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Overview of uncertainty quantification

Consider
A(u; q) = f ⇒ u = S(f ; q),

where S is a solution operator.
Uncertain Input:

1. Parameter q := q(ω) (assume moments/cdf/pdf/quantiles
of q are given)

2. Boundary and initial conditions, right-hand side
3. Geometry of the domain

Uncertain solution:
1. mean value and variance of u
2. exceedance probabilities P(u > u∗)
3. probability density functions (pdf) of u.
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Realisations of random fields
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A big example:
UQ in numerical aerodynamics

(described by Navier-Stokes + turbulence modeling)
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Example: uncertainties in free stream turbulence
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Random vectors v1(θ) and v2(θ) model free stream turbulence
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Example: UQ

Assume that RVs α and Ma are Gaussian with

mean st. dev.
σ

σ/mean

α 2.79 0.1 0.036
Ma 0.734 0.005 0.007

Then uncertainties in the solution lift CL and drag CD are

CL 0.853 0.0174 0.02
CD 0.0206 0.003 0.146
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500 MC realisations of cp in dependence on αi and Mai
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Example: prob. density and cumuli. distrib. functions
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Figure : First row: density functions and the second row: distribution
functions of lift and drag correspondingly.
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Example: 3sigma intervals

Figure : 3σ interval, σ standard deviation, in each point of RAE2822
airfoil for the pressure (cp) and friction (cf) coefficients.

Center for Uncertainty
Quantification

Center for Uncertainty
Quantification

Center for Uncertainty Quantification Logo Lock-up 

9 / 26



4*

Example: diffusion equation with uncertain coeffs

{
− div(κ(x , ω)∇u(x , ω)) = p(x , ω) in G × Ω, G ⊂ R3,
u = 0 on ∂G, (1)

where κ(x , ω) - conductivity coefficient. Since κ positive,
usually κ(x , ω) = eγ(x ,ω).
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(left) mean and standard deviation (right) of κ(x , ω) (lognormal
random field with parameters µ = 0.5 and σ = 1).

Center for Uncertainty
Quantification

Center for Uncertainty
Quantification

Center for Uncertainty Quantification Logo Lock-up 

11 / 26



(left) mean and standard deviation (right) of the solution u.
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(left) a realization of the permeability and (right) a realisation of
the solution).
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Stochastical Methods overview

1. Monte Carlo Simulations (easy to implement,
parallelisable, expensive, dim. indepen.).

2. Stoch. collocation methods with global polynomials (easy
to implement, parallelisable, cheaper than MC, dim.
depen.).

3. Stoch. collocation methods with local polynomials (easy to
implement, parallelisable, cheaper than MC, dim. depen.)

4. Stochastic Galerkin (difficult to implement, non-trivial
parallelisation, the cheapest from all, dim. depen.)
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Karhunen-Loève Expansion

The Karhunen-Loève expansion is the series

κ(x , ω) = µk (x) +
∞∑

i=1

√
λiki(x)ξi(ω), where

ξi(ω) are uncorrelated random variables and ki are basis
functions in L2(G).
Eigenpairs λi , ki are the solution of

Tki = λiki , ki ∈ L2(G), i ∈ N, where.

T : L2(G)→ L2(G),
(Tu)(x) :=

∫
G covk (x , y)u(y)dy .
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KLE eigenfunctions in 2D
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Covariance functions

The random field κ(x , ω) requires to specify its spatial
correlation structure

covκ(x , y) = E[(κ(x , ·)− µκ(x))(κ(y , ·)− µκ(y))].

Let h =
√∑3

i=1 h2
i /`

2
i , where hi := xi − yi , i = 1,2,3, `i are cov.

lengths.

Examples:
Gaussian cov(h) = exp(−h2),
exponential cov(h) = exp(−h).
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Truncated Polynomial Chaos Expansion

ξ(ω) ≈
Z∑

k=0

ak Ψk (θ1, θ2, ..., θM), where Z =
(M + p)!

M!p!

- EXPENSIVE!
M = 9, p = 2, Z = 55
M = 9, p = 4, Z = 715
M = 100, p = 4, Z ≈ 4 · 106.
How to store and to handle so many coefficients ?
The orthogonality of Ψk enables the evaluation

ak =
< ξΨk >

< Ψ2
k >

=
1

< Ψ2
k >

∫
ξ(θ(ω))Ψk (θ(ω))dP(ω).

(e.g. Ψk are Hermite polynomials).
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Discrete form

Take weak formulation of the diffusion equation, apply KLE and
PCE to the test function v(x , ω), solution u(x , ω) and κ(x , ω),
obtain

Ku =

m−1∑
`=0

∑
γ∈JM,p

∆(γ) ⊗ K `

u = p, (2)

where ∆(γ) are some discrete operators which can be
computed analytically, K` ∈ Rn×n are the stiffness matrices.
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Galerkin stiffness matrix K
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ODEs with uncertain coefficients and i.c.

Examples:
1. Chaotic systems (Lorenz 63)
2. Predator-pray model
3. reaction/combustion/chemical equations
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Lorenz 1963

Is a system of ODEs. Has chaotic solutions for certain
parameter values and initial conditions.

ẋ = σ(ω)(y − x)

ẏ = x(ρ(ω)− z)− y
ż = xy − β(ω)z

Initial state q0(ω) = (x0(ω), y0(ω), z0(ω)) are uncertain.

Solving in t0, t1, ..., t10, Noisy Measur. → UPDATE, solving in
t11, t12, ..., t20, Noisy Measur. → UPDATE,...
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Trajectories of x,y and z in time. After each update (new
information coming) the uncertainty drops. (O. Pajonk)
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Stochastic Galerkin library

1. Type in your terminal
git clone git://github.com/ezander/sglib.git

2. To initialize all variables, run startup.m

You will find:
generalised PCE, sparse grids, (Q)MC, stochastic Galerkin,
linear solvers, KLE, covariance matrices, statistics, quadratures
(multivariate Chebyshev, Laguerre, Lagrange, Hermite ) etc

There are: many examples, many test, rich demos
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Open problems

1. Too many expensive (MC) simulations are required
2. in reality distributions/cov. matrices of random variables

are unknown
3. After discretization of random variables the problem

becomes high-dimensional.
4. The iterative methods must deal with tensors. The linear

algebra becomes multi-linear. The rank truncation issue.
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Take to home

1. KLE and PCE are used to discretize the stochastic
problem (e.g. for stochastic Galerkin)

2. KLE is optimal, used to separate x from ω

3. PCE is not optimal, used to represent unknown random
variable ξ(ω) by Gaussian random variables
ξ(ω) =

∑
α ξ

αHα(θ).
4. KLE contains less terms as PCE, but requires cov. function
5. (Q)MC does not take into account good (e.g.

sparse/low-rank) properties of the operator
6. Stochastic Galerkin does
7. sparse grids are often used to compute PCE coeffs
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