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NSE

INVERSE PROBLEM

Navier Stokes Equations and Data

Write NSE as ODE in H =
{

u ∈ L2(T2)
∣∣∇ · u = 0,

∫
T2 u dx = 0

}
:

dv
dt

+ νAv + B(v , v) = f , v(0) = u

v(t) = Ψ(u; t), Ψ(j)(u) := Ψ(u; jτ)

Find u given noisy observations yj :

yj = HΨ(j)(u) + ηj ,

ηj ∼ N (0, Γ)

Yj = {yi}ji=1.
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NSE

INVERSE PROBLEM

Bayesian Formulation

Prior P0 on u:

P0 = N (m0,C0).

Bayes formula:

P(du|YJ)

P0(du)
∝ P(YJ |u).

Here

P(YJ |u) ∝ exp
(
−Φ(u; YJ)

)
Φ(u; YJ) = 1

2
∑J

j=1

∥∥∥Γ−
1
2
(
yj −Ψ(j)(u)

)∥∥∥2

Posterior is P(u|YJ).
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NSE

ALGORITHMS

Posterior Distribution

pCN MCMC - Gold standard :

Propose u∗ = m0 + (1− 2β)
1
2 (u(n−1) −m0) +

√
2βN (0,C0)

u(n) =

{
u∗ with probability 1 ∧ exp{Φ(u(n−1))− Φ(u∗)}

u(n−1) else.

}

4DVAR - Gaussian at MAP Estimator :

u ≈ N (m′0,C
′
0), C′0 =

(
D2Φ(m′0) + Ĉ−1

0

)−1

m′0 = argminu

(
Φ(u) + 1

2‖Ĉ
− 1

2
0 (u −m0)‖2

)
.
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NSE

ALGORITHMS

Approximate Gaussian Filters I

Impose the Gaussian approximation:

P(vj−1|Yj−1) = Ψj−1 ? P(u|Yj−1) ≈N
(
mj−1,Cj−1

)
P(vj |Yj−1) = Ψj ? P(u|Yj) ≈N

(
Ψ(mj−1), Ĉj

)
.

Find update rule: (mj−1,Cj−1) 7→ (mj ,Cj).

mj = (I − KjH)Ψ(mj−1) + Kjyj ,

Kj = ĈjH>(HĈjH> + Γ)−1,

Cj = (I − KjH)Ĉj .
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NSE

ALGORITHMS

Approximate Gaussian Filters II

In all cases
C−1

j = Ĉ−1
j + H>Γ−1H

3DVAR :
Cj ≡ C0.

FDF: For C chosen from Gaussian SPDE parameter fit:

Cj ≡ C.

(LR)ExKF: (Low rank approximation of):

Ĉj = DΨ(mj−1)Cj−1DΨ(mj−1)>.

EnKF: Particle approximations for mj and Cj .
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NSE

RESULTS

Relative Error in Mean c/w Posterior

Mean

method emean

4DVAR(t = 0) 0.000731491
4DVAR(t = T ) 0.00130112

3DVAR 0.0634553
FDF 0.165732

LRExKF 0.00614573
EnKF 0.035271
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NSE

RESULTS

Relative Error in Variance c/w Posterior

Variance

method evariance

4DVAR(t = 0) 0.0932748
4DVAR(t = T ) 0.220154

3DVAR 6.34057
FDF 28.9155

LRExKF 0.195101
EnKF 0.274428
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NSE

STABILITY

Accuracy Theorem (3DVAR)

Recall true signal vj = Ψ(j)(u) = v(jτ).

Define supj≥1 ‖ξj‖ = ε.

Theorem (BLLMSS11)

Assume that:
m0 ∈ BV(0,R);

Enough low wavenumbers observed, and τ small enough.

Γ = ηĈ;
Then ∃ ηc = ηc(r), r ∈ (0,1), and c ∈ (0,∞) such that, for all
η < ηc ,

‖m̂j − vj‖ ≤ r j‖m̂0 − v0‖+ cε.
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NSE

STABILITY

Inaccurate

5 10 15 20

10
−2

10
−1

10
0

step

3DVAR, ν=0.01, h=0.2

 

 

||m(t
n
)−u+(t

n
)||2

tr(Γ)

tr[(I−B
n
)Γ(I−B

n
)*]

0 1 2 3 4

−0.2

−0.1

0

0.1

0.2

0.3

3DVAR, ν=0.01, h=0.2, Re(u
1,2

)

t

 

 

m

u+

y
n



Evaluating Data Assimilation Algorithms with MCMC: Two Case studies

NSE

STABILITY

Accurate
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NSE

STABILITY

Evaluation wrt gold standard, fixed Interval (T = Jτ ):
Relative Error c/w Posterior: stabilized

From [LS11]:

method emean evariance

3DVAR 0.458527 1.8214
[3DVAR] 0.27185 6.62328
LRExKF 0.632448 0.4042

[LRExKF] 0.201327 11.2449
EnKF 0.901703 0.554611

[EnKF] 0.169262 4.07238
FDF 0.189832 11.4573
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SUBSURFACE

INVERSE PROBLEM

Two-phase incompressible flow and Data

−∇ ·
[
λ(s)eu∇p

]
= f1(p, s) in D × [0,T ],

ψ
∂s
∂t
−∇ ·

[
λw (s)eu∇p

]
= f2(p, s) in D × [0,T ].

h pointwise measurements of total flow rate at production wells
and bottom-hold pressure at injection wells.

yj = h0(p(jτ), s(jτ)) + ηj ,

ηj ∼ N (0, Γ)

Yj = {yi}ji=1.
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SUBSURFACE

INVERSE PROBLEM

Filtering

Augmented System Dynamics

Define

z =

 u
p
s

 , Ψ(z) =

 u
ψp(u,p, s)
ψs(u,p, s)

 , zj+1 = Ψ(zj),

and then data is, for h(·) = (0,h0(·)),

yj = h(zj) + ηj where ηj ∼ N(0, Γ).

State Estimation

Aim to recover posterior distribution on zj given Yj = {yi}ji=1. In
particular uj |Yj .
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SUBSURFACE

ALGORITHMS

Posterior Distribution

MCMC - Gold standard :

Propose u∗ = m0 + (1− 2β)
1
2 (u(n−1) −m0) +

√
2βN (0,C0)

u(n) =

{
u∗ with probability 1 ∧ exp{Φ(u(n−1))− Φ(u∗)}

u(n−1) else.

}

4DVAR - MAP Estimator :

u ≈ N (m′0,C
′
0), C′0 =

(
D2Φ(m′0) + Ĉ−1

0

)−1

m′0 = argminu

(
Φ(u) + 1

2‖Ĉ
− 1

2
0 (u −m0)‖2

)
.
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SUBSURFACE

ALGORITHMS

Approximate Gaussian Filters

EnKF (with and without localization)
Square-root EnKF (with and without localization)
Randomized Maximum Likelihood (RML)

The posterior distribution is approximated by an ensemble
{ûn}Nn=1 generated by solving

û(n) = argminu

(
Φ(u; Y (n)

J ) + 1
2 ||C

−1/2(u − u(n))||2
)

where

u(n) ∼ P0, (1)

Y (n)
J = YJ + η

(n)
J , η

(n)
J ∼ N (0,⊕J

j=1Γ)
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RESULTS

The Truth
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SUBSURFACE

RESULTS

Prior Geology

Monte Carlo samples of the prior distribution P0 look like:
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SUBSURFACE

RESULTS

Posterior Geology

MCMC samples of the posterior P(·|y) look like:
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SUBSURFACE

RESULTS

Uncertainty Under The Prior

Large uncertainty in cumulative oil production:
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SUBSURFACE

RESULTS

Uncertainty Under The Posterior

Reduction of the uncertainty via data:
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SUBSURFACE

RESULTS

Evaluation wrt gold standard, fixed interval

From [ILS13]:

Method emean evariance Cost (FM)

MCMC 0.000 0.000 5.5× 107

MAP 0.277 0.143 6.0× 101

RML (Ne = 50) 0.235 0.415 3.0× 103

EnKF (Ne = 50) 0.834 0.391 5.0× 101

EnKF (loc, Ne = 50) 0.563 0.252 5.0× 101

EnKF (Ne = 8000) 0.337 0.216 8.0× 103

FM: Forward Model evaluations.
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CONCLUSIONS

Conclusions

Approximate filters:
can reproduce the posterior mean accurately;
may not reproduce covariance accurately;
can exhibit instability (e.g. on longer time-intervals).

This instability can cause loss of accuracy in even mean
prediction;
Filter stabilization, via variance inflation can be used to
ameliorate instability. Intrusive: changes the covariance.
Spatial localization techniques can improve accuracy of
ensemble method, hence ameliorate instability: mean-field
EnKF more stable than finite ensemble.
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CONCLUSIONS

Extensions

Use this technique to assess other algorithms, e.g. particle
filters.
Develop better/more efficient MCMC algorithms.
Challenge: improve estimates of variance or, more
optimistically, general observables.
Decompose state-space: use e.g. ExKF in the (changing)
stable subspace, and a more accurate method in the
unstable subspace.
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