The Multi-level Monte Carlo Technique for Approximation of Distribution Functions

Klaus Ritter

TU Kaiserslautern

Jointly with Mike Giles, Oleg Iliev, and Tigran Nagapetyan

Supported by the DFG within SPP 1324

I. The Computational Problem

Given a random variable τ , **determine** the distribution function F of τ ,

$$F(s) = P(\{\tau \le s\}).$$

Example Hitting time τ of a stochastic process X.

In this talk Monte Carlo algorithms for approximation of F.

Alternatives include analytic formulas and numerics of PDEs.

I. The Computational Problem

Given a random variable τ , **determine** the distribution function F of τ ,

$$F(s) = P(\{\tau \le s\}).$$

Example Hitting time τ of a stochastic process X.

In this talk Monte Carlo algorithms for approximation of F.

Alternatives include analytic formulas and numerics of PDEs.

Assumption Instead of τ , approximations $\tau^{(0)}, \tau^{(1)}, \ldots$ can be simulated.

Example Hitting time $\tau^{(\ell)}$ of an approximation $X^{(\ell)}$ of X.

I. The Computational Problem

Given a random variable τ , **determine** the distribution function F of τ ,

$$F(s) = P(\{\tau \le s\}).$$

Example Hitting time τ of a stochastic process X.

In this talk Monte Carlo algorithms for approximation of F.

Alternatives include analytic formulas and numerics of PDEs.

Assumption Instead of τ , approximations $\tau^{(0)}, \tau^{(1)}, \ldots$ can be simulated. **Example** Hitting time $\tau^{(\ell)}$ of an approximation $X^{(\ell)}$ of X.

Later on, we study approximation of ${\cal F}$ on compact intervals. Note that

$$F(s) = E(1_{]-\infty,s]}(\tau).$$

Classical Monte Carlo Take $L \in \mathbb{N}_0$ and $N \in \mathbb{N}$, and approximate F by

$$s \mapsto \frac{1}{N} \sum_{i=1}^{N} 1_{]-\infty,s]} (\tau_i^{(L)})$$

with independent copies $au_1^{(L)}, \dots, au_N^{(L)}$ of $au^{(L)}$. Cf. empirical distribution function.

Classical Monte Carlo Take $L \in \mathbb{N}_0$ and $N \in \mathbb{N}$, and approximate F by

$$s \mapsto \frac{1}{N} \sum_{i=1}^{N} 1_{]-\infty,s]} (\tau_i^{(L)})$$

with independent copies $au_1^{(L)},\dots, au_N^{(L)}$ of $au^{(L)}$. Cf. empirical distribution function.

Basic ideas for improvement

• Smoothing of $1_{]-\infty,s]}$, provided that

au has a smooth density.

Cf. kernel density estimation.

Classical Monte Carlo Take $L \in \mathbb{N}_0$ and $N \in \mathbb{N}$, and approximate F by

$$s \mapsto \frac{1}{N} \sum_{i=1}^{N} 1_{]-\infty,s]} (\tau_i^{(L)})$$

with independent copies $au_1^{(L)}, \dots, au_N^{(L)}$ of $au^{(L)}$. Cf. empirical distribution function.

Basic ideas for improvement

ullet Smoothing of $1_{]-\infty,s]}$, provided that

au has a smooth density.

 \bullet Multi-level approach, using coupled simulation of $\tau^{(0)},\dots,\tau^{(L)}$, provided that

$$\lim_{\ell \to \infty} E(\tau - \tau^{(\ell)})^2 = 0.$$

Let $f:\mathbb{R} \to \mathbb{R}$, e.g., $f=1_{]-\infty,s]}$ with s fixed. Compute

$$a = \mathrm{E}(f(\tau)).$$

Monte Carlo algorithm: an algorithm that uses random numbers.

Let $f:\mathbb{R} \to \mathbb{R}$, e.g., $f=1_{]-\infty,s[}$ with s fixed. Compute

$$a = \mathrm{E}(f(\tau)).$$

Monte Carlo algorithm: an algorithm that uses random numbers.

For any Monte Carlo (randomized) algorithm A define

$$\operatorname{error}(A) = \left(\operatorname{E}(a-A)^2 \right)^{1/2}$$

cost(A) = E(# operations and random number calls).

Let $f:\mathbb{R} \to \mathbb{R}$, e.g., $f=1_{]-\infty,s[}$ with s fixed. Compute

$$a = \mathrm{E}(f(\tau)).$$

Monte Carlo algorithm: an algorithm that uses random numbers.

For any Monte Carlo (randomized) algorithm A define

$$\operatorname{error}(A) = \left(\operatorname{E}(a - A)^2 \right)^{1/2}$$

cost(A) = E(# operations and random number calls).

Clearly

$$\operatorname{error}^{2}(A) = (\underbrace{a - \operatorname{E}(A)}_{\operatorname{bias}(A)})^{2} + \operatorname{Var}(A).$$

Let $f:\mathbb{R} \to \mathbb{R}$, e.g., $f=1_{]-\infty,s[}$ with s fixed. Compute

$$a = \mathrm{E}(f(\tau)).$$

Monte Carlo algorithm: an algorithm that uses random numbers.

For any Monte Carlo (randomized) algorithm A define

$$\operatorname{error}(A) = \left(\operatorname{E}(a - A)^2 \right)^{1/2}$$

cost(A) = E(# operations and random number calls).

'**Definition**' A sequence of Monte Carlo algorithms A_n with $\lim_{n\to\infty} \cot(A_n) = \infty$ achieves order of convergence $\gamma>0$ if

$$\exists c > 0 \,\exists \, \eta \in \mathbb{R} \,\forall \, n \in \mathbb{N} :$$

$$\operatorname{error}(A_n) \le c \cdot \left(\operatorname{cost}(A_n)\right)^{-\gamma} \cdot \left(\operatorname{log} \operatorname{cost}(A_n)\right)^{\eta}.$$

III. Single-level MC

Assumptions

(S1) $f:\mathbb{R} o \mathbb{R}$ and

$$\exists c > 0 \ \forall x \in \mathbb{R} : \cot(f(x)) \le c.$$

(S2) There exists M>1 such that

$$\exists c > 0 \ \forall \ell \in \mathbb{N}_0 : \cot(\tau^{(\ell)}) \le c \cdot M^{\ell}.$$

III. Single-level MC

Assumptions

(S1) $f:\mathbb{R} \to \mathbb{R}$ and

$$\exists c > 0 \ \forall x \in \mathbb{R} : \cot(f(x)) \le c.$$

(S2) There exists M>1 such that

$$\exists c > 0 \ \forall \ell \in \mathbb{N}_0 : \cot(\tau^{(\ell)}) \le c \cdot M^{\ell}.$$

(S3) There exists $\alpha > 0$ such that

$$\exists c > 0 \ \forall \ell \in \mathbb{N}_0 : \left| \mathbb{E} \left(f(\tau) - f(\tau^{(\ell)}) \right) \right| \le c \cdot M^{-\ell \cdot \alpha}.$$

(S4)
$$\sup_{\ell \in \mathbb{N}} \operatorname{Var}(f(\tau^{(\ell)})) < \infty$$
.

III. Single-level MC

Assumptions

(S1) $f:\mathbb{R} \to \mathbb{R}$ and

$$\exists c > 0 \ \forall x \in \mathbb{R} : \cot(f(x)) \le c.$$

(S2) There exists M>1 such that

$$\exists c > 0 \ \forall \ell \in \mathbb{N}_0 : \cot(\tau^{(\ell)}) \le c \cdot M^{\ell}.$$

(S3) There exists $\alpha > 0$ such that

$$\exists c > 0 \ \forall \ell \in \mathbb{N}_0 : \left| \mathbb{E} \left(f(\tau) - f(\tau^{(\ell)}) \right) \right| \le c \cdot M^{-\ell \cdot \alpha}.$$

Example $\tau^{(\ell)}$ Euler approximation of an SDE at time T with step-size $T/2^\ell$. Under standard assumptions,

$$M=2,$$
 $\alpha=1.$

Single-level Monte Carlo
$$A_N^L = \frac{1}{N} \sum_{i=1}^N f(\tau_i^{(L)})$$
 yields

$$\operatorname{error}^{2}(A_{N}^{L}) = \left(a - \operatorname{E}(f(\tau^{(L)}))\right)^{2} + \frac{1}{N}\operatorname{Var}(f(\tau^{(L)}))$$

$$\leq c \cdot \left(M^{-2\ell \cdot \alpha} + N^{-1}\right),$$

$$\operatorname{cost}(A_{N}^{L}) \leq c \cdot N \cdot M^{(L)}.$$

Single-level Monte Carlo $A_N^L = \frac{1}{N} \sum_{i=1}^N f(\tau_i^{(L)})$ yields

$$\operatorname{error}^{2}(A_{N}^{L}) = \left(a - \operatorname{E}(f(\tau^{(L)}))\right)^{2} + \frac{1}{N}\operatorname{Var}(f(\tau^{(L)}))$$

$$\leq c \cdot \left(M^{-2\ell \cdot \alpha} + N^{-1}\right),$$

$$\operatorname{cost}(A_{N}^{L}) \leq c \cdot N \cdot M^{(L)}.$$

Theorem

Single-level Monte Carlo achieves order of convergence

$$\gamma = \frac{\alpha}{1 + 2\alpha}.$$

Single-level Monte Carlo $A_N^L = \frac{1}{N} \sum_{i=1}^N f(\tau_i^{(L)})$ yields

$$\operatorname{error}^{2}(A_{N}^{L}) = \left(a - \operatorname{E}(f(\tau^{(L)}))\right)^{2} + \frac{1}{N}\operatorname{Var}(f(\tau^{(L)}))$$

$$\leq c \cdot \left(M^{-2\ell \cdot \alpha} + N^{-1}\right),$$

$$\operatorname{cost}(A_{N}^{L}) \leq c \cdot N \cdot M^{(L)}.$$

Theorem

Single-level Monte Carlo achieves order of convergence

$$\gamma = \frac{\alpha}{1 + 2\alpha}.$$

Example For SDEs and the Euler approximation

$$\gamma = \frac{1}{3}.$$

More generally, weak approximation of SDEs.

Assumptions:

(S3) There exists $\alpha > 0$ such that

$$\exists c > 0 \ \forall \ell \in \mathbb{N}_0 : \left| \mathbb{E} \left(f(\tau) - f(\tau^{(\ell)}) \right) \right| \le c \cdot M^{-\ell \cdot \alpha}.$$

Assumptions: (S3) and

(M1) $f: \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous and

$$\exists c > 0 \ \forall x \in \mathbb{R} : \cot(f(x)) \le c.$$

(M2) There exists M>1 such that

$$\exists c > 0 \ \forall \ell \in \mathbb{N} : \cot(\tau^{(\ell)}, \tau^{(\ell-1)}) \le c \cdot M^{\ell}.$$

Assumptions: (S3) and

(M1) $f: \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous and

$$\exists c > 0 \ \forall x \in \mathbb{R} : \cot(f(x)) \le c.$$

(M2) There exists M>1 such that

$$\exists c > 0 \ \forall \ell \in \mathbb{N} : \cot(\tau^{(\ell)}, \tau^{(\ell-1)}) \le c \cdot M^{\ell}.$$

(M4) There exists $\beta \in \left]0,\alpha\right]$ such that

$$\exists c > 0 \ \forall \ell \in \mathbb{N}_0 : \left(\mathbf{E}(\tau - \tau^{(\ell)})^2 \right)^{1/2} \le c \cdot M^{-\ell \cdot \beta}.$$

Assumptions: (S3) and

(M1) $f: \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous and

$$\exists c > 0 \ \forall x \in \mathbb{R} : \cot(f(x)) \le c.$$

(M2) There exists M>1 such that

$$\exists c > 0 \ \forall \ell \in \mathbb{N} : \cot(\tau^{(\ell)}, \tau^{(\ell-1)}) \le c \cdot M^{\ell}.$$

(M4) There exists $\beta \in [0, \alpha]$ such that

$$\exists c > 0 \ \forall \ell \in \mathbb{N}_0 : \left(\mathbf{E}(\tau - \tau^{(\ell)})^2 \right)^{1/2} \le c \cdot M^{-\ell \cdot \beta}.$$

Example For SDEs and the Euler approximation

$$\beta = 1/2.$$

Clearly

$$E(f(\tau^{(L)})) = E(f(\tau^{(0)})) + \sum_{\ell=1}^{L} E(f(\tau^{(\ell)}) - f(\tau^{(\ell-1)})).$$

Clearly

$$E(f(\tau^{(L)})) = E(f(\tau^{(0)})) + \sum_{\ell=1}^{L} E(f(\tau^{(\ell)}) - f(\tau^{(\ell-1)})).$$

Note that

$$\operatorname{Var}(f(\tau^{(\ell)}) - f(\tau^{(\ell-1)})) \le c \cdot M^{-2\ell \cdot \beta},$$

and typically

$$cost(f(\tau^{(\ell)}) - f(\tau^{(\ell-1)})) \approx M^{\ell}.$$

Clearly

$$E(f(\tau^{(L)})) = E(f(\tau^{(0)})) + \sum_{\ell=1}^{L} E(f(\tau^{(\ell)}) - f(\tau^{(\ell-1)})).$$

Note that

$$\operatorname{Var}(f(\tau^{(\ell)}) - f(\tau^{(\ell-1)})) \le c \cdot M^{-2\ell \cdot \beta},$$

and typically

$$cost(f(\tau^{(\ell)}) - f(\tau^{(\ell-1)})) \simeq M^{\ell}.$$

Idea: variance reduction, compared to single-level MC, by approximating

$$f(\tau^{(0)}), f(\tau^{(1)}) - f(\tau^{(0)}), \dots, f(\tau^{(L)}) - f(\tau^{(L_1)})$$

separately with independent MC algorithms.

Definition of the multi-level algorithm

Consider an

• independent family of \mathbb{R}^2 -valued random variables $(\tau_i^{(\ell)}, \sigma_i^{(\ell)})$ such that $(\tau_i^{(\ell)}, \sigma_i^{(\ell)}) \stackrel{\mathrm{d}}{=} (\tau^{(\ell)}, \tau^{(\ell-1)})$. Here $\tau^{(-1)} = 0$, say.

Definition of the multi-level algorithm

Consider an

• independent family of \mathbb{R}^2 -valued random variables $(\tau_i^{(\ell)}, \sigma_i^{(\ell)})$ such that $(\tau_i^{(\ell)}, \sigma_i^{(\ell)}) \stackrel{\mathrm{d}}{=} (\tau^{(\ell)}, \tau^{(\ell-1)})$. Here $\tau^{(-1)} = 0$, say.

Choose

- ullet minimal and maximal levels $L_0, L_1 \in \mathbb{N}$ and
- ullet replication numbers $N_\ell \in \mathbb{N}$ at the levels $\ell = L_0, \dots, L_1$.

Definition of the multi-level algorithm

Consider an

• independent family of \mathbb{R}^2 -valued random variables $(\tau_i^{(\ell)}, \sigma_i^{(\ell)})$ such that $(\tau_i^{(\ell)}, \sigma_i^{(\ell)}) \stackrel{\mathrm{d}}{=} (\tau^{(\ell)}, \tau^{(\ell-1)})$. Here $\tau^{(-1)} = 0$, say.

Choose

- ullet minimal and maximal levels $L_0, L_1 \in \mathbb{N}$ and
- ullet replication numbers $N_\ell \in \mathbb{N}$ at the levels $\ell = L_0, \dots, L_1$.

Put

$$A_{N_0,\dots,N_L}^{L_0,L_1} = \underbrace{\frac{1}{N_{L_0}} \cdot \sum_{i=1}^{N_{L_0}} f(\tau_i^{(L_0)})}_{\to E(f(\tau^{(L_0)}))} + \underbrace{\sum_{\ell=L_0+1}^{L_1} \underbrace{\frac{1}{N_\ell} \cdot \sum_{i=1}^{N_\ell} \left(f(\tau_i^{(\ell)}) - f(\sigma_i^{(\ell)}) \right)}_{\to E\left(f(\tau^{(\ell)}) - f(\tau^{(\ell-1)})\right)}.$$

Theorem Giles (2008)

Multi-level Monte Carlo achieves order of convergence

$$\gamma = \frac{\alpha}{1 + 2(\alpha - \beta)}.$$

Theorem Giles (2008)

Multi-level Monte Carlo achieves order of convergence

$$\gamma = \frac{\alpha}{1 + 2(\alpha - \beta)}.$$

Remark Recall that single-level MC achieves

$$\gamma = \frac{\alpha}{1 + 2\alpha}.$$

Theorem Giles (2008)

Multi-level Monte Carlo achieves order of convergence

$$\gamma = \frac{\alpha}{1 + 2(\alpha - \beta)}.$$

Remark Recall that single-level MC achieves

$$\gamma = \frac{\alpha}{1 + 2\alpha}.$$

Example For SDEs and the Euler approximation

$$\gamma=rac{1}{2}$$
 vs. $\gamma=rac{1}{3}.$

• Integral equations, parametric integration

Heinrich (1998), Heinrich, Sindambiwe (1999).

Here f actually takes values in an infinite-dimensional space.

- Integral equations, parametric integration
 Heinrich (1998), Heinrich, Sindambiwe (1999).
- Stochastic differential equations, computational finance

Here τ and $\tau^{(\ell)}$ may take values in an infinite-dimensional space.

- Integral equations, parametric integration
 Heinrich (1998), Heinrich, Sindambiwe (1999).
- Stochastic differential equations, computational finance
 Giles (2008, ...), ...
- Optimality of MLMC algorithms for diffusions or Gaussian processes τ Creutzig, Dereich, Müller-Gronbach, R (2009).

Here worst case analysis on the Lipschitz class.

- Integral equations, parametric integration
 Heinrich (1998), Heinrich, Sindambiwe (1999).
- Stochastic differential equations, computational finance *Giles* (2008, ...), ...
- Optimality of MLMC algorithms for diffusions or Gaussian processes τ Creutzig, Dereich, Müller-Gronbach, R (2009).
- Adaptive time-stepping for SDEs
 Hoel, v. Schwerin, Szepessy, Tempone (2010).

- Integral equations, parametric integration
 Heinrich (1998), Heinrich, Sindambiwe (1999).
- Stochastic differential equations, computational finance
 Giles (2008, ...), ...
- Optimality of MLMC algorithms for diffusions or Gaussian processes τ Creutzig, Dereich, Müller-Gronbach, R (2009).
- Adaptive time-stepping for SDEs
 Hoel, v. Schwerin, Szepessy, Tempone (2010).

• . . .

Assume that $\tau \geq 0$. We study approximation of

$$F(s) = E(1_{[0,s]}(\tau)), \qquad s \in [0,S].$$

Assume that $\tau \geq 0$. We study approximation of

$$F(s) = E(1_{[0,s]}(\tau)), \qquad s \in [0,S].$$

For any Monte Carlo (randomized) algorithm A define

$$\operatorname{error}(A) = \left(\mathbf{E} \|F - A\|_{\infty}^{2} \right)^{1/2},$$

where $||h||_{\infty} = \sup_{s \in [0,S]} |h(s)|$.

Assume that $\tau \geq 0$. We study approximation of

$$F(s) = E(1_{[0,s]}(\tau)), \qquad s \in [0,S].$$

For any Monte Carlo (randomized) algorithm A define

$$\operatorname{error}(A) = \left(\mathbf{E} \|F - A\|_{\infty}^{2} \right)^{1/2},$$

where $||h||_{\infty} = \sup_{s \in [0,S]} |h(s)|$.

Idea: Stopping of τ and smoothing of $1_{[0,s]}$.

Assume that $\tau \geq 0$. We study approximation of

$$F(s) = E(1_{[0,s]}(\tau)), \qquad s \in [0,S].$$

For any Monte Carlo (randomized) algorithm A define

$$\operatorname{error}(A) = \left(\mathbf{E} \|F - A\|_{\infty}^{2} \right)^{1/2},$$

where $||h||_{\infty} = \sup_{s \in [0,S]} |h(s)|$.

Idea: Stopping of τ and smoothing of $1_{[0,s]}$.

Stopping: Study approximation of $\tau \wedge T$ by $\tau^{(\ell)}$, where

$$T = S + 1$$

and, by assumption,

$$\tau^{(\ell)} \in [0, T].$$

Assume that $\tau \geq 0$. We study approximation of

$$F(s) = E(1_{[0,s]}(\tau)), \qquad s \in [0,S].$$

For any Monte Carlo (randomized) algorithm A define

$$\operatorname{error}(A) = \left(\mathbf{E} \|F - A\|_{\infty}^{2} \right)^{1/2},$$

where $||h||_{\infty} = \sup_{s \in [0,S]} |h(s)|$.

Idea: Stopping of τ and smoothing of $1_{[0,s]}$.

For non-smooth functionals of SDEs, see also

Avikainen (2009), Giles, Higham, Mao (2009),

Altmayer, Neuenkirch (2012).

Smoothing: Assumption

(D1) There exists $r \in \mathbb{N}_0$ such that τ has a density $\rho \in C^r([0,\infty[)$ and

$$\sup_{s \in [0,\infty[} |\rho^{(r)}(s)| < \infty.$$

Smoothing: Assumption

(D1) There exists $r \in \mathbb{N}_0$ such that τ has a density $\rho \in C^r([0,\infty[)]$ and

$$\sup_{s \in [0,\infty[} |\rho^{(r)}(s)| < \infty.$$

Approximate $1_{[0,s]}$ by rescaled translates

$$g(\frac{\cdot \wedge T - s}{\delta})$$

of a suitable bounded Lipschitz function $g: \mathbb{R} \to \mathbb{R}$.

Smoothing: Assumption

(D1) There exists $r \in \mathbb{N}_0$ such that au has a density $ho \in C^r([0,\infty[)$ and

$$\sup_{s \in [0,\infty[} |\rho^{(r)}(s)| < \infty.$$

Approximate $1_{[0,s]}$ by rescaled translates

$$g(\frac{\cdot \wedge T - s}{\delta})$$

of a suitable bounded Lipschitz function $g: \mathbb{R} \to \mathbb{R}$.

Example Let Φ denote the standard normal distribution function. For r=1 take

For
$$r=3$$
 take

$$g(u) = \Phi(-u).$$

$$g(u) = 4/3 \cdot \Phi(-u) - 1/3 \cdot \Phi(-u/2).$$

In general, take a bounded Lipschitz function $g:\mathbb{R} \to \mathbb{R}$ such that

$$\exists c > 0 \,\forall s \in \mathbb{R} : \quad \cot(g(s)) \le c,$$

$$\int_{-\infty}^{\infty} |s|^r \cdot |1_{]-\infty,0]}(s) - g(s)| \, ds < \infty,$$

$$\sup_{s \in [1,\infty[} |g(s)| \cdot s^{r+1} < \infty,$$

$$\forall j = 0, \dots, r-1 : \quad \int_{-\infty}^{\infty} s^j \cdot (1_{]-\infty,0]}(s) - g(s)| \, ds = 0.$$

Assumption: (D1), (M2), and

(D3) There exists $\alpha > 0$ such that

$$\exists c > 0 \,\forall \delta > 0 \,\forall t \in [0, T] \,\forall \ell \in \mathbb{N}_0 :$$

$$\left| \mathbb{E} \left(g(\frac{\tau \wedge T - t}{\delta}) - g(\frac{\tau^{(\ell)} \wedge T - t}{\delta}) \right) \right| \le c/\delta \cdot M^{-\ell \cdot \alpha}.$$

(D4) There exists $\beta \in [0, \alpha]$ such that

$$\exists c > 0 \,\forall \ell \in \mathbb{N}_0: \quad \left(\mathcal{E}(\tau \wedge T - \tau^{(\ell)})^2 \right)^{1/2} \le c \cdot M^{-\ell \cdot \beta}.$$

Definition of the multi-level algorithm

Step 1 Approximation of F at

$$s_i = i \cdot S/k, \qquad i = 1, \dots, k.$$

Replace
$$f: \mathbb{R} \to \mathbb{R}$$
 by $g^{k,\delta}: \mathbb{R} \to \mathbb{R}^k$,

$$g^{k,\delta}(t) = \left(g(\frac{t-s_1}{\delta}), \dots, g(\frac{t-s_k}{\delta})\right).$$

Definition of the multi-level algorithm

Step 1 Approximation of F at

$$s_i = i \cdot S/k, \qquad i = 1, \dots, k.$$

Replace $f:\mathbb{R} o \mathbb{R}$ by $g^{k,\delta}:\mathbb{R} o \mathbb{R}^k$,

$$g^{k,\delta}(t) = \left(g(\frac{t-s_1}{\delta}), \dots, g(\frac{t-s_k}{\delta})\right).$$

Put

$$A_{N_{L_0},\dots,N_{L_1}}^{k,\delta,L_0,L_1} = \frac{1}{N_{L_0}} \cdot \sum_{i=1}^{N_{L_0}} g^{k,\delta}(\tau_i^{(L_0)}) + \sum_{\ell=L_0+1}^{L_1} \frac{1}{N_{\ell}} \cdot \sum_{i=1}^{N_{\ell}} \left(g^{k,\delta}(\tau_i^{(\ell)}) - g^{k,\delta}(\sigma_i^{(\ell)}) \right)$$

with additional parameters $k \in \mathbb{N}$ and $\delta > 0$.

Step 2 Extension to functions on [0, S].

Take linear mappings $P_k: \mathbb{R}^k \to C([0,S])$ such that $\exists c>0 \ \forall k \in \mathbb{N}$

$$\forall x \in \mathbb{R}^k : \cot(P_k(x)) \le c \cdot k,$$

$$\forall x \in \mathbb{R}^k : \|P_k(x)\|_{\infty} \le c \cdot |x|_{\infty},$$

$$\|F - P_k(F(s_1), \dots, F(s_k))\|_{\infty} \le c \cdot k^{-(r+1)}.$$

Example P_k piecewise polynomial interpolation of degree r, taking into account F(0)=0.

Step 2 Extension to functions on [0, S].

Take linear mappings $P_k: \mathbb{R}^k \to C([0,S])$ such that $\exists c > 0 \ \forall k \in \mathbb{N}$

$$\forall x \in \mathbb{R}^k : \cot(P_k(x)) \le c \cdot k,$$

$$\forall x \in \mathbb{R}^k : ||P_k(x)||_{\infty} \le c \cdot |x|_{\infty},$$

$$||F - P_k(F(s_1), \dots, F(s_k))||_{\infty} \le c \cdot k^{-(r+1)}.$$

Example P_k piecewise polynomial interpolation of degree r, taking into account F(0) = 0.

Steps 1 and 2 yield the algorithm

$$\mathcal{M}_{N_{L_0},\dots,N_{L_1}}^{k,\delta,L_0,L_1} = P_k(A_{N_{L_0},\dots,N_{L_1}}^{k,\delta,L_0,L_1}).$$

As previously, for convenience, $\beta \leq 1/2$.

Put

$$q = \frac{r+2}{\alpha}.$$

As previously, for convenience, $\beta \leq 1/2$.

Put

$$q = \frac{r+2}{\alpha}$$
.

Theorem Giles, Iliev, Nagapetyan, R (2012)

Multi-level Monte Carlo achieves order of convergence

$$q \le 1 \quad \Rightarrow \quad \gamma = \frac{r+1}{2r+3},$$

$$(1 < q \le 2) \lor \left(q > 2 \land \beta \le \frac{1}{q}\right) \quad \Rightarrow \quad \gamma = \frac{r+1}{2(r+1)+q},$$

$$q > 2 \land \beta > \frac{1}{q} \quad \Rightarrow \quad \gamma = \frac{r+1}{r+2} \cdot \frac{\alpha}{1+2(\alpha-\beta)}.$$

As previously, for convenience, $\beta \leq 1/2$.

Put

$$q = \frac{r+2}{\alpha}$$
.

Theorem Giles, Iliev, Nagapetyan, R (2012)

Multi-level Monte Carlo achieves order of convergence

$$q \le 1 \quad \Rightarrow \quad \gamma = \frac{r+1}{2r+3},$$

$$(1 < q \le 2) \lor \left(q > 2 \land \beta \le \frac{1}{q}\right) \quad \Rightarrow \quad \gamma = \frac{r+1}{2(r+1)+q},$$

$$q > 2 \land \beta > \frac{1}{q} \quad \Rightarrow \quad \gamma = \frac{r+1}{r+2} \cdot \frac{\alpha}{1+2(\alpha-\beta)}.$$

In the first two cases the orders are actually achieved by single-level MC, i.e., with ${\cal L}_0={\cal L}_1.$

$$\operatorname{error}^{2}(Q_{k}(\mathcal{M})) \leq k^{-2(r+1)} + \delta^{2(r+1)} + 1/\delta^{2} \cdot M^{-2L_{1} \cdot \alpha} + \log k \cdot \left(\frac{1}{N_{L_{0}}} + \sum_{\ell=L_{0}+1}^{L_{1}} \frac{M^{-2\ell \cdot \beta}}{N_{\ell} \cdot \delta^{2}}\right)$$

$$\operatorname{error}^{2}(Q_{k}(\mathcal{M})) \leq k^{-2(r+1)} + \delta^{2(r+1)} + 1/\delta^{2} \cdot M^{-2L_{1} \cdot \alpha}$$
$$+ \log k \cdot \left(\frac{1}{N_{L_{0}}} + \sum_{\ell=L_{0}+1}^{L_{1}} \frac{M^{-2\ell \cdot \beta}}{N_{\ell} \cdot \delta^{2}}\right)$$

and

$$cost(Q_k(\mathcal{M})) \leq \sum_{\ell=L_0}^{L_1} N_\ell \cdot (M^\ell + k).$$

$$\operatorname{error}^{2}(Q_{k}(\mathcal{M})) \leq k^{-2(r+1)} + \delta^{2(r+1)} + 1/\delta^{2} \cdot M^{-2L_{1} \cdot \alpha}$$
$$+ \log k \cdot \left(\frac{1}{N_{L_{0}}} + \sum_{\ell=L_{0}+1}^{L_{1}} \frac{M^{-2\ell \cdot \beta}}{N_{\ell} \cdot \delta^{2}}\right)$$

and

$$cost(Q_k(\mathcal{M})) \leq \sum_{\ell=L_0}^{L_1} N_\ell \cdot (M^\ell + k).$$

Hence, for k fixed and $\delta = 1/k$,

$$k \le M^{L_0} \le M^{L_1} = k^{\max(1,q)}.$$

$$\operatorname{error}^{2}(Q_{k}(\mathcal{M})) \leq k^{-2(r+1)} + \delta^{2(r+1)} + 1/\delta^{2} \cdot M^{-2L_{1} \cdot \alpha}$$
$$+ \log k \cdot \left(\frac{1}{N_{L_{0}}} + \sum_{\ell=L_{0}+1}^{L_{1}} \frac{M^{-2\ell \cdot \beta}}{N_{\ell} \cdot \delta^{2}}\right)$$

and

$$cost(Q_k(\mathcal{M})) \leq \sum_{\ell=L_0}^{L_1} N_\ell \cdot (M^\ell + k).$$

Hence, for k fixed and $\delta = 1/k$,

$$k \le M^{L_0} \le M^{L_1} = k^{\max(1,q)}.$$

Furthermore, if q > 1,

$$\frac{M^{-2L_1\cdot\beta}}{\delta^2} = k^{2(1-\beta q)}.$$

VI. SDEs with Reflection, AF^4

- ullet Separation of nano-particles of different types, domain $D\subset \mathbb{R}^d$.
- Ignoring interactions, the motion of a particle is described by an SDE

$$dX(t) = \mu(X(t)) dt + \sigma(X(t)) dW(t) + d\phi(t)$$

with normal reflection on ∂D .

 \bullet Instead of reflection, we study absorption at $\partial_{\rm a}D\subset\partial D$ and consider the hitting time

$$\tau = \inf\{t \ge 0 : X(t) \in \partial_{\mathbf{a}}D\}.$$

See

Gobet, Menozzi (2010), Higham, Mao, Roy, Song, Yin et al. (2011), Słomiński (2001), Costantini, Pacchiarotti, Satoretto (1998), Bayer, Szepessy, Tempone (2010).