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Inferring/estimating functions which are inputs for a PDE model, given
measurements/observations form the output.

PDE-constrained applications
Porous media flow Electrical Impedance Tomography
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A regularizing ensemble Kalman method for PDE-constrained inverse problems.
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Iterative regularization for ensemble data assimilation in reservoir modeling
Computational Geosciences, (2015) 19:177-212

(University of Nottingham) A regularizing ensemble Kalman method Marco Iglesias 4/47



8 | The University of

Abstract Setting I!" otare

LetG: X — RY.

Forward Model
Given u € X compute
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Groundwater Flow: Forward and Inverse Problem

Forward groundwater flow model:

Forward Problem: Darcy flow

—V-kVp =f inD,
—kVp-n = By iny.
p = Bp inlp

where 0D =Ty U Tp.

u = log(x(x)) € X = L(D) — G(u) = {p(x)}_; € B’

Inverse Problem

Given y € RY find u € X:

y=g(u)+n.
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Bayesian Inversion

Probabilistic information about u before data is collected:

Likelihood

Since y = G(u) + 7, if n ~ N(0,T), then P(y|u) = N(G(u),T). Then
(r—weighted) model-data misfit ¢ is the negative log-likelihood:

o(u:y) = 20 g

|

Posterior
Probabilistic information about u after data is collected:

2 (u) = B(uly).

1 (u)
po(u)
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x exp ( — d(u; y))
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Bayesian Inversion

Posterior
Probabilistic information about u after data is collected:

W (u) = P(uly).

1 (u)
fo(U)

x exp ( — d(u; y))

|

Challenge

To explore the probability measure Y.
@ G is highly nonlinear; ¢¥ cannot be characterized with a few parameters.
@ The problem is high dimensional (X is discretized with 106-10° cells).
@ Standard sampling methods for Bayesian inference do not work.

@ Infinite-dimensional Bayesian framework [Stuart, 2010]; MCMC method
for functions (pcn-MCMC) [Cotter, et-al, 2013].

@ Well-known for continuous G.

v
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Classical Inversion

The Classical (deterministic) formulation of the Inverse Problem
Given data y € Y find

u=argmin|[r~"2(y — G(u))||? — min
ueX

For most PDE-constrained applications G : X — RM is compact (unless X is
finite dimensional)

Lack of continuity (lack of stability) with respect to the data

We can construct a sequence u, € X such that

Up = U but G(up) — G(v)

If we want to compute the minimizer above with standard optimization we
may observe semiconvergence behavior [Kirsch, 1996]
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Classical approach for nonlinear ill-posed inverse proble&h

Regularization Approaches (for nonlinear operators)

@ Regularize-then-compute (e.g. Tikhonov, TSVD)

@ Compute while regularizing (lterative Regularization) [Kaltenbacher, 2010]

regularizing Levenberg-Marquardt
Landweber iteration

truncated Newton-CG

iterative regularized Gauss-Newton method

Introduce noise level
IF="2(y = G(u)]| < n

Regularization

Construct an approximation u” that is stable, i.e. such that

um —u as n—0
where

G(u) = g(u')
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Merging the Bayesian and the Classical approach

Consider po(u) = P(u) = N(0, C) the prior on u and
y=6Gu+¢ &~ N(O,T)

The Bayesian Inverse Problem

Characterize the posterior 1Y (u) = P(uly):

W (u)
po(U)

1 : :
xexp (= IIF2(y = g()IF) ¥ =y +n® ~ N(O,T)

Ensemble Approximating the Bayesian posterior ./ (u) = P(uly)

Randomizing least-squares, e.g.
1 . i . .
ST = Gu)IF = min -y =y +4% ~ N(O,T)

or, for example, Randomized Maximum Likelihood

%HF‘”Z(}/U) = GUM)IE +]IC V2~ uD)|[% — min  uD ~ N(0,C)

v
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Overview of this work

Classical Bayesian
(deterministic) Inversion
Inversion

Characterize the posterior
Least-squares

duY
1 _ .
o(u;y) = HlIr 2y - Gl gy () o o0~ 0(u))
R Iterat{ve . Ensemble Kalman-based methods
egularization ) ) . :
(e.g. regularizing LM, u(lya) — U(Jvf) + ]C(y(l) _ G(u(f”)))
landweber iteration).

ﬁ M. A.lglesias

A regularizing ensemble Kalman method for PDE-constrained inverse problems.
to appear in Inverse Problems, 2015. htip://arxiv.org/abs/1505.03876

ﬁ M. A.lglesias

Iterative regularization for ensemble data assimilation in reservoir modeling
Computational Geosciences, (2015) 19:177-212
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Ensemble Kalman Smoother [Evensen, 2006]

Bayesian Inverse Problem

Given a prior po(u) of on u and data
y=6)+n n~N(O,T)
find u(u) = P(uly).

p(w) o po(u) exp { — 21IF~"/2(y — G(u)|?)
Define
z= < g(“u) > y=Hz+n  H=(0,1)

Alternative Bayesian Inverse Problem

Given a prior on z, uo(z) and data y, find u(z) = P(z|y)

xcexp{ — TlIF72(y — ()P}
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Ensemble Kalman Smoother

Bayesian Inverse Problem

Given a prior on z, uo(z) and data y, find u(z) = P(z|y)

() o po(uyexp { — 21"y — G(u))|1?}

Construct an initial ensemble

) () )
U.f) _ Ug ()1 Ne
Z - i ) {U }‘: ~ Ko
0 ( g( (I)) ) 0 Jj=1

U
Compute mean and covariance
(Ne—1) =

Gaussian Approximation: 1o(z) = N(Z', C),
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Ensemble Kalman Smoother

Since uo(z) = N(Z', C'), then

() < pio() exp { IRy g(u))||2} = N(Z*, C?)

where 1
29 =204 C'HT(HC'HT +T) (v — HZ?)

K
C?=(I-K)C
Updated each ensemble according to
, . -1 ,
208 = 260 4 o HT (Hcf HT + r) (yU) — HzU-N)

with ' ' '
yO =y+n0, 50~ N(O,I)
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Ensemble Kalman Smoother

Updated each ensemble according to
. . -1 .
20:8) = 200 ¢ cfHT(HcfHT + r) (y) — HzU-N)

Claim 1: {0}, ~ P(z]y).

u
Recall that z = < a(u) ) Then,

ud) = ) + cmem 1) (D - GuY)

Claim 2: {uD} [, ~ P(uly).

Observation: {u(/')}/’.\’;1 = P(uly) if G is linear and po is Gaussian.
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Issues with Ensemble Kalman Smoother

It kind of works....sometimes.
u) — U(()j) + CUW(CWW 4 r)—1(y(j) . g(u(()f))

Underestimates the uncertainty

Iterative smoothers

uf =+ cam ey + 1) (D - g

Overestimates the uncertainty

Ad-hoc fixes of Iterative smoothers

U =y, + po G (Ca + ar) ' (Y9 - 6(u?)

n—

p is a localization matrix and « is an inflation parameter
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Understanding the iterative ensemble smoother with iterative
regularization

Suppose we are interested in solving

u = argmin ||I~"2(y — G(u))||?
ueX

where X has norm [|[C~1/2 .||

Levenberg-Marquardt

Unpy1 iteration level is given by

Un41 = Up +argmin IF="2(y — G(un) = DG(un)V)I[? + ol |C V2V

After some computations

Un41 = Up + C DG*(Un)(DG(un) € DG*(Up) + al) ™" (y — G(un))

(University of Nottingham) A regularizing ensemble Kalman method

Marco Iglesias 18/47



Regularizing LM scheme [Hanke,1997]

Hanke proposed a way to select « and a stoping criteria (6= noise
level):
T2y = G(un)ll ~ 6

so that
Uni1 = Up + C DG*(Un)(DG(un) C DG*(un) + al) " (y — G(un))

generates a stable approximation to the solution of the classical
inverse problem.

Theorem [Hanke 1997]

The LM scheme terminates after a finite number of iterations n* and

Up—u as n—0 (where G(u)=g(u)

u' is the truth
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Regularizing ensemble Kalman method

Consider an initial ensemble {u’)}’\’e c X

Linearize around the ensemble mean u, = N Z -1 uf)

wY = G(ul) ~ G(Un) + DG(Tn)(uY — Tp)
Cr'DG*(un)v =~ Cy"v DG(un)Cr'DG(un)*v ~ CMv

Recall the update formula for the regularizing LM scheme

Unt1 = Up + C DG*(un)(DG(un) C DG*(up) + o)~ (¥ = G(un))

Replace

u, = Up,
CDG*(up) = Cp'DG*(up) ~ CH”
DG(un) CDG*(un) = DG(un)CLYDG*(upn) ~ CHY
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Regularizing ensemble Kalman method

Update formula for the mean of the ensemble

Uni1 = Un + Cp"(C™ + o)™ (y — Wp)

where W, = 12 YN G(u).
We propose to update each ensemble in a consistent fashion

ully = ol + G + a7 (Y — ()

n

Selection of a:
plIT V2 (y = Wa))lly < al[TV2(CHY + al) 7 (y — W)l y

Stopping criteria
T2 (y — Wa)lly =~ 6
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An iterative regularizing ensemble Kalman method

Let p < 1and 7 > 1/p. Generate an initial ensemble u(()/) ~ g

A regularizing Kalman method

(1) Prediction Step: Evaluate W,(,{’f) = g(u,(,/;)) define W,
(2) Stopping criteria. If

IF="2(y = Wh)l| < 7

Stop. Otherwise: define Ch", um, Ch" and
(3) Analysis step: Compute the updated ensembles

D | = ud) + Co(CH 4 aml) T (YO — WD)

m

for am such that

am|[T2(C + aml) ™ (v = Wi)l| < plIT " 2(y" — W)
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@ Numerical Investigation of the Scheme
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Synthetic experiment with Darcy flow model

Initial ensemble generated from a prior P(u) = N(u, C).

G(u) be the forward operator that arises from Darcy flow.
Truth Measurement locations

I
oot gl TP - L A et . .. ..

o8 f,w o T
* ; F .
* | R E .

et ﬁ‘

y (dimensionless)
y (dimensionless)

x (dimensionless) x (dimensionless)
Consider a truth ut ~ P(u) from which synthetic data are generated by
y=guhH+¢ & ~ N(0,T) (prescribed I covariance of the Gaussian
noise).
For the numerical investigation with respect to the approximation properties of
the Bayesian posterior see
@ M. A. Iglesias

Iterative regularization for ensemble-based data assimilation in reservoir models.
Computational Geosciences. 19(1), 2015.
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Synthetic experiment with Darcy flow model

Initial ensemble generated from a prior P(u) = N(u, C).

G(u) be the forward operator that arises from Darcy flow.
Measurement locations

2 04 05 08 0z 0 3 o8
x (dimensionless) x (dimensionless)

Some elements from the initial ensemble
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Results from the standard ES choice o = 1.

Reconstructing the truth with the mean of an ensemble of N, = 75
(with small noise)

¥ (dimensionless)

x (dimensionless)

Ensemble mean (no reg). lter:1 mean (no reg). Iter:2 mean (no reg). Iter:3 mean (no reg). lter:12
i E . g . w5 R =

F O
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Performance

1 <8 )
Unz%;un

IF=2(y = G(@n))ll 2 [Un — u"lli2(p)

Data misfit Error w.r.t truth
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|
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iteration iteration
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Results with the regularizing ensemble Kalman method

Reconstructing the truth with the mean of an ensemble of No = 75
(with small noise)

¥ (dimensionless)

x (dimensionless)

mean (no reg). Iter:5 mean (no reg). Ilter:9 mean (no reg). lter:13 mean (no reg). lter:17
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Performance

Up =

IF="2(y — G(Tn))ll e 1Tn — u™|12(p)

Data misfit Error w.r.t truth

‘= '='regularized ‘== regularized
o unregularized 1.05 unregularized

log data misfit
relative error

2 4 6 8 10 12 14 16 18 2 2 4 6 8 10 1 14 16 18 2
iteration iteration
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Regularization parameter o

Plot of log «

log alpha

L L L
2 4 6 8 10 12 14

iteraton
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Regularizing properties as a function of the ensemble size

= 5 09
2 %
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iteration iteration

(University of Nottingham) A regularizing ensemble Kalman method Marco Iglesias 31/47



(]
i
(7/]
o
Q2
£
(V]
(7]
=
(M)
o
=
e
o
(o)
c
o
=
(3]
c
=)
=
(1]
n
(]
(/2]
()
=
S
o
Q.
o
P
o
o)
=
N
=
o
=)
o)
(]
o

=0.7

N =75, p

=0.7

N =75, p

0.6

n < (5] N

usiw erep-60|

15 20

10
iteration

15 20

10
iteration

32/47

Marco Iglesias

A regularizing ensemble Kalman method

(University of Nottingham)



Regularizing properties as a function of the ensemble size

N =100, p =0.7 N =100, p =0.7
e e

6 1
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o 5 08
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iteration iteration
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Regularizing properties as a function of the ensemble size

N_=150, p =0.7 N_=150, p =0.7

log—data misfit
relative error

0 5 10 15 20 0 5 10 15 20
iteration iteration
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Regularizing properties as a function of the ensemble size

N_=200, p =0.7 N_=200, p =0.7

log—data misfit
relative error

0 5 10 15 20 0 5 10 15 20
iteration iteration
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Regularizing properties as a function of the ensemble size

N_=300, p =0.7 N_=300, p =0.7

log—data misfit
relative error

0 5 10 15 20 0 5 10 15 20
iteration iteration
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Convergence as the noise level decreases

Ne .
Up = Z uY)
Ne “
=1
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The proposed ES as an approximate regularizing LM scheme

Comparing ES with the regularizing LM scheme (on the same
subspace)

130 0.8
120l |——regularizing ES —regularizing ES
o 0.75 I
£ ., |~ - -regularizing LM|| - - -regularizing LM
(] T T (@]
— ] 1 = 07
€ 100 n4 I"I n, oy
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iteration iteration
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Manufacturing Composite Materials

In Collaboration with Michael Tretyakov (UoN, maths) and Minho Park
(UoN, maths), Mikhail Matveev (UoN, engineering)

Forward map: Resin Transfer Molding

-V-e'Vp =f inD(t)
p =pin onlip drs(t)

p =p; onlg(t) at
—e'Vp-n =0 only

Moving boundary

vy
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Solving the Inverse Problem
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Electrical Impedance Tomography

Complete Electrode Model: Forward and Inverse Problem

Given k, {zp}re_, and | = {In}re_, compute vand V = {Vip}re_,

V-kVv =0 in D,

V—l—ZmHVVI/ :Vm on em, m:‘l’...,ne,
Vv-r =0 on D\ U™_.en,
fem/-;;Vv-yds =In m=1,...,0Ne,
15, } ; \2
% N
Inverse Problem: 7 . \
Given /M, ... IN) and the i I
observations of voltages A .
v, ..., VIN) find k and zp, . '
? 7
. S
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Geometric Parameterization with Level-Sets

Permeability « defined through level set function u:

K(X) = K1 X{u<o} (X) + K2 X {uz0} (X)-
u +— k is discontinuous

Forward Map and initial ensemble

u— K — G(u) = {p(x;)}L; € RY

Gaussian prior po = N(0, Cp) on the level-set function.
Covariance Cy reflects the regularity of the shape.

ﬁ M. A. Iglesias, Y. Lu and A. M . Stuart
A level-set approach to Bayesian geometric inverse problems.
Submitted, 2015. http://arxiv.org/abs/1504.00313
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@ lterative regularization provides strategies for regularizing Kalman
based methods.

@ Regularization has strong effect in the robustness and accuracy of
ensemble methods for solving both classical and Bayesian inverse
problems.

@ The stabilization of the proposed method is suitable for solving
level-set based geometric inverse problems.

@ Further investigations are required to establish the mathematical
properties of these approximations.
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