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|. The Computational Problem

Given a random variable 7, determine the distribution function F' of T,

Example Hitting time 7 of a stochastic process X .
In this talk Monte Carlo algorithms for approximation of F'.

Alternatives include analytic formulas and numerics of PDEs.
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|. The Computational Problem

Given a random variable 7, determine the distribution function F' of T,

Example Hitting time 7 of a stochastic process X .
In this talk Monte Carlo algorithms for approximation of F'.

Alternatives include analytic formulas and numerics of PDEs.

Assumption Instead of 7, approximations 7'(0), 7'(1), ... can be simulated.

Example Hitting time 7 of an approximation X (©) of X.

Later on, we study approximation of F' on compact intervals. Note that

F(s) = E(ljoeg (7))
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Classical Monte Carlo Take L € Ny and NV € N, and approximate F' by

1 N
L
S > N Z 1]_0073] (Ti( ))
1=1

with independent copies Tl(Lz e ,T](VL) of 71 Cf. empirical distribution function.
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Classical Monte Carlo Take L € Ny and NV € N, and approximate F' by

1 N
L
S > N Z 1]_0073] (Ti( ))
1=1

with independent copies Tl(Lz e ,T](VL) of 71 Cf. empirical distribution function.

Basic ideas for improvement

e Smoothing of 1)_, ), provided that
7 has a smooth density.

Cf. kernel density estimation.
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Classical Monte Carlo Take L € Ny and NV € N, and approximate F' by

1 N
L
S > N Z 1]_0073] (Ti( ))
1=1

with independent copies Tl(Lz e ,T](VL) of 71 Cf. empirical distribution function.

Basic ideas for improvement

e Smoothing of 1)_, ), provided that

7 has a smooth density.

e Multi-level approach, using coupled simulation of 7'(0), - ,T(L),

provided that
lim E(r — 79)? = 0.

{—00
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Il. Monte Carlo Algorithms

Let f : R — R, e.g., f = 1j_ 4 with s fixed. Compute

o =EB(/(7))

Monte Carlo algorithm: an algorithm that uses random numbers.
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Il. Monte Carlo Algorithms

Let f : R — R, e.g., f = 1j_ 4 with s fixed. Compute

o =EB(/(7))

Monte Carlo algorithm: an algorithm that uses random numbers.
For any Monte Carlo (randomized) algorithm A define

error(A) = (E(a — A)2)1/2
cost(A)

Clearly

error’(A) = (a — E(A))? + Var(A).
ias(A)
bias

E(# operations and random number calls).
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Il. Monte Carlo Algorithms

Let f : R — R, e.g., f = 1j_ 4 with s fixed. Compute

o =EB(/(7))

Monte Carlo algorithm: an algorithm that uses random numbers.
For any Monte Carlo (randomized) algorithm A define

error(A) = (E(a — A)2)1/2
cost(A)

E(# operations and random number calls).

‘Definition’ A sequence of Monte Carlo algorithms A,, with

lim,, ., cost(A,,) = oo achieves order of convergence v > 0 if

Je>0dneRVneN:
error(4,) < c- (cost(A,)) - (logcost(A,))".

4/1



lll. Single-level MC

Assumptions

(S1) f : R — R and
de>0VxeR: cost(f(x)) <c
(S2) There exists M > 1 such that

Je>0VleNy: cost(t?) < e- ME

5/3



lll. Single-level MC
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lll. Single-level MC

Assumptions

(S1) f : R — R and
de>0VxeR: cost(f(x)) <c
(S2) There exists M > 1 such that
Jc>0VleNy: cost(t?) <e- M
(S3) There exists o > 0 such that
Je>0VLeNy: |E(f(r)—f(r')| <e- M

Example 7O Euler approximation of an SDE at time /" with step-size

T'/2%. Under standard assumptions,

M =2, Q

|
—
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Single-level Monte Carlo A%, = ~ S F(r™) yields

error’(Ay) = (a — E(f(T(L>)))2 + %Var(f(T(L)))

c - (M_%'O‘ + N_l),

IA

cost(Ak) <ec-N- MWD,
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Single-level Monte Carlo A%, = ~ S F(r™) yields

error’(Ay) = (a — E(f(T(L))))2 + %Var(f(T(L)))

IA

c - (M_%'O‘%—N_l),
cost(Ak) <ec-N- MWD,

Theorem

Single-level Monte Carlo achieves order of convergence

o
14+ 20

’y:
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Single-level Monte Carlo A%, = ~ S F(r™) yields

1
error’(Ay) = (a — E(f(T(L))))2 + N Var(f(7")))
<c- (M_%'O‘ - N_l)a
cost(Ak) <ec-N- MWD,
Theorem

Single-level Monte Carlo achieves order of convergence

B 8
14+ 2a°

~

Example For SDEs and the Euler approximation

Wzg-

More generally, weak approximation of SDEs.
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V. Multi-level MC: The Lipschitz Case

Assumptions:

(S3) There exists o > 0 such that

Je>0VleNy: [E(f(r)— f(r)| <e- Mt
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V. Multi-level MC: The Lipschitz Case

Assumptions: (S3) and

(M1) f : R — Ris Lipschitz continuous and
de>0VxeR: cost(f(x)) <c.
(M2) There exists M > 1 such that
Jc>0VleN: cost(r?, 7Yy <. ME

(M4) There exists 5 € |0, a] such that

Je>0VleNy: (Blr—r0)2) <c. M5,

Example For SDEs and the Euler approximation

B=1/2.
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Clearly
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Clearly

B(f(r") = B(f(r) + 3 _B(f(7') = f(z“71)).
Note that -
Var(f(r9) = f(r*)) < c- M7
and typically
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Clearly

B(f(r") = B(f(r) + 3 _B(f(7') = f(z“71)).
Note that -
Var(f(r9) — f(r“"V)) < - M7,
and typically

cost (f(7) — f(r"1)) < M*".
ldea: variance reduction, compared to single-level MC, by approximating

FEON, f@) = D), f (7)) = f(rEY)

separately with independent MC algorithms.
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Definition of the multi-level algorithm

Consider an
e independent family of R*-valued random variables (7'7;(6), 0.’ ) such

that (TZ@, o) 4 (79, 7Y Here 7(-1) = 0, say.

1
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Definition of the multi-level algorithm

Consider an

e independent family of R*-valued random variables (7'7;(6), 0@)) such

that (TZ@, a,fg)) 4 (70, 71 Here 7071 = 0, say.
Choose
e minimal and maximal levels Ly, L; € N and

e replication numbers N, € N atthe levels { = L, ..., Ly.
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Definition of the multi-level algorithm

Consider an

e independent family of R?-valued random variables (7'7;(6), Uz@)) such

that (TZ@, a,fg)) 4 (79, 7Y Here 7(-1) = 0, say.

Choose

e minimal and maximal levels Ly, L; € N and

e replication numbers N, € N atthe levels { = L, ..., Ly.
Put

1 Nr, L1 1 Ny
At = 2 FE + Y = > (£ - £0)).
S = =Lt b =l )
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In the sequel, for convenience, 5 < 1/2.
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In the sequel, for convenience, 5 < 1/2.

Theorem Giles (2008)

Multi-level Monte Carlo achieves order of convergence

B a
1+ 2(a—B)

~
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In the sequel, for convenience, 5 < 1/2.

Theorem Giles (2008)

Multi-level Monte Carlo achieves order of convergence

B o)
14+ 2(a—p)

Remark Recall that single-level MC achieves

~

o
14+ 20

fy:
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In the sequel, for convenience, 5 < 1/2.

Theorem Giles (2008)

Multi-level Monte Carlo achieves order of convergence

B Q
T +2(a— 8)
Remark Recall that single-level MC achieves
.«
T + 200

Example For SDEs and the Euler approximation
1 1
= — VS. = —.
773 773
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Multi-level Monte Carlo

® |[ntegral equations, parametric integration
Heinrich (1998), Heinrich, Sindambiwe (1999).

Here f actually takes values in an infinite-dimensional space.
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Multi-level Monte Carlo

® |[ntegral equations, parametric integration

Heinrich (1998), Heinrich, Sindambiwe (1999).

e Stochastic differential equations, computational finance
Giles (2008, ...), . ..

Here 7 and 7Y may take values in an infinite-dimensional space.
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Multi-level Monte Carlo

® |[ntegral equations, parametric integration

Heinrich (1998), Heinrich, Sindambiwe (1999).

e Stochastic differential equations, computational finance

Giles (2008, ...), . ..

e Optimality of MLMC algorithms for diffusions or Gaussian processes T
Creutzig, Dereich, Muller-Gronbach, R (2009).

Here worst case analysis on the Lipschitz class.
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V. MLMC for Distribution Functions

Assume that 7 > (. We study approximation of

F(S) = E(l[(),S](T)), S & [O, S]
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V. MLMC for Distribution Functions

Assume that 7 > (. We study approximation of
F(s) = E(1j,5(7)), s € 10,5].
For any Monte Carlo (randomized) algorithm A define
error(A) = (E||F — A|%)"?,

where [|/1]|oo = suP,epo 51 |2(5)].
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V. MLMC for Distribution Functions

Assume that 7 > (. We study approximation of

F(S) = E(l[(),S](T)), S € [O, S]

For any Monte Carlo (randomized) algorithm A define

1/2

error(A) = (EHF — AHiO) ,
where |1 = sup,cio) 1h(5)]

ldea: Stopping of 7 and smoothing of 1y 4.
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V. MLMC for Distribution Functions

Assume that 7 > (. We study approximation of
F(s) = E(1j,5(7)), s € 10,5].

For any Monte Carlo (randomized) algorithm A define

error(A) = (E||F — A|%)"?,
where ||Al|oc = supyejo,g) [R(s)].
ldea: Stopping of 7 and smoothing of 1y 4.
Stopping: Study approximation of 7 A 1’ by T(E), where

T=5+1

and, by assumption,

9 ¢ [0,1].
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V. MLMC for Distribution Functions

Assume that 7 > (. We study approximation of

F(S) = E(l[(),S](T)), S & [O, S]

For any Monte Carlo (randomized) algorithm A define
error(A) = (E||F — A|%)"?,

where [|2][oc = SUD,cpo 57 |2(5)].

ldea: Stopping of 7 and smoothing of 1y 4.

For non-smooth functionals of SDES, see also

Avikainen (2009), Giles, Higham, Mao (2009),
Altmayer, Neuenkirch (2012).
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Smoothing: Assumption

(D1) There exists 7 € Ny such that 7 has a density p € C" ([0, oo[) and

sup |p'"(s)] < oo.

s€[0,00]
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Smoothing: Assumption

(D1) There exists 7 € Ny such that 7 has a density p € C" ([0, oo[) and

sup |p'"(s)] < oo.

s€[0,00]

Approximate 1[0,8] by rescaled translates

g(-"5=°)

of a suitable bounded Lipschitz function g : R — RR.
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Smoothing: Assumption

(D1) There exists 7 € Ny such that 7 has a density p € C" ([0, oo[) and

sup |p'"(s)] < oo.

s€[0,00]

Approximate 1[0,8] by rescaled translates

g(-"5=°)

of a suitable bounded Lipschitz function g : R — RR.

Example Let ® denote the standard normal distribution function. For

r = 1 take

For r = 3 take

g(u) =4/3 - ®(—u) —1/3 - &(—u/2).
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In general, take a bounded Lipschitz function g : R — IR such that

de>0VseR: cost(g(s)) <c,

/ 517+ [ oo () — g(s)] ds < oo,

— 00

r+1

sup [g(s)]-s"" < oo,

s€[1,00]
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Assumption: (D1), (M2), and
(D3) There exists a > 0 such that

de>0Vo>0Vte |0, T|V{ e Ny :

AT — T ONT— —Ll-«
B (g(m2=) - g(=41=) )| < efo - M0

(D4) There exists 5 € |0, a such that

Je>0VleNy: (B(rAT—70)2)2 <c. 5.
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Definition of the multi-level algorithm

Step 1 Approximation of £’ at
si=1-95/k, 1=1,...,k.

Replace f : R — Rby ¢"° : R — R,
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Definition of the multi-level algorithm

Step 1 Approximation of £’ at
si=1-95/k, 1=1,...,k.

Replace f : R — Rby ¢"° : R — R,

Put
T
k757L 7L k75 (L )
ANLO,O J\lle = —NLO . ;g (7'@' 0 )
<N 0 ()
Y =3 (60 - (o))
{=Lo+1 1=1

with additional parameters £k € N and 0 > 0. 16/1



Step 2 Extension to functions on [0, .S].
Take linear mappings P, : R* — C/([0,S]) suchthatdc > 0VEk € N

Vz € R¥:  cost(Py(z)) < c-k,
Ve € RF 1 || Pu(2)]|oe < €+ |2]0o,
|F = Pu(F(s1), ..., F(si)lloo < ¢ k70FY,

Example P piecewise polynomial interpolation of degree r, taking into

account F'(0) = 0.
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Step 2 Extension to functions on [0, .S].
Take linear mappings P, : R* — C/([0,S]) suchthatdc > 0VEk € N

Vz € R¥:  cost(Py(z)) < c-k,
Ve € RF 1 || Pu(2)]|oe < €+ |2]0o,
|F = Pu(F(s1), ..., F(si)lloo < ¢ k70FY,

Example P piecewise polynomial interpolation of degree r, taking into

account F'(0) = 0.

Steps 1 and 2 yield the algorithm

k,0,Lo,L1 _ k,0,Lo,L1
MNLO,...,NLl o Pk(ANLO,...,NLl )

17/1



As previously, for convenience, 8 < 1/2.

Put
r -+ 2

q= :
o
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As previously, for convenience, 8 < 1/2.

Put

Theorem Giles, lliev, Nagapetyan, R (2012)

r—+ 2

q:

@7

Multi-level Monte Carlo achieves order of convergence

EEM|

g <1

1
Q>2Aﬁ§—>
q

1
q>2AN0>-—
q

—

=

=

B r-+1

fy_27’+3’

B r—+1

7_2(7“%—1)%—617
r—+1 Q

/y:

r+2 1+2a—pj)
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As previously, for convenience, 8 < 1/2.

Put

r—+ 2
q = :
Q

Theorem Giles, lliev, Nagapetyan, R (2012)

Multi-level Monte Carlo achieves order of convergence

<1 = _7“+1
7= fy_27’+3’
1 r—+1
l<g<2QV| g>2A8<=-] = ~= ,
L<g=2 <q ﬁ‘@> T+ 1) 1 ¢
r—+1 Q0

1
q>2N08>—- = =
q

In the first two cases the orders are actually achieved by single-level MC,
i.e., with Lo = L.

r+2 1+2a—pj)
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Proof: We have

error®(Qr(M)) = 201 4 52(r+1) 1/6% . 2o

1 M—2£-B
+logk-<N + ) N-52>
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Proof: We have

error®(Qr(M)) = 201 4 52(r+1) 1/6% . 2o

L
1 1 M_Qg.ﬁ
+log k - ( + Z 2)

and
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Proof: We have

error®(Qr(M)) = 201 4 52(r+1) 1/6% . 2o

L
1 1 M—%ﬁ
+ logk ( — + > N 52)
0 {=Lo+1
and
L
cost(Qr(M)) = Z Ny - (M*+F)
(=L

Hence, for k fixed and 0 = 1/k,

k< M Lo < ML — pmax(1,9)
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Proof: We have

error®(Qr(M)) = 201 4 52(r+1) 1/6% . 2o

L
1 1 M_Qg.ﬁ
log k -
+log (NLO+ > Ne'52>
{=Lo+1
and

L

cost(Qr(M)) = Z N, - (M*+ k).
(=Lg

Hence, for k fixed and 0 = 1/k,
L < MLO < ML1 _ kmax(l,q).

Furthermore, if g > 1,

19/1



VI. SDEs with Reflection, AF?

e Separation of nano-particles of different types, domain D C R¢.

® Ignoring interactions, the motion of a particle is described by an SDE
dX (1) = p(X (1)) dt + o (X (1)) dW (t) + de(t)

with normal reflection on 0.D.

e Instead of reflection, we study absorption at 9,10 C 0D and consider

the hitting time
T=inf{t > 0: X(t) € 0,D}.

See

Gobet, Menozzi (2010), Higham, Mao, Roy, Song, Yin et al. (2011),
Stomihnski (2001), Costantini, Pacchiarotti, Satoretto (1998),

Bayer, Szepessy, Tempone (2010). 20/1
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