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Theory

— Quasi-Monte Carlo methods

Application

— PDE with random coefficients




Motivating example

ncertainty in groundwater flow

eg. risk analysis of radioactive waste disposal or CO, sequestration

Darcy’s law —aVp

inD CRYd=1,2,3

q’ —
mass conservation law V.q
— V-(aVp) =0

together with boundary conditions

[Cliffe, et. al. (2000)]

Uncertainty in a(x,w) leads to uncertainty in g(x,w) and p(x,w)




g Eoeced velues of quant

Expected values of quantities of interest

To compute the expected value of some quantity of interest:

1. Generate a number of realizations of the random field
(Some approximation may be required)

2. For each realization, solve the PDE using e.g. FEM / FVM /| mFEM

3. Take the average of all solutions from different realizations
This describes Monte Carlo simulation.

Or, because the expected value is a (high dimensional) integral

use quasi-Monte Carlo methods

error




~ Monte Carlo (MC)

Approximate the s-dimensional integral

L(F):= | F)dy
by 0,12

VTSR
QN,s(F) TN Z F(tk)a
k=1

with t,,...,tn chosen randomly and independently from a uniform
distribution on [0, 1]°.

Error: For F € L?([0,1]%),

o(F
errorMc — 7F) ),
where VN

¥ o?(F) = I,((F — I,(F))*)= I,(F?) — (I,(F))>.



™ Quasi-Monte Carlo (QMC)

QN,s(F) — % Z F(ty) ,

with t1,...,tN deterministic (and cleverly chosen).

What do we wish for? For F' sufficiently smooth we might hope for

C
error®MC < —

2

with C' independent of s

In practice we can get errorQMC <

) N1—5 for arbitrary 6 > 0, with Cs — oo as
v~“ &S/\

§‘“ so wé — 0, for suitably smooth F'.
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m| Howto choose the QMC points?

How to choose t4,...,tN? There are two main methods:

® Low discrepancy points Sobol (1950s), Faure, Niederreiter

(1980s), and more recently, Dick, Pillichshammer, . . ..

® Lattice rules Korobov, Hlawka, Hua & Wang (1950s), and more
recently Sloan, Kachoyan, Lyness, Wozniakowski, LEcuyer, Hickernell, Joe, Kuo,

Dick, Larcher, Wang, Waterhouse, . . ..

For this talk consider only “lattice rules”.




Lattice rule definition

y

Lattice Rule (of rank 1)

Shifted lattice rule

- v r({erra)).

A (the “shift") € [0,1]°

A
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\CS&S} Ref. IHS & S. Joe, “Lattice Methods for Multiple Integration”, Oxford '94.



} Example of lattice & shifted lattice rules

N =34, z = (1,21) N =34,z =(1,21),A = (0.8,0.1)
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b Randomly shifted lattice rules

o
In practice we like randomly shifted lattice rules:

=23 (r o ({5 ral))

where A; forz = 1,..., g are random vectors chosen independently

from a uniform distribution on [0, 1]°.

As with MC, this gives an unbiased estimate of the integral, and allows

a practical estimate of the error.

Now there is only one thing to choose: namely the integer vector z.

WS, But how to choose 2?7
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‘ Welghted function SPaCEeS  -the anchored case

IDEA: the variables are not equally important

Assume that F' belongs to a weighted Sobolev space , with sqd. norm

2
1
L S
Tu J[0,1]I+]

uC{1,...,s}
T “anchor" at 0

2° subsets /
Mixed first derivatives are square integrable
Small weight v, means that F' depends weakly on the variables y,,

ol F
oY

(yu; O) dy.,

“weights”

o “product” weights  — the “standard setting" as in Sloan and Wozniakowski (1998)
w=]lvw m=Zre=w>-->0
JEu
o “order dependent” weights  — Sloan, Wang, Wozniakowski (2004)

Vu:F|u|, I'o=1,I'1,I'2,I'3,... >0

\CS &
ISR
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o “POD” weights (“product and order dependent” weights )
— Kuo, Schwab, Sloan (SINUM ’'12): PDE with random coefficient
Yu = L'jy H Vj

JEU
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} Examples (for product weights)

® s=1: [F|{,=IF(0)? dy
® s=2:
IF|l3., = |F(0,0)|?
OF 2 OF 2
0)| dy; + — 0,y2)| dy
’)’1 oy1 Y2 0y2
dyldyz
’)’1’)’2 3y18y2

Note that if F'(y1,y2) = g(y1)h(y2) then [[Fl2 = [|g]l1,4[[R][1,5.

V@“CS&S/\
L2202+ This makes the product case the easiest.
%%:y :F.N:N o y



N Worst case error

The worst case error (wce) of a QMC rule with points ¢4, ...,tNn IS defined by:

EN,s,y = Sup
| F||s,v <1

1 N
| F@ay- > Ft)
[0,1]° N =

— (error forgiven F)<ens~ X |[|[F|ls~

& An explicit formula exists for the wce — wce’s can be computed!



An early existence result

THEOREM [HS & H Wozniakowski, '98 Assume product weights,

Yu = | | 75~ Thenif (and only if) 3~ ~; < oo there exist points
j€u 3=1

ti,...,tn € [0,1]° such that

D‘Y
€EN,s,y S

9

3

with D., independent of s.



- Remarks

1. The bound holds e.g. for 4; = 1/52. It does not hold for the

classical weights ~v; = 1.

2. D is known explicitly: for example, we can take

(o )
3. The condition ) «; < oo is necessary as well as sufficient. For
J=1
every choice of points we can construct a lower bound on the worst-case error,

which grows unboundedly with s if the condition fails.

4. The convergence rate is only the Monte Carlo rate; and

the proof that 4 a good QMC rule is not constructive!




~ A better existence result

THEOREM Sloan and Wozniakowski ('01): If

5y <
j=1

and if IV is prime, then for each s 4 a SHIFTED LATTICE RULE

lattice

N.s.2.A Such that

0’7,5
EN,s,~ < N1-3 Vo > 0.

Recall — a shifted lattice rule (with IN prime) is a QMC rule of special form

QR a(F) = i:: ({k—z + A})

N

s, ze{1,2,...,N—1}*, A € [0,1)®
% <iwi s Proof is by averaging in a different way over A and z.
'um“
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Now turn to construction.

It is convenient to work with the "root-mean square shift-averaged"

worst case error: for a given choice of points ¢4, ...,txN,

rms
eN 'Sy

= / .../ eN,s,‘y(A17°°°7Aq)2dAl°°°qu
[0,1]° [0,1]°

We do this because the shift-averaged wce is simpler than the wce for

a shift A.

&= forgiven F, RMSerror < ey’ X [[F|sz-



Shift-averaged WCE - the anchored case

The shift-averaged worst-case error for the case of the anchored norm
and product weights is given by

rms

ens (2)? = — ] (1 +1;/3)
) =1
1 N s
2
N =13

Il 143 (Balig/ND + 5 )|
where Bz (x) = % — = +

1
6"



- Component-by-component construction

® We want a z that makes the shift-averaged worst case error as small
as possible. ~ Exhaustive search is in practice impossible - too many choices! ~

® CBC algorithm [Korobov (1960s), Sloan, Kuo, Joe (2002):...]
1. Setz; = 1.

2. With z; fixed, choose z5 to minimize the s = 2 worst case error.

3. With z1, z5 fixed, choose z3 to minimize the s = 3 worst case error.
4. etc.

® Cost for product wts. is only O(s N log IN') using FFTS. [Nuyens, Cools (2006)]

» Optimal rate of convergence O (N ~'19) in weighted Sobolev space,
with the implied constant independent of s under an appropriate
condition on the weights. [Kuo (2003); Dick (2004)]

~ Averaging argument: 3 one choice as good as average! ~

\CS & ¢
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E The optimal convergence property of CBC

THEOREM (for product weights) Frances Kuo, J. Complexity, (2003)

Assume product weights, ~, = H v;. Let N be prime, and let
JjEu
Z1, 22, ..., 25 De chosen by the CBC algorithm. Assume also

>3/ < oo
j=1

ThenVd > 0
C’Y,é
N1-6 )

e (b, .. tn) <

Thus the optimal rate is achieved by the CBC algorithm with product

weights.

§§§:§Proof: Averaging argument again: 3 one choice as good as average!



m| Now to applications: the present state of play

... In the application of QMC to PDEs with random coefficients:

0. Graham, Kuo, Nuyens, Scheichl, Sloan (3. Comput. Physics, 2011)
o application of QMC to the lognormal case

# use circulant embedding to avoid truncation of KL expansion
o detailed numerical experiments, but no error analysis
1. Kuo, Schwab, Sloan (SINUM, to appear)

» application of QMC to the uniform case
# no numerical results, but we gave a complete error analysis
o matches the best IN term result by Cohen, De Vore, Schwab (2010)
» for the first time we know precisely how to choose the weights
2. Kuo, Schwab, Sloan (submitted)

o a multi-level version of the analysis for the uniform case

_ 3. Graham, Kuo, Nichols, Scheichl, Schwab, Sloan (in progress)
Sotse » application of QMC to the lognormal case

'(\CS & Ky

T o detailed numerical experiments as well as complete error analysis



A model problem — the uniform case

—V - (a(z,y) Vu(z,y)) = f(z) in D,
u(xz,y) = 0 on 90D, yeU —[—5,2]N
with D a bounded Lipschitz domain in R¢, and

a(x,y) :a+zyj¢j(m)7 xecD, yeU.

j=1
Here y1,y2, ... are independent random variables uniformly
distributed on [—3, 3];  with ¢; such that )~ |4} le0 < oo,

and with @ large enough and ) _; [[;||ec small enough to ensure
Amax = a(may) > amin > 0,

8 fﬂ: aking the PDE strongly elliptic for every y.



Why this problem?

Recently Cohen, De Vore and Schwab, in "Convergence rates of best N-term
Galerkin approximations for a class of elliptic SPDEs", Foundations of Computational
Mathematics (2010), established sharp error bounds for exactly this
problem. They used a stochastic Galerkin method, combined with

(non-constructive) ‘best IN-term approximation’.

We aim to design QMC rules that achieve the same result.

This problem is one in which the dimensionality (i.e. the number of

parameters y;) IS Infinite.



Method: FEM plus QMC

Finite element method to solve PDE for a fixed y.

Quasi-Monte Carlo method to integrate over y.



~ Other approaches

Wiener, Babuska, Schwab, Tempone, Nobile, Karniadakis, Xiu, Scheichl, Ghanem, ...

There are many other approaches, including
® polynomial chaos,
® generalized polynomial chaos,
® stochastic Galerkin,
® stochastic collocation
® Monte Carlo

All methods for PDE with random coefficients face serious

challenges when the dimensionality is high.

y“cf&.‘«,) And when all else fails, people who need answers generally turn to

..".. o. d"
.o' ‘e




™ What do we want to calculate?

The problem is to compute the expected value of
F(y) = G(u(ay))

for some linear functional GG of the solution « of the PDE.

The expected value is an infinite-dimensional integral , where the

meaning Is:
IF):= [, F@)dy
Rt
= slggo [ ) 1}8F(yl,...,ys,O,O,...)dyl...dys.
~2°2

Note that replacing ys+1, ys+2, - . - Dy O Is equivalent to replacing

a(a:y) by as(®,y) = ax) + >, y; ¥; ().

o



The smoother the better

The faster the decay of ||v¢;||o, the smoother (with respect to ) is the

random field a(2,y), and the easier it is to get fast convergence.

We suppose that there exists p satisfying 0 < p < 1 such that

> w1ty < oo (1)

i>1

The smaller is p the faster the convergence of Zj y;v; (@), and the

fewer points we should need in our QMC rule.

3

Example: If Y;(x) =7 2 0% unlformly bounded functions of &, with
3

0 > 0,then ||[9Yjllec < cj 27 ° and we may take p = 2/3.

ThIS IS exactly the smoothness required by Cohen et al. to achieve

¢\

"’O(N 1) convergence, so p = 2/3 is special.
\5“\



~ The approximation

Recall: the problem is to compute the expected value (i.e. the integral)
of a linear functional of u,

F(y) == G(u(-,vy)).

We will approximate I(F) by Qn..(Fy), where Fj, = G(un(-,y))

Is the functional G applied to the finite element solution  wuy,.

§ S ®e .o ° 4))
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™ What is the error?

I(G(u)) — Qn,s(G(un))
= (I — I:)(G(u)) + (Is(G(u)) — QN,s(G(u))) + On,s(G(u — un)) .

The overall error is a sum of

® a dimension truncation error (which is inevitable when a

finite-dimensional QMC method is used for an infinite dimensional

Integral),
$® a quadrature error, and

® a FE discretization error

V&‘CS & S/\
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~ The quadrature error

Here we use a QMC intergation rule, and focus on the quadrature
error,

[Is(F) — Qn,s(F)],

with F(y) = G(u(-,9)).

First, look at the error |I;(F') — Qn,s.a(F)| where Qn,s.a IS the
shifted lattice rule with shift A,



- From worst case error to error bound

Recall: the worst case error for the rule Qn,s,a In the space H  IS:

eN,Sa'YaA ‘= Sup |IS(F) T QN,S,A(F)| .
| F||s,4 <1

— |IS(F) T QN,S,A(F)| S eNanY,A X ||F||3a'7

And if we now take the root mean square average over shifts,

VEIL(F) = Qno (F))?] < €55 x [l

where et _is the shift-averaged worst-case error,
N,s,vy

er]-\rrn.:,‘y = \/E[G(Qsta';HS"Y)]z'

'(\CS &S)

o (Here the expectation E is just the integral over all shifts A.)



~ Error bound

o
VEII(F) = Qs (F))2] < e85 X [|Flan.
From before, with small modification to the norm,
1
8|u|F 2 2
WC{Ts (=251 |JI=5.51e 7 OYu

And for general weights~,, and z from CBC it can be shown that

| 1/2X
u
erms < 1 Z ~ A ZC(2>\)

N,s,y — N1/2X u (272)>

0AuC{1,...,s}
. forallXx e (3,1]. (We would like A = 1/2, but {(z) - ccasz — 1.)

6“?3 . OS"/\
s. . . rms
;.: :—Choosmg weights ~,, is delicate: smaller weights reduces e but increases || F'||s,~-

4, .
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We need to bound the norm

Js—lul OYy

N =

_ 1
27

We need to find a bound on the norm || F'|| s ~.

oIl F
/[ (Yu, Y—u)dy—u

2

This involves finding mixed first partial derivatives with respect to y.

How? By differentiating the PDE.

dy.,

1/2



} The PDE In weak form

Let V := HY(D).

Then the weak (parametric) form of the PDE is: fory € U
/ a(xz,y) Vu(z,y)Vv(x)de = / f(®)v(z)de VYveV,
D D

[Stochastic Galerkin : Integrate also with respect to ¢y. Choose
u(x,y), v(e,y) from a tensor product of finite dimensional spaces.

Stochastic collocation : Collocate the above equation at

y17y27"'7yM]

Differentiating with respect to y;, we get (with 9, := a%)
S5 [ al@,y) VO, u(@, ) Vo@de + [ 4(@) Vu(e,p) Vo@)de =0,

[ ]
oFnew ©
- - - . » R s



|

| a@y) Vo, u(@.y)Pde
D

—/ V(@) Vu(m,y)VByju(a:,y)dm,
D

—

Amin || Oy, w(@, YT < |9¥j]loo [|w(, y)|lv |0y, w(z, y)|lv

1%l oo
[0y, u(z,y)[lv < ag. |u(z,y)lv

< [%5lloo | Fll

Amin Amin
o



~ Differentiating with respect to other

Yk

m
Keep differentiating, and getting similar estmates. Eventually,

IIuIIHM([_; L1 v)

uE{l s} Tu /

dy.
[— 5,51

\%

/ 1 1 a‘yuu(';yuay—u)dy—u
(=331

1

< Z (Jul?)? H <||¢j||oo)2 | fll -1 (D) |

3 Ami
|u|<oo 711 .7611 min

Amin

But is this sum bounded as s — oo? It is if we choose the weights ~,,
large enough!

\CS &
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E Now choose the weights

Now choose the weights to minmise the upper bound on

worst-case error x norm, i.e. choose weights to minimise

o\ /2
> (EE)

AP
0#uC{1,...,s (27T )

|u|<oo 714

Amin

18> (|u|!>2g<n¢jnoo>2

The (elementary!) answer is:

_2
= ()X [ o

~»

JEuU
where a; = 1l x
amin\/2C(2>‘)/(2ﬂ-2)>\
KW &,
g V: . °... .’4)"&
%»@:' ..o. 3 ;&g
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‘ Main results for quad. error

Theorem Kuo, Schwab, S. SIAM J Nmer Anal, to appear

Assume that for some p < 1 we have } 7, ||9;]|2, < oo,
1

eg ||v4llee =4 P, andf that the weights are as above.
(a) Then ||u||H-Y(U,V) < o0.

(b) And if we now assume p < 2/3 then for arbitrary e > 0 we have

errorf®MC< N~ Lte,

Thus we get the optimal O (IN—1+¢) result for p=2/3, which is

exactly as in the best IN-term results of Cohen, De Vore and Schwab.

All our convergence results up to O (N —119) match the best N-term

P3\C3&
Seata
§.; nresults under exactly the same conditions.
a o. o .
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m| CBC for POD weights?

The weights in the Theorem are POD weights, i.e., weights of the

“product and order-dependent” form

Yu — F|u| H Q.

JEU

It turns out (Kuo, Scwhab, S, ANZIAM J, to appear) that fast CBC is possible
for POD weights: only a small modification needed from the already

existing CBC algorithm for ‘order-dependent’ weights ~,, = I'},,| IHS,

P;(\CS & Xy

oo "» Wang and Wozniakowski 2004.
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Thus we can construct cheaply a (randomly shifted) lattice rule
that achieves the optimal result, for linear functionals of the
solution to the model PDE — a simple PDE but one with an infinite

number of terms to describe the random coefficient.




The lognormal permeability field

Write permeability as a(x, w)

w € (2, a probability space.

A common model is the lognormal field:

a(x,w) = exp(Z(z,w))

where Z(z, -) is a Gaussian random field with mean zero and
covariance function R(z, 2).

That is,

R(z,z) := E[Z(z,)Z(2,")].



E Examples of 2d covariance functions

T
9

R(z,y)

2 21 — y1|? + |22 — y2|?
oc“exp | — 2 :

— very smooth

2 — 02
R(z,y) = o’exp (— Viws = g )\—l_ z2 — 2l >,

— not smooth atx = y.

where o2 is the variance, and X is the correlation length.

How to compute realisations of the input field? One way Is:



E Karhunen-Loeve expansion

Z(x,w) = Z VI Yipi(x),

where (u;, ¢;) satisfy

/D R(z,y)0p;(y) dy = pjdji(x),

/D b:(¥)$; (y) dy = 6.

and the y; are independent standard normal random numbers.
The sequence (y1,y2, -+ ) corresponds to the point w in the probability space.

@\CS&S, In practice the sum is truncated after say s terms. Then the expected
Fost
%‘; .:’value IS an s-dimensional integral.

\s<“



m| Particle paths

For a particular realisation of the permeability field, after we have found

the pressure field p, to find the position & of a particle of the fluid solve

‘;_‘: = §(=) = —a(x)Vp(x),

subjecttox = (0,0.5) att = 0.

L2
A Op — 0
an
1
p=1
place a particle — ¢ p=20
—e
R
X Setee > L
g Qeiiiiee 2 0 1 1
= .o..'.‘;'i';-';'{-'j'-':. 2 @ — O
EX TR gg’ on
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