A Regularizing Ensemble Kalman Method for PDE-constrained Inverse Problems

Marco Iglesias

School of Mathematical Sciences, University of Nottingham, U.K.

AMCS Seminar, Center for UQ, CEMSE, KAUST, KSA September 8th, 2015

Outline

Introduction

Numerical Investigation of the Scheme

Applications

Outline

Introduction

Numerical Investigation of the Scheme

3 Applications

General Aim

Inferring/estimating functions which are inputs for a PDE model, given measurements/observations form the output.

PDE-constrained applications

Porous media flow

Electrical Impedance Tomography

M. A.Iglesias

A regularizing ensemble Kalman method for PDE-constrained inverse problems.

to appear in Inverse Problems, 2015. http://arxiv.org/abs/1505.03876

M. A.Iglesias

Iterative regularization for ensemble data assimilation in reservoir modeling Computational Geosciences, (2015) 19:177-212

Abstract Setting

Let $\mathcal{G}: X \to \mathbb{R}^J$.

Forward Model

Given $u \in X$ compute

$$y = \mathcal{G}(u)$$
.

Let $\eta \in \mathbb{R}^J$ be a realization of an observational noise.

Inverse Problem

Given $y \in \mathbb{R}^J$ find $u \in X$:

$$y = \mathcal{G}(u) + \eta.$$

Groundwater Flow: Forward and Inverse Problem

Forward groundwater flow model:

Forward Problem: Darcy flow

$$\begin{aligned}
-\nabla \cdot \kappa \nabla p &= f & \text{in } D, \\
-\kappa \nabla p \cdot n &= B_N & \text{in } \Gamma_N. \\
p &= B_D & \text{in } \Gamma_D
\end{aligned}$$

where $\partial D = \Gamma_N \cup \Gamma_D$.

$$u = \log(\kappa(x)) \in X \equiv L^{\infty}(D) \longrightarrow \mathcal{G}(u) = \{p(x_i)\}_{i=1}^{J} \in \mathbb{R}^{J}$$

Inverse Problem

Given $y \in \mathbb{R}^J$ find $u \in X$:

$$y = \mathcal{G}(u) + \eta.$$

Bayesian Inversion

Prior

Probabilistic information about *u before* data is collected:

$$\mu_0(u) = \mathbb{P}(u)$$

Likelihood

Since $y = \mathcal{G}(u) + \eta$, if $\eta \sim N(0, \Gamma)$, then $\mathbb{P}(y|u) = N(\mathcal{G}(u), \Gamma)$. Then $(\Gamma$ —weighted) model-data misfit Φ is the negative log-likelihood:

$$\Phi(u;y) = \frac{1}{2} \left\| \Gamma^{-1/2} (y - \mathcal{G}(u)) \right\|^2$$

Posterior

Probabilistic information about *u after* data is collected:

$$\mu^{y}(u) = \mathbb{P}(u|y).$$

$$rac{\mu^{y}(u)}{\mu_{0}(u)} \propto \exp\left(-\Phi(u;y)
ight)$$

Bayesian Inversion

Posterior

Probabilistic information about *u after* data is collected:

$$\mu^{\mathbf{y}}(\mathbf{u}) = \mathbb{P}(\mathbf{u}|\mathbf{y}).$$

$$\frac{\mu^{y}(u)}{\mu_{0}(u)} \propto \exp\left(-\Phi(u;y)\right)$$

Challenge

To explore the probability measure μ^{y} .

- ullet $\mathcal G$ is highly nonlinear; $\mu^{\mathbf y}$ cannot be characterized with a few parameters.
- The problem is high dimensional (X is discretized with 10^6 - 10^9 cells).
- Standard sampling methods for Bayesian inference do not work.
- Infinite-dimensional Bayesian framework [Stuart, 2010]; MCMC method for functions (pcn-MCMC) [Cotter, et-al, 2013].
- Well-known for continuous G.

Classical Inversion

The Classical (deterministic) formulation of the Inverse Problem

Given data $y \in Y$ find

$$u = \arg\min_{u \in X} ||\Gamma^{-1/2}(y - \mathcal{G}(u))||^2 \to \min$$

For most PDE-constrained applications $\mathcal{G}: X \to \mathbb{R}^M$ is compact (unless X is finite dimensional)

Lack of continuity (lack of stability) with respect to the data

We can construct a sequence $u_n \in X$ such that

$$u_n \nrightarrow u$$
 but $\mathcal{G}(u_n) \to \mathcal{G}(u)$

If we want to compute the minimizer above with standard optimization we may observe semiconvergence behavior [Kirsch, 1996]

Classical approach for nonlinear ill-posed inverse problem

Regularization Approaches (for nonlinear operators)

- Regularize-then-compute (e.g. Tikhonov, TSVD)
- Compute while regularizing (Iterative Regularization) [Kaltenbacher, 2010]
 - regularizing Levenberg-Marquardt
 - Landweber iteration
 - truncated Newton-CG
 - iterative regularized Gauss-Newton method

Introduce noise level

$$||\Gamma^{-1/2}(y-\mathcal{G}(u^{\dagger}))|| \leq \eta$$

Regularization

Construct an approximation u^{η} that is stable, i.e. such that

$$u^{\eta} \rightarrow u$$
 as $\eta \rightarrow 0$

where

$$G(u) = G(u^{\dagger})$$

Merging the Bayesian and the Classical approach

Consider $\mu_0(u) = \mathbb{P}(u) = \mathcal{N}(0, C)$ the prior on u and

$$y = \mathcal{G}(u) + \xi, \quad \xi \sim \mathcal{N}(0, \Gamma)$$

The Bayesian Inverse Problem

Characterize the posterior $\mu^{y}(u) = \mathbb{P}(u|y)$:

$$\frac{\mu^{y}(u)}{\mu_{0}(u)} \propto \exp\left(-\frac{1}{2}||\Gamma^{-1/2}(y-\mathcal{G}(u))||^{2}\right) \quad y^{(j)} = y + \eta^{(j)} \sim N(0,\Gamma)$$

Ensemble Approximating the Bayesian posterior $\mu^{y}(u) = \mathbb{P}(u|y)$

Randomizing least-squares, e.g.

$$\frac{1}{2}||\Gamma^{-1/2}(y^{(j)}-\mathcal{G}(u))||^2 \rightarrow \min \quad \ y^{(j)}=y+\eta^{(j)} \sim \textit{N}(0,\Gamma)$$

or, for example, Randomized Maximum Likelihood

$$\frac{1}{2}||\Gamma^{-1/2}(y^{(j)}-\mathcal{G}(u^{(j)}))||^2+||C^{-1/2}(u-u^{(j)})||_X^2\to \text{min} \quad \ u^{(j)}\sim \mathcal{N}(0,C)$$

Overview of this work

M. A.Iglesias

A regularizing ensemble Kalman method for PDE-constrained inverse problems.

to appear in Inverse Problems, 2015. http://arxiv.org/abs/1505.03876

M. A.Iglesias

Iterative regularization for ensemble data assimilation in reservoir modeling Computational Geosciences. (2015) 19:177-212

Ensemble Kalman Smoother [Evensen, 2006]

Bayesian Inverse Problem

Given a prior $\mu_0(u)$ of on u and data

$$y = \mathcal{G}(u) + \eta \quad \eta \sim N(0, \Gamma)$$

find $\mu(u) = \mathbb{P}(u|y)$.

$$\mu(u) \propto \mu_0(u) \exp\left\{-\frac{1}{2}||\Gamma^{-1/2}(y-\mathcal{G}(u))||^2\right\}$$

Define

$$z = \begin{pmatrix} u \\ \mathcal{G}(u) \end{pmatrix}, \qquad y = Hz + \eta, \qquad H = (0, I)$$

Alternative Bayesian Inverse Problem

Given a prior on z, $\mu_0(z)$ and data y, find $\mu(z) = \mathbb{P}(z|y)$

$$\frac{\mu(z)}{\mu_0(z)} \propto \exp\Big\{-\frac{1}{2}||\Gamma^{-1/2}(y-\mathcal{G}(u))||^2\Big\}$$

Ensemble Kalman Smoother

Bayesian Inverse Problem

Given a prior on z, $\mu_0(z)$ and data y, find $\mu(z) = \mathbb{P}(z|y)$

$$\mu(u) \propto \mu_0(u) \exp\left\{-\frac{1}{2}||\Gamma^{-1/2}(y-\mathcal{G}(u))||^2\right\}$$

Construct an initial ensemble

$$z_0^{(j,f)} = \begin{pmatrix} u_0^{(j)} \\ \mathcal{G}(u_0^{(j)}) \end{pmatrix}, \qquad \{u_0^{(j)}\}_{j=1}^{N_e} \sim \mu_0$$

Compute mean and covariance

$$\overline{Z}^f = \frac{1}{N_e} \sum_{j=1}^{N_e} z^{(j,f)} \qquad C^f = \frac{1}{(N_e - 1)} \sum_{j=1}^{N_e} z^{(j,f)} (z^{(j,f)})^T - \overline{Z}^f (\overline{Z}^f)^T$$

Gaussian Approximation: $\mu_0(z) = N(\overline{z}^f, C^f)$,

Ensemble Kalman Smoother

Since $\mu_0(z) = N(\overline{z}^f, C^f)$, then

$$\mu(u) \propto \mu_0(u) \exp\left\{-\frac{1}{2}||\Gamma^{-1/2}(y-\mathcal{G}(u))||^2\right\} = N(\overline{z}^a, C^a)$$

where

$$\overline{Z}^{(a)} = \overline{Z}^{(f)} + \underbrace{C^f H^T \Big(H C^f H^T + \Gamma \Big)^{-1}}_{K} (y - H \overline{Z}^{(f)})$$
$$C^a = (I - K) C^f$$

Updated each ensemble according to

$$z^{(j,a)} = z^{(j,f)} + C^f H^T (HC^f H^T + \Gamma)^{-1} (y^{(j)} - Hz^{(j,f)})$$

with

$$y^{(j)} = y + \eta^{(j)}, \qquad \eta^{(j)} \sim N(0, \Gamma)$$

Ensemble Kalman Smoother

Updated each ensemble according to

$$z^{(j,a)} = z^{(j,f)} + C^f H^T \Big(H C^f H^T + \Gamma \Big)^{-1} (y^{(j)} - H z^{(j,f)})$$

Claim 1:
$$\{z^{(j,a)}\}_{j=1}^{N_e} \approx \mathbb{P}(z|y)$$
.

Recall that
$$z = \begin{pmatrix} u \\ \mathcal{G}(u) \end{pmatrix}$$
. Then,

$$u^{(j)} = u_0^{(j)} + C^{uw}(C^{ww} + \Gamma)^{-1}(y^{(j)} - G(u_0^{(j)})$$

$$C^{uw} = \frac{1}{(N_{e} - 1)} \sum_{j=1}^{N_{e}} (u_{0}^{(j)} - \overline{u}_{0}) (\mathcal{G}(u_{0}^{(j)}) - \mathcal{G}(\overline{u}_{0}))^{T}$$

$$C^{ww} = \frac{1}{(N_e - 1)} \sum_{i=1}^{N_e} (\mathcal{G}(u_0^{(j)}) - \mathcal{G}(\overline{u}_0)) (\mathcal{G}(u_0^{(j)}) - \mathcal{G}(\overline{u}_0))^T$$

Claim 2: $\{u^{(j)}\}_{j=1}^{N_e} \approx \mathbb{P}(u|y)$.

Observation: $\{u^{(j)}\}_{i=1}^{N_e} = \mathbb{P}(u|y)$ if \mathcal{G} is linear and μ_0 is Gaussian.

Issues with Ensemble Kalman Smoother

It kind of works....sometimes.

$$u^{(j)} = u_0^{(j)} + C^{uw}(C^{ww} + \Gamma)^{-1}(y^{(j)} - \mathcal{G}(u_0^{(j)})$$

Underestimates the uncertainty

Iterative smoothers

$$u_n^{(j)} = u_{n-1}^{(j)} + C_{n-1}^{uw} (C_{n-1}^{ww} + \Gamma)^{-1} (y^{(j)} - \mathcal{G}(u_{n-1}^{(j)})$$

Overestimates the uncertainty

Ad-hoc fixes of Iterative smoothers

$$u_n^{(j)} = u_{n-1}^{(j)} + \rho \circ C_{n-1}^{uw} (C_{n-1}^{ww} + \alpha \Gamma)^{-1} (y^{(j)} - \mathcal{G}(u_{n-1}^{(j)})$$

 ρ is a localization matrix and α is an inflation parameter

Understanding the iterative ensemble smoother with iterative regularization

Suppose we are interested in solving

$$u = \arg\min_{u \in X} ||\Gamma^{-1/2}(y - \mathcal{G}(u))||^2$$

where X has norm $||C^{-1/2} \cdot ||$

Levenberg-Marquardt

 u_{n+1} iteration level is given by

$$u_{n+1} = u_n + \arg\min_{v \in X} ||\Gamma^{-1/2}(y - \mathcal{G}(u_n) - D\mathcal{G}(u_n)v)||^2 + \alpha ||C^{-1/2}v||_X^2$$

After some computations

$$u_{n+1} = u_n + C D\mathcal{G}^*(u_n)(D\mathcal{G}(u_n) C D\mathcal{G}^*(u_n) + \alpha \Gamma)^{-1}(y - \mathcal{G}(u_n))$$

Regularizing LM scheme [Hanke,1997]

Hanke proposed a way to select α and a stoping criteria (δ = noise level):

$$||\Gamma^{-1/2}(y-\mathcal{G}(u_n))|| \approx \delta$$

so that

$$u_{n+1} = u_n + C D\mathcal{G}^*(u_n)(D\mathcal{G}(u_n) C D\mathcal{G}^*(u_n) + \alpha \Gamma)^{-1}(y - \mathcal{G}(u_n))$$

generates a stable approximation to the solution of the classical inverse problem.

Theorem [Hanke 1997]

The LM scheme terminates after a finite number of iterations n^* and

$$u_{n^\star} o u$$
 as $\eta o 0$ (where $\mathcal{G}(u) = \mathcal{G}(u^\dagger)$)

 u^{\dagger} is the truth

Regularizing ensemble Kalman method

Consider an initial ensemble $\{u_0^{(j)}\}_{j=1}^{N_e} \subseteq X$

Linearize around the ensemble mean $\overline{u}_n \equiv \frac{1}{N_e} \sum_{j=1}^{N_e} u_n^{(j)}$

$$egin{aligned} w_n^{(j)} &\equiv \mathcal{G}(u_n^{(j)}) pprox \mathcal{G}(\overline{u}_n) + D\mathcal{G}(\overline{u}_n)(u_n^{(j)} - \overline{u}_n) \ & C_n^{uu}D\mathcal{G}^*(\overline{u}_n)v pprox C_n^{uw}v & D\mathcal{G}(\overline{u}_n)C_n^{uu}D\mathcal{G}(\overline{u}_n)^*v pprox C_n^{ww}v \end{aligned}$$

Recall the update formula for the regularizing LM scheme

$$u_{n+1} = u_n + C D\mathcal{G}^*(u_n)(D\mathcal{G}(u_n) C D\mathcal{G}^*(u_n) + \alpha \Gamma)^{-1}(y - \mathcal{G}(u_n))$$

Replace

$$\begin{array}{ccc} u_n & \Longrightarrow & \overline{u}_n, \\ C \, D\mathcal{G}^*(u_n) & \Longrightarrow & C_n^{uu} D\mathcal{G}^*(\overline{u}_n) \approx C_n^{uw} \\ D\mathcal{G}(u_n) \, C \, D\mathcal{G}^*(u_n) & \Longrightarrow & D\mathcal{G}(\overline{u}_n) C_n^{uu} D\mathcal{G}^*(\overline{u}_n) \approx C_n^{ww} \end{array}$$

Regularizing ensemble Kalman method

Update formula for the mean of the ensemble

$$\overline{u}_{n+1} = \overline{u}_n + C_n^{uw}(C_n^{ww} + \alpha \Gamma)^{-1}(y - \overline{w}_n)$$

where $\overline{w}_n \equiv \frac{1}{N_e} \sum_{j=1}^{N_e} \mathcal{G}(u_n^{(j)})$.

We propose to update each ensemble in a consistent fashion

$$u_{n+1}^{(j)} = u_n^{(j)} + C_n^{uw}(C_n^{ww} + \alpha \Gamma)^{-1}(y^{(j)} - \mathcal{G}(u_n^{(j)}))$$

Selection of α :

$$\rho||\Gamma^{-1/2}(y-\overline{w}_n))||_{Y} \leq \alpha||\Gamma^{1/2}(C_n^{ww}+\alpha\Gamma)^{-1}(y-\overline{w}_n)||_{Y}$$

Stopping criteria

$$||\Gamma^{-1/2}(y-\overline{w}_n)||_Y \approx \delta$$

An iterative regularizing ensemble Kalman method

Let $\rho < 1$ and $\tau > 1/\rho$. Generate an initial ensemble $u_0^{(j)} \sim \mu_0$

A regularizing Kalman method

- (1) **Prediction Step:** Evaluate $w_m^{(j,f)} = \mathcal{G}(u_m^{(j)})$ define \overline{w}_m^f
- (2) Stopping criteria. If

$$||\Gamma^{-1/2}(y-\overline{w}_m^f)|| \leq \tau \eta$$

Stop. Otherwise: define C_m^{uw} , \overline{u}_m , C_m^{ww} and

(3) Analysis step: Compute the updated ensembles

$$u_{m+1}^{(j)} = u_m^{(j)} + C_m^{uw} (C_m^{ww} + \alpha_m \Gamma)^{-1} (y^{(j)} - w_m^{(j,f)})$$

for α_m such that

$$\alpha_m || \Gamma^{1/2} (C_m^{ww} + \alpha_m \Gamma)^{-1} (y^{\eta} - \overline{w}_m^f) || \le \rho || \Gamma^{-1/2} (y^{\eta} - \overline{w}_m^f) ||$$

Outline

Introduction

Numerical Investigation of the Scheme

3 Applications

Synthetic experiment with Darcy flow model

Initial ensemble generated from a prior $\mathbb{P}(u) = N(\overline{u}, C)$. $\mathcal{G}(u)$ be the forward operator that arises from Darcy flow.

Consider a truth $u^{\dagger} \sim \mathbb{P}(u)$ from which synthetic data are generated by $y = \mathcal{G}(u^{\dagger}) + \xi$ $\xi \sim N(0, \Gamma)$ (prescribed Γ covariance of the Gaussian noise).

For the numerical investigation with respect to the approximation properties of the Bayesian posterior see

M. A. Iglesias

Iterative regularization for ensemble-based data assimilation in reservoir models. *Computational Geosciences.* 19(1), 2015.

Synthetic experiment with Darcy flow model

Initial ensemble generated from a prior $\mathbb{P}(u) = N(\overline{u}, C)$. G(u) be the forward operator that arises from Darcy flow.

Some elements from the initial ensemble

Results from the standard ES choice $\alpha = 1$.

Reconstructing the truth with the mean of an ensemble of $N_e = 75$ (with small noise)

Performance

$$\overline{u}_n \equiv \frac{1}{N_e} \sum_{j=1}^{N_e} u_n^{(j)}$$

$$||\Gamma^{-1/2}(y-\mathcal{G}(\overline{u}_n))||_{l^2}$$

$$||\overline{u}_n - u^{\dagger}||_{L^2(D)}$$

Results with the regularizing ensemble Kalman method

Reconstructing the truth with the mean of an ensemble of $N_e = 75$ (with small noise)

Performance

$$\overline{u}_n \equiv \frac{1}{N} \sum_{j=1}^N u_n^{(j)}$$

$$||\Gamma^{-1/2}(y - \mathcal{G}(\overline{u}_n))||_{l^2} \qquad ||\overline{u}_n - u^{\dagger}||_{L^2(D)}$$

$$\begin{array}{c} \text{Data misfit} & \text{Error w.r.t truth} \\ & \text{--regularized} \\ & \text{--unregularized} \\ & \text{--unregularized} \\ & \text{--negularized} \\ & \text{--negularized}$$

iteration

iteration

Regularization parameter α

Plot of $\log \alpha$

Convergence as the noise level decreases

The proposed ES as an approximate regularizing LM scheme

Comparing ES with the regularizing LM scheme (on the same subspace)

Outline

Introduction

Numerical Investigation of the Scheme

3 Applications

Manufacturing Composite Materials

In Collaboration with Michael Tretyakov (UoN, maths) and Minho Park (UoN, maths), Mikhail Matveev (UoN, engineering)

Forward map: Resin Transfer Molding

$$-\nabla \cdot e^{u} \nabla p = f \quad \text{in } D(t)$$

$$p = p_{in} \quad \text{on } \Gamma_{in}$$

$$p = p_{f} \quad \text{on } \Gamma_{s}(t)$$

$$-e^{u} \nabla p \cdot n = 0 \quad \text{on } \Gamma_{N}$$

Moving boundary

$$\frac{d\Gamma_s(t)}{dt} = -e^u \nabla \rho$$

$$u = \log(\kappa(x)) \in X \equiv L^{\infty}(D) \longrightarrow G(u) = \{p(x_i)\}_{i=1}^{N} \in Y \equiv \mathbb{R}^{M}$$

The Inverse Problem

Find $u \in X$ given

$$y = G(u) + \eta$$
 $\eta \sim N(0, \Gamma)$

The Forward model

Solving the Inverse Problem

Electrical Impedance Tomography

Complete Electrode Model: Forward and Inverse Problem

Given
$$\kappa$$
, $\{z_m\}_{m=1}^{n_e}$ and $I = \{I_m\}_{m=1}^{n_e}$ compute v and $V = \{V_m\}_{m=1}^{n_e}$

$$\nabla \cdot \kappa \nabla v = 0 \quad \text{in } D,$$

$$v + z_m \kappa \nabla v \cdot \nu = V_m \quad \text{on } e_m, \quad m = 1, \dots, n_e,$$

$$\nabla v \cdot \nu = 0 \quad \text{on } \partial D \setminus \bigcup_{m=1}^{n_e} e_m,$$

$$\int_{e_m} \kappa \nabla v \cdot \nu \, ds = I_m \quad m = 1, \dots, n_e,$$

Inverse Problem:

Given $I^{(1)}, \ldots, I^{(N)}$ and the observations of voltages $V^{(1)}, \ldots, V^{(N)}$ find κ and z_m

Geometric Parameterization with Level-Sets

Permeability κ defined through level set function u:

$$\kappa(x) = \kappa_1 \, \chi_{\{u < 0\}}(x) + \kappa_2 \, \chi_{\{u \ge 0\}}(x).$$

 $u \mapsto \kappa$ is discontinuous

Forward Map and initial ensemble

$$u \longrightarrow \kappa \longrightarrow \mathcal{G}(u) = \{p(x_i)\}_{i=1}^N \in \mathbb{R}^M$$

Gaussian prior $\mu_0 = N(0, C_0)$ on the level-set function. Covariance C_0 reflects the regularity of the shape.

M. A. Iglesias, Y. Lu and A. M . Stuart

A level-set approach to Bayesian geometric inverse problems.

Submitted, 2015. http://arxiv.org/abs/1504.00313

Solving EIT

Summary

- Iterative regularization provides strategies for regularizing Kalman based methods.
- Regularization has strong effect in the robustness and accuracy of ensemble methods for solving both classical and Bayesian inverse problems.
- The stabilization of the proposed method is suitable for solving level-set based geometric inverse problems.
- Further investigations are required to establish the mathematical properties of these approximations.

References

M.A.Iglesias, K.Lin and A.M.Stuart

Well-posed Bayesian geometric inverse problems arising in subsurface flow. Inverse Problems, 30 (2014) 114001

M. A.Iglesias

A regularizing ensemble Kalman method for PDE-constrained inverse problems. to appear in Inverse Problems, 2015, http://arxiv.org/abs/1505.03876

M. A. Iglesias, Y. Lu and A. M. Stuart

A level-set approach to Bayesian geometric inverse problems.

Submitted, 2015. http://arxiv.org/abs/1504.00313

M. A.Iglesias

Iterative regularization for ensemble data assimilation in reservoir modeling Computational Geosciences, (2015) 19:177-212

M. Iglesias, K. Law and A.M. Stuart,

Ensemble Kalman methods for inverse problems.

Inverse Problems. 29 (2013) 045001 http://arxiv.org/abs/1209.2736

S.L.Cotter, G.O.Roberts, A.M. Stuart, and D. White.

MCMC methods for functions: modifying old algorithms to make them faster.

Statistical Science, 28(2013) 424-446). arXiv:1202.0709.