(\ell+k)}\right\rangle:=\left\langle z^{\otimes \ell} \otimes\left({ }^{k} H z^{\otimes k)}\right\rangle=\mathbb{E}\left(z^{\otimes \ell} \otimes\left({ }^{k} H z^{\otimes k)}\right),\right.\right.
$$ we have for the unknowns $\left({ }^{0} H, \ldots,{ }^{k} H, \ldots,{ }^{n} H\right)$

$$
\begin{array}{lll}
\ell=0:{ }^{0} H & \cdots+{ }^{k} H\left\langle z^{\otimes k}\right\rangle & \cdots+{ }^{n} H\left\langle z^{\otimes n}\right\rangle= \\
\ell=1:{ }^{0} H\langle z\rangle & \cdots+{ }^{k} H\left\langle z^{\otimes(1+k)}\right\rangle \cdots+{ }^{n} H\left\langle z^{\otimes(1+n)}\right\rangle=\langle q\rangle,
\end{array}\langle q, \quad\langle q\rangle,
$$

:
$\ell=n:{ }^{0} H\left\langle z^{\otimes n}\right\rangle \cdots+{ }^{k} H\left\langle z^{\otimes(n+k)}\right\rangle \cdots+{ }^{n} H\left\langle z^{\otimes 2 n}\right\rangle=\left\langle q \otimes z^{\otimes n}\right\rangle$
a linear system with symmetric positive definite Hankel operator matrix $\left(\left\langle z^{\otimes(\ell+k)}\right\rangle\right)_{\ell, k}$.

Bayesian update in components

$$
\begin{gathered}
\text { For short } \forall \ell=0, \ldots, n: \\
\sum_{k=0}^{n}{ }^{k} H\left\langle z^{\otimes(\ell+k)}\right\rangle=\left\langle q \otimes z^{\otimes \ell}\right\rangle,
\end{gathered}
$$

For finite dimensional spaces, or after discretisation, in components (or à la Penrose in 'symbolic index' notation):

$$
\text { let } q=\left(q^{m}\right), z=\left(z^{\jmath}\right) \text {, and }{ }^{k} H=\left({ }^{k} H_{\jmath_{1} \ldots \jmath_{k}}^{m}\right) \text {, then: }
$$

$$
\forall \ell=0, \ldots, n ;
$$

$$
\begin{aligned}
\left\langle z^{\jmath_{1}} \cdots z^{\jmath \ell}\right\rangle & \left({ }^{0} H^{m}\right)+\cdots+\left\langle z^{\jmath_{1}} \cdots z^{\jmath_{\ell+1}} \cdots z^{\jmath \ell+k}\right\rangle\left({ }^{k} H_{\jmath \ell+1 \cdots \jmath \ell+k}^{m}\right)+ \\
& \cdots+\left\langle z^{\jmath_{1}} \cdots z^{\jmath_{\ell+1}} \cdots z^{\jmath_{\ell+n}}\right\rangle\left({ }^{n} H_{\jmath_{\ell+1} \cdots \jmath_{\ell+n}}^{m}\right)=\left\langle q^{m} z^{\jmath_{1}} \cdots z^{\jmath \ell}\right\rangle
\end{aligned}
$$

(Einstein summation convention used)
matrix does not depend on m-it is identically block diagonal.

Special cases

For $n=0$ (constant functions) $\Rightarrow q_{a}={ }^{0} H=\langle q\rangle \quad(=\mathbb{E}(q))$.
For $n=1$ the approximation is with affine functions

$$
\begin{aligned}
& { }^{0} H \quad+{ }^{1} H\langle z\rangle \quad=\langle q\rangle \\
& { }^{0} H\langle z\rangle+{ }^{1} H\langle z \otimes z\rangle=\langle q \otimes z\rangle
\end{aligned}
$$

$\Longrightarrow\left(\right.$ remember that $\left.\left[\operatorname{cov}_{q z}\right]=\langle q \otimes z\rangle-\langle q\rangle \otimes\langle z\rangle\right)$

$$
{ }^{0} H=\quad\langle q\rangle-{ }^{1} H\langle z\rangle
$$

$$
{ }^{1} H(\langle z \otimes z\rangle-\langle z\rangle \otimes\langle z\rangle)=\langle q \otimes z\rangle-\langle q\rangle \otimes\langle z\rangle
$$

$$
\Rightarrow{ }^{1} H=\left[\operatorname{cov}_{q z}\right]\left[\operatorname{cov}_{z z}\right]^{-1} \text { (Kalman's solution), }
$$

$$
{ }^{0} H=\langle q\rangle-\left[\operatorname{cov}_{q z}\right]\left[\operatorname{cov}_{z z}\right]^{-1}\langle z\rangle
$$ and finally

$$
q_{a}={ }^{0} H+{ }^{1} H z=\langle q\rangle+\left[\operatorname{cov}_{q z}\right]\left[\operatorname{cov}_{z z}\right]^{-1}(z-\langle z\rangle)
$$

Case with prior information

Here we have prior information \mathscr{Q}_{f} and prior estimate $q_{f}(\omega)$ (forecast) and measurements z generating via Y a subspace $\mathscr{Q}_{y} \subset \mathscr{Q}$.

We now need projection onto $\mathscr{Q}_{a}=\mathscr{Q}_{f}+\mathscr{Q}_{y}$, with reformulation as an orthogonal direct sum:

$$
\mathscr{Q}_{a}=\mathscr{Q}_{f}+\mathscr{Q}_{y}=\mathscr{Q}_{f} \oplus\left(\mathscr{Q}_{y} \cap \mathscr{Q}_{f}^{\perp}\right)=\mathscr{Q}_{f} \oplus \mathscr{Q}_{\infty} .
$$

The update / conditional expectation / assimilated value is the orthogonal projection

$$
\begin{aligned}
& q_{a}=q_{f}+P_{\mathscr{Q}_{\infty}} q=q_{f}+q_{\infty}, \\
& \text { where } q_{\infty} \text { is the innovation. }
\end{aligned}
$$

Compute q_{a} by approximating: $\mathscr{Q}_{n} \subset \mathscr{Q}_{\infty}$. We now take $n=1$.

Simplification

The case $n=1$-linear functions, projecting onto \mathscr{Q}_{1}-is well known:
this is the linear minimum variance estimate \hat{q}_{a}.
Theorem: (Generalisation of Gauss-Markov)

$$
\hat{q}_{a}(\omega)=q_{f}(\omega)+{ }^{1} H\left(z(\omega)-y_{f}(\omega)\right),
$$

where the linear Kalman gain operator ${ }^{1} H: \mathscr{Y} \rightarrow \mathscr{Q}$ is

$$
{ }^{1} H:=\left[\operatorname{cov}_{q z}\right]\left[\operatorname{cov}_{z z}\right]^{-1}=\left[\operatorname{cov}_{q y}\right]\left[\operatorname{cov}_{y y}+\operatorname{cov}_{\epsilon \epsilon}\right]^{-1}
$$

(The normal Kalman filter is a special case.) Or in tensor space $q \in \mathscr{Q}=\mathcal{Q} \otimes \mathcal{S}$:

$$
\hat{q}_{a}=q_{f}+\left({ }^{1} H \otimes I\right)\left(z-y_{f}\right) .
$$

Deterministic model, discretisation, solution

Remember operator equation: $A(u)=f \quad u \in \mathcal{U}, f \in \mathcal{F}$.
Solution is usually by first discretisation

$$
\boldsymbol{A}(\boldsymbol{u})=\boldsymbol{f} \quad \boldsymbol{u} \in \mathcal{U}_{N} \subset \mathcal{U}, \boldsymbol{f} \in \mathcal{F}_{N}=\mathcal{U}_{N}^{*} \subset \mathcal{F}
$$ and then (iterative) numerical solution process

$$
\boldsymbol{u}_{k+1}=\boldsymbol{S}\left(\boldsymbol{u}_{k}\right), \quad \lim _{k \rightarrow \infty} \boldsymbol{u}_{k}=\boldsymbol{u}
$$

\boldsymbol{S} evaluates (pre-conditioned) residua $\boldsymbol{f}-\boldsymbol{A}\left(\boldsymbol{u}_{k}\right)$.
Similarly for model with uncertainty:

$$
\boldsymbol{A}(\boldsymbol{u}(\omega) ; \boldsymbol{q}(\omega))=\boldsymbol{f}(\omega)
$$

assume $\left\{\boldsymbol{v}_{j}\right\}_{j=1}^{N}$ a basis in \mathcal{U}_{N}, then the approx. solution in $\mathcal{U}_{N} \otimes \mathcal{S}$

$$
\boldsymbol{u}(\omega)=\sum_{j=1}^{N} u_{j}(\omega) \boldsymbol{v}_{j}
$$

Discretisation by functional approximation

Choose subspace $\mathcal{S}_{B} \subset \mathcal{S}$ with basis $\left\{X_{\beta}\right\}_{\beta=1}^{B}$, make ansatz for each $u_{j}(\omega) \approx \sum_{\beta} u_{j}^{\beta} X_{\beta}(\omega)$, giving

$$
\boldsymbol{u}(\omega)=\sum_{j, \beta} u_{j}^{\beta} X_{\beta}(\omega) \boldsymbol{v}_{j}=\sum_{j, \beta} u_{j}^{\beta} X_{\beta}(\omega) \otimes \boldsymbol{v}_{j}
$$

Solution is in tensor product $\mathscr{U}_{N, B}:=\mathcal{U}_{N} \otimes \mathcal{S}_{B} \subset \mathcal{U} \otimes \mathcal{S}=\mathscr{U}$.
State $\boldsymbol{u}(\omega)$ represented by tensor $\mathbf{u}:=\mathbf{u}_{N}^{B}:=\left\{u_{j}^{\beta}\right\}_{j=1, \ldots, N}^{\beta=1, \ldots, B}$, (β is usually multi-index)
similarly for all other quantities, fully discrete forward model is obtained by weighting residual with Ξ_{α} with ansatz inserted:

$$
\forall \alpha:\left\langle\Xi_{\alpha}(\omega), \boldsymbol{f}(\omega)-\boldsymbol{A}\left(\sum_{j, \beta} u_{j}^{\beta} X_{\beta}(\omega) \boldsymbol{v}_{j} ; \boldsymbol{q}(\omega)\right)\right\rangle_{\mathcal{S}}=0
$$

Stochastic forward problem

\Rightarrow generally coupled system of equations for $\mathbf{u}=\left\{u_{j}^{\beta}\right\}$:

$$
\mathbf{A}(\mathbf{u} ; \mathbf{q})=\mathbf{f}, \quad \mathbf{y}=\mathbf{Y}(\mathbf{q} ; \mathbf{u}) .
$$

- If $\Xi_{\alpha}(\cdot)=\delta\left(\cdot-\omega_{\alpha}\right)$, system decouples \longrightarrow collocation / interpolation; may use for each ω_{α} original solver \boldsymbol{S} (obviously non-intrusive).
- If $\Xi_{\alpha}(\cdot)=X_{\alpha}(\cdot) \longrightarrow$ Bubnov-Galerkin conditions; with numerical integration uses also original solver \boldsymbol{S} and is also non-intrusive.
- In greedy rank-one update tensor solver one uses Bubnov-Galerkin conditions (proper gener. decomp. (PGD)/ succ. rank-1 upd. (SR1U)/ alt. least squ. (ALS)), also possible by non-intrusive use of original \boldsymbol{S}.

For update: ${ }^{1} \mathbf{H}={ }^{1} \boldsymbol{H} \otimes \boldsymbol{I}$ computed analytically ($X_{\beta}=$ Hermite basis)

$$
\left[\operatorname{cov}_{q y}\right]=\sum_{\alpha>0} \alpha!\boldsymbol{q}^{\alpha}\left(\boldsymbol{y}^{\alpha}\right)^{T} ; \quad\left[\operatorname{cov}_{y y}\right]=\sum_{\alpha>0} \alpha!\boldsymbol{y}^{\alpha}\left(\boldsymbol{y}^{\alpha}\right)^{T}
$$

Important points III

Update formulation in vector spaces.

This makes tensor representation possible .
Parametric problems lead to tensor (or separated) representations.
Sparse approximation by low-rank representation.
Possible for forward problem (progressive or iterative).
Possible for inverse problem.
Low-rank approximation can be kept throughout update.

Example 1: Identification of multi-modal dist

Setup: Scalar RV x with non-Gaussian multi-modal "truth" $p(x)$; Gaussian prior; Gaussian measurement errors.

Aim: Identification of $p(x)$.
10 updates of $N=10,100,1000$ measurements.

Example 2: Lorenz-84 chaotic model

Setup: Non-linear, chaotic system

$$
\dot{u}=f(u), u=[x, y, z]
$$

Small uncertainties in initial conditions u_{0} have large impact.

Aim: Sequentially identify state u_{t}.
Methods: PCE representation and PCE updating and
sampling representation and (Ensemble Kalman Filter)

EnKF updating.

Poincaré cut for $x=1$.

Example 2: Lorenz-84 PCE representation

PCE: Variance reduction and shift of mean at update points.

Skewed structure clearly visible, preserved by updates.

Example 2: Lorenz-84 non-Gaussian identification

PCE

(a) Polynomial order $P=1$

(b) Polynomial order $P=2$

(c) Polynomial order $P=3$

truth \times measurement +

EnKF

(a) $N=50$ ensemble members

(b) $N=100$ ensemble members

(c) $N=1000$ ensemble members

posterior prior

Example 3: diffusion-schematic representation

Measurement patches

447 measurement patches

120 measurement patches

239 measurement patches

10 measurement patches

Convergence plot of updates

Forecast and Assimilated pdfs

Spatial Error Distribution

$$
\text { a) } \bar{\varepsilon}_{a}[\%]
$$

b) $\varepsilon_{a}[\%]$
c) $1[\%]$

Example 4: plate with hole

Forward problem: the comparison of the mean values of the total displacement for deterministic, initial and stochastic configuration

Relative variance of shear modulus estimate

Relative RMSE of variance [\%] after 4th update in 10% equally distributed m easurment points

Probability density shear modulus

Comparison of prior and posterior distribution

Conclusion

- Parametric problems lead to tensor representation.
- Inverse problems via Bayes's theorem.
- Bayesian update is a projection.
- For efficiency try and use sparse representation throughout; ansatz in low-rank tensor products, saves storage as well as computation.
- Bayesian update compatible with low-rank representation.

