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Navier Stokes Equations and Data

Write NSE as ODE in H = {u € [3(T?)|V-u =0, [ udx =0}:

CZ;;+VAV+B(V, v) =T, v(0) =u
v(t) = W(u; t), VO(u):=W(u;jr)
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Navier Stokes Equations and Data

Write NSE as ODE in H = {u € [3(T?)|V-u =0, [ udx =0}:

C;‘;+VAV+B(V, v) =T, v(0) =u
v(t) = W(u; t), VO(u):=W(u;jr)

Find u given noisy observations y;:

y; = HYO(u) + 1,

Y= {yY_,.
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Posterior Distribution

m pCN MCMC - Gold standard :
Propose u* = mqo + (1 — 28)2 (u(™" — my) + +/2BN(0, Co)

) — u*  with probability 1 A exp{®(u("™1) — &(u*)}
— | uwrM else.
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Posterior Distribution

m pCN MCMC - Gold standard :
Propose u* = mqo + (1 — 28)2 (u(™" — my) + +/2BN(0, Co)

) — u*  with probability 1 A exp{®(u("™1) — &(u*)}
— | uwrM else.

m 4DVAR - Gaussian at MAP Estimator :

u~ N(mp, Cp), Cy = (DPo(mp)) + C; 1)~

A_1
m), = argmin, (cb(u) + 4162 (- m0)||2).




Evaluating Data Assimilation Algorithms with MCMC: Two Case studies
Lnse
LALGORITHMS

Approximate Gaussian Filters |

m Impose the Gaussian approximation:

P(vi1|Yji1) = W xP(u]Yj_1) ~N(mj_+,Cj +)
P(vj|Yj-1) = W P(u] V) =N(W(m;-1), G)).
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LALGORITHMS

Approximate Gaussian Filters |

m Impose the Gaussian approximation:

P(vi1|Yji1) = W xP(u]Yj_1) ~N(mj_+,Cj +)

P(vjYj-1) = W P(u] V) =N(W(m;-1), G)).

m Find update rule: (m;_y, Ci_1) — (m;, C;).

mj = (I — KjH)\IJ(mj_1) —+ I‘(jyj,
K= CH'(HGH™ +1)™",
Ci= (I - KH)C;.




Evaluating Data Assimilation Algorithms with MCMC: Two Case studies
Lnse
LALGORITHMS

Approximate Gaussian Filters Il

In all cases

c = 51.‘1 +HTT'H

m 3DVAR:
Ci = Co.

m FDF: For C chosen from Gaussian SPDE parameter fit:
Ci=C.
m (LR)ExKF: (Low rank approximation of):
Cj = DV(m;_1)C;_1DW(m;_1)7.

m EnKF: Particle approximations for m; and C;. 55810 | Center for Uneertanty

&7 i | Quantification
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Relative Error in Mean c/w Posterior

Mean
| method | €mean \
4DVAR(t = 0) || 0.000731491
4DVAR( = T) || 0.00130112
3DVAR 0.0634553
FDF 0.165732
LRExKF 0.00614573
EnKF 0.035271
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Relative Error in Variance c/w Posterior

Variance

’ method H €variance ‘

ADVAR(t = 0) || 0.0932748
4DVAR({ = T) | 0.220154

3DVAR 6.34057
FDF 28.9155
LRExXKF 0.195101
EnKF 0.274428

e e o uncertain
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LSTABILITY

Accuracy Theorem (3DVAR)

m Recall true signal v; = W (u) = v(jr).
m Define sup;~q [|§]| = e.

Theorem (BLLMSS11)

Assume that:

m mg € By(0, R);
m Enough low wavenumbers observed, and T small enough.
ml= 176,'
Then 3 ne = ne(r), r € (0,1), and ¢ € (0, 00) such that, for all
1N < Te,

Iy = vl < Pl — voll + c.

1certainty
n
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Inaccurate

3DVAR,v=0.01, h=0.2 3DVAR,v=0.01, h=0.2, Re(u, ,)
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Accurate
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Evaluation wrt gold standard, fixed Interval (T = J7):
Relative Error c/w Posterior:

From [LS11]:

’ method H €mean ‘ €variance ‘
3DVAR || 0.458527 | 1.8214
[SDVAR] 0.27185 | 6.62328
LRExXKF | 0.632448 | 0.4042
[LREXKF] || 0.201327 | 11.2449
EnKF 0.901703 | 0.554611
[EnKF] 0.169262 | 4.07238
FDF 0.189832 | 11.4573
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Two-phase incompressible flow and Data

— V- [X(s)e"Vp| = fi(p,s) inD x[0,T],
z/;% — V- [Mw(s)e'Vp] = h(p,s) inDx [0, T].
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Two-phase incompressible flow and Data

— V- [X(s)e"Vp| = fi(p,s) inD x[0,T],
q/;% — V- [Mw(s)e'Vp] = h(p,s) inDx [0, T].

h pointwise measurements of total flow rate at production wells
and bottom-hold pressure at injection wells.

Yi = ho(p(jT), s(7)) + nj
nj ~ N(0,I)

Y= {yiY_,.
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Filtering

Augmented System Dynamics

Define

u u
Z = ( pP ) 5 \U(Z) = ( Qﬁp(U,,D, S) ) ’ Zj+1 = \U(Zj),
S ¢s(UaP> S)

and then data is, for h(-) = (0, ho(-)),

yj = h(z) + 7 where n; ~ N(0,T).

State Estimation

Aim to recover posterior distribution on z; given Y; = {y,-}{::T In
particular u;|Y;. g
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Posterior Distribution

m MCMC - Gold standard :
Propose u* = mg + (1 — 28)2 (u(™") — mg) + V2BN(0, Co)

) — u*  with probability 1 A exp{®(u("™ 1) — &(u*)}
| uwrY else.
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Posterior Distribution

m MCMC - Gold standard :
Propose u* = mg + (1 — 28)2 (u(™") — mg) + V2BN(0, Co)

) — u*  with probability 1 A exp{®(u("™1) — &(u*)}
| uwrY else.

m 4DVAR - MAP Estimator :

u~ N(mj, Ch), C, = (D2d(m))) + C; 1)

A1
mfy = argminy (CD(U) + 311Gy 2(u— mO)HZ)-
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Approximate Gaussian Filters

m EnKF (with and without localization)
m Square-root EnKF (with and without localization)
m Randomized Maximum Likelihood (RML)

The posterior distribution is approximated by an ensemble
{@mN_ generated by solving

0" = argmin, (®(u; Y§7) + 3|1C12(u — u)|2)
where

~ Py,
Y = vi+q7, o) ~NO,el)
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Prior Geology

Monte Carlo samples of the prior distribution Py look like:
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Posterior Geology

MCMC samples of the posterior P(-|y) look like:
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Uncertainty Under The Prior

Large uncertainty in cumulative oil production:

Prior, Well: P1 Prior, Well: P2

Cumulaiive oil production x 10° ]

2 25 3 Z_ 25 3
Time [years] Time [years]

Prior, Well: P3 Prior, Well: P4

<10 m]

Cumulative oil production

Center for Uncertainty
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Uncertainty Under The Posterior

Reduction of the uncertainty via data:

Posterior, Well: P1 Posterior, Well: P2
7

1
E Eel
2 2
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3 34
H H
3 37

2

3 RN s o5 RN 3
Time [years] Time [years]
Posterior, Well: P3 Posterior, Well: P4
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Evaluation wrt gold standard, fixed interval

From [ILS13]:

Method €mean Cvariance COst (FM)
MCMC 0.000 0.000 5.5x 107
MAP 0.277 0.143 6.0 x 10°
RML (Ne = 50) 0235 0.415 3.0x10°
EnKF (N = 50) 0.834 0.391 5.0 x 10!

EnKF (loc, No = 50) 0.563 0.252 5.0 x 10'
EnKF (N, = 8000) 0.337 0.216 8.0 x 108

FM: Forward Model evaluations. e | Conter for Uncertainty
&V mraniin | Quantification
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Conclusions

m Approximate filters:

m can reproduce the posterior mean accurately;
m may not reproduce covariance accurately;
m can exhibit instability (e.g. on longer time-intervals).
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Conclusions

m Approximate filters:
m can reproduce the posterior mean accurately;
m may not reproduce covariance accurately;
m can exhibit instability (e.g. on longer time-intervals).
m This instability can cause loss of accuracy in even mean
prediction;
m Filter stabilization, via variance inflation can be used to
ameliorate instability. Intrusive: changes the covariance.

m Spatial localization techniques can improve accuracy of
ensemble method, hence ameliorate instability: mean-field
EnKF more stable than finite ensemble.
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Extensions

m Use this technique to assess other algorithms, e.g. particle
filters.

m Develop better/more efficient MCMC algorithms.

m Challenge: improve estimates of variance or, more
optimistically, general observables.

m Decompose state-space: use e.g. ExKF in the (changing)
stable subspace, and a more accurate method in the
unstable subspace.

L, 2™ | Center for Uncertainty
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