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Introduction - a motivating example I
In designing an experiment, decisions must be made before
data collection, and data collection is restricted by limited
resources (K. Chaloner & I. Verdinelli [1], p.273).

NASA News (July 23rd , 2014)
http://www.nasa.gov/jpl/spitzer/pia18463/

Using data from NASA’s Kepler and Spitzer Space Telescopes, scientists
have made the most precise measurement ever of the size of a world
outside our solar system, as illustrated in this artist’s conception.

Figure : NASA/JPL-Caltech - Gauging an Alien World’s Size.
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Introduction - a motivating example II

The diameter of the exoplanet, dubbed Kepler-93b, is now known with
an uncertainty of just one percent.

According to this new study, the diameter of Kepler-93b is about
18,800 km, ± 240 km – the approximate distance between Washington,
D.C., and Philadelphia, Penn.

Kepler-93b is 1.481 times the width of Earth, the diameter of which is
12,742 km.

Although light from the planet is too faint to be detected, the
gravitational tug of the planet on the star is sufficient to
produce a measurable Doppler shift in the velocity of absorption
lines in the stars spectrum. By fitting a Keplerian orbit to the
measured radial velocity data, say yk , it is possible to obtain
information about the orbit and a lower limit on the mass of the
unseen planet (P. Gregory [2], p.331).
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Introduction - a motivating example III

A basic tool in this context is the
Keplerian radial velocity model for a single planet.

The extrasolar planet Kepler problem ([3], p.60))

Making radial velocity measurements of a star in order to best
determine the parameters of the orbit of an unseen
Jupiter-mass companion.

Goal ([3], pp.60-61))

To choose future times of observations to best improve the
estimates of the planet’s orbital parameters.
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Introduction - a motivating example IV

The predicted time-dependent Keplerian star’s radial velocity for a single
planet takes the form

v(t) = v0 + K [e cos(ωP) + cos(ωP + ν(t))]

where

I v0 is the systemic velocity,

I K is the radial velocity semi-amplitude (m/s),

I e is the eccentricity of the elliptical orbit and

I ωP is the argument of periastron (the point nearest to a star in the
path of a planet orbiting that star).

The so-called true anomaly ν(t) (the angle between the periastron and
the position of the planet), that depends on the three parameters e,

I τ the orbital period (days), and

I tP the time of periastron passage,
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Introduction - a motivating example V

can be computed by solving the two equations

E (t)− e sin(E (t)) =
2π

τ
(t − tP) ,

tan

(
ν(t)

2

)
=

√
1 + e

1− e
tan

(
E (t)

2

)
.

Statistical assumptions:

I the single measurement yk is Gaussian distributed with mean
v(tk ; τ, e,K ),

I the measurement errors are uncorrelated, i.e. the error covariance
matrix is given by Σε = Iσ2 , with standard deviation σ = 8 m s−1.
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Introduction - a motivating example VI

The measured velocities are given by

yk = v(tk ; τ, e,K ) + ek , ek
i.i.d.∼ N (0, σ2) . (1)

We now describe the main stages that characterize a simulation-based
optimal Bayesian experimental design.

To exemplify the virtuous cycle that may lead to the uncertainty
reduction about the unknown parameters assume, as an initial
observation stage, that 10 observations are available from model (1) with
τ = 800 days, e = 0.5, and K = 50 m s−1 .
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Introduction - a motivating example VII
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Figure : The true velocity curve and the 10 simulated observations.
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Introduction - a motivating example VIII

We now introduce - the inference stage - the posterior probability density
for the unknown parameter vector θ := (τ, e,K ) by means of the Bayes’
theorem:

p(θ|ȳ ,M) =
p(θ|M) p(ȳ |θ,M)

p(ȳ |M)

where ȳ and M denote the data vector and the modeling assumptions,
respectively, and

I p(θ|M) is the prior probability density for the parameter vector
θ ∈ Θ ,

I p(ȳ |θ,M) is the likelihood function, and

I p(ȳ |M) =
∫
p(θ|M) p(ȳ |θ,M) dθ is the evidence of the data.

Assumption: flat prior.
Then

p(θ|ȳ ,M) ∝ exp

[
−1

2

10∑
k=1

(
yk − v(tk ; τ, e,K )

σ

)2
]
.

We may now draw samples from the posterior distribution p(θ|ȳ ,M) .
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Introduction - a motivating example IX

Figure : Samples from the posterior distribution p(τ, e|ȳ ,M). T. J. Loredo
([4], p.341)
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Introduction - a motivating example X

Finally, in the design stage, our goal is to choose the time t at which to
take a new observation in order to reduce the uncertainty into the
unknown parameters.

Remark
In this example the time t is the design parameter.

First we consider the predictive distribution of a future data y at time t:

p(y |t, ȳ ,M) =

∫
p(y ,θ|t, ȳ ,M)dθ =

∫
p(y |t,θ,M) p(θ|ȳ ,M)dθ ,

where p(y |t,θ,M) is the sampling distribution for y .

p(y |t, ȳ ,M) =

∫
p(θ|ȳ ,M)

1

σ
√

2π
exp

[
− 1

2σ2
(y − v(t;θ))2

]
dθ

≈ 1

N

∑
θj

1

σ
√

2π
exp

[
− 1

2σ2
(y − v(t;θj))2

]
.
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Introduction - a motivating example XI
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Figure : The true velocity curve and the 15 velocity curves for samples from
the posterior distribution.
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Introduction - a motivating example XII
What is the best sampling time? This is a decision problem.
For each time t we may choose - the action - that is for each experiment
we may perform - there will be a consequence, that is the corresponding
value y of the future data.
Consequences are evaluated by means of an utility function U(y , t).
The optimal experiment is the one that maximizes the expected utility:

t̂ := arg max
t

∫
p(y |t, ȳ ,M)U(y , t) dy .

D. V. Lindley ([5], 1956) proposed, on the basis of Shannon’s ideas
developed into the theory of information in communication engineering,
the following utility function:

U(y , t) =

∫
p(θ|y , ȳ , t,M) log p(θ|y , ȳ , t,M) dθ .

which is the amount of information about θ with respect to the posterior
distribution (also known as negative Shannon entropy of the posterior
distribution).

14 / 40



Introduction - a motivating example XIII

The expected utility function (expected information gain)

I (t) :=

∫
p(y |t, ȳ ,M)U(y , t) dy

=

∫
p(y |t, ȳ ,M)

∫
p(θ|y , ȳ , t,M) log p(θ|y , ȳ , t,M) dθ dy ,

should be maximized with respect to t to provide indications about the
best experiment to be performed in order to achieve an optimal reduction
of the uncertainty of the model’s parameters.
Sebastiani and Wynn ([6]) showed that, if the width of the noise
distribution is independent of the underlying signal, then

I (t) = −
∫

p(y |t, ȳ ,M) log p(y |t, ȳ ,M) dy , (2)

which is the entropy of the predictive distribution.
The choice of t that maximizes (2) will provide the maximum amount of
information about θ (maximum entropy sampling principle).
I (t) can be estimated by means of a Monte Carlo integration technique.
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Introduction - a motivating example XIV

Figure : The true velocity curve, predicted velocity curves for samples from the
posterior distribution, Monte Carlo evaluation of the expected information gain.
T. J. Loredo ([4], p.341)
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Introduction - a motivating example XV

Figure : Sequential uncertainty reduction in the model’s parameters (τ, e). T.
J. Loredo ([4], p.342)
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The expected information gain I

Assume that the experiment is performed to make inference (uncertainty
reduction) on the vector θ of unknown parameters in the model

y i = g(θ, ξ) + εi , i = 1, . . . ,M ,

where

I ξ denotes the vector of design parameters,

I y i is the ith observation vector, and

I we suppose that the additive noise is such that εi
i.i.d.∼ N (0,Σε) .

Let p(θ) be the prior density of θ .

An alternative definition of the expected information gain can be based
on the so-called Kullback-Leibler (K-L) divergence between the prior
distribution Q and the posterior distribution P for the parameter vector θ.
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The expected information gain II
The K-L divergence (information gain) between prior and posterior of θ
is

DKL(ȳ , ξ) =

∫
Θ

log

(
p(θ|ȳ , redξ)

p(θ)

)
p(θ|ȳ , ξ) dθ .

(if p(θ|ȳ , ξ) = p(θ), then DKL = 0. )
The expected information gain in θ is given by

I (ξ) := EDKL(ȳ , ξ) =

∫
Y
DKL(ȳ , ξ) p(ȳ |ξ) d ȳ

=

∫
Y

∫
Θ

log

(
p(θ|ȳ , ξ)

p(θ)

)
p(θ|ȳ , ξ) dθ p(ȳ |ξ) d ȳ ≥ 0 .

After using Bayes’ theorem

I (ξ) =

∫
Y

∫
Θ

log

(
p(ȳ |θ, ξ)

p(ȳ |ξ)

)
p(θ) p(ȳ |θ, ξ)dθ d ȳ . (3)

The optimal design is:
ξ̂ := arg max

ξ
I (ξ) .
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The expected information gain III
Observe that the optimality criterion is an average of the amount of
information given by the decrease in the Shannon entropy of the
distribution of θ:

−
∫

Θ

p(θ) log p(θ) dθ +

∫
Θ

p(θ|ȳ , ξ) log p(θ|ȳ , ξ) dθ ,

and, after taking expectation with respect to all possible experimental
scenarios, we get∫

Y

[∫
Θ

(p(θ|ȳ , ξ) log p(θ|ȳ , ξ)− p(θ) log p(θ)) dθ

]
p(ȳ |ξ) d ȳ ,

that equals the preposterior expectation of the Kullback-Leibler
divergence between the prior and the posterior distribution of the
parameter vector θ:∫

Y

∫
Θ

log

(
p(θ|ȳ , ξ)

p(θ)

)
p(θ|ȳ , ξ)dθ p(ȳ |ξ)d ȳ = I (ξ) .

Observe that the K-L divergence will be hardly available in a closed form.
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The expected information gain IV
However, as an illustration, we may compute easily the K-L divergence
between, for example, a Gaussian prior N (µ0, σ

2
0)) and a Gaussian

posterior N (µ1, σ
2
1):

DKL(post, prior) = log

(
σ0

σ1

)
+

1

2

(
σ2

1

σ2
0

)
+

(µ0 − µ1)2

2σ2
0

− 1

2
.

The K-L divergence between a multivariate Gaussian prior Nd(µ0,Σ0)
and a multivariate Gaussian posterior Nd(µ1,Σ1) is given by

DKL(post, prior) =
1

2

{
log
|Σ0|
|Σ1|

−d+tr(Σ−1
0 Σ1)+ (µ1−µ0)′Σ0(µ1−µ0)

}
.

Useful formulas have been obtained for broad class of distributions, for
example, multivariate skew-elliptical distributions. See ([7], Genton et al.,
2013) where these tools have been applied for the optimal design of an
ozone monitoring station network.

To determine the optimal design, a fast numerical integration strategy is
needed in order to compute, for each design parameter ξ ∈ D, the value
of the criterion function I (ξ).
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Double–loop Monte Carlo I
The integral over the data and the parameter space that defines the
expected information gain

I (ξ) =

∫
Θ

∫
Y

log

(
p(ȳ |θ, ξ)

p(ȳ |ξ)

)
p(ȳ |θ, ξ) d ȳ p(θ)dθ ,

can be evaluated, for each ξ, by means of a Monte Carlo sampling
strategy ([8], [9]):

I (ξ) ≈ 1

Mo

Mo∑
k=1

log

(
p(ȳ k |θk , ξ)

p(ȳ k |ξ)

)
,

where θk is drawn from p(θ), ȳ k is drawn from p(ȳ |θk , ξ). The term
“double–loop” originates from the nested Monte Carlo sampling that is
needed to evaluate the marginal density

p(ȳ k |ξ) =

∫
Θ

p(ȳ k |θ)p(θ)dθ ≈ 1

Mi

Mi∑
j=1

p(ȳ k |θj) ,

where θj is drawn from p(θ).

22 / 40



Double–loop Monte Carlo II

Mo ×Mi drawings are needed to estimate I (ξ).
The outer loop (Mo) controls the variance of the estimate, the inner loop
(Mi ) its bias.
The application of this method can be extremely costly when the data
becomes available after solving, for each θ, a numerical problem involving
the approximation of the solution of partial differential equations.
Ryan ([8], p.589) proposed to use the estimator of I (ξ) given by

1

M

M∑
l=1

log
p({Y i}l |θl , ξ)

1
L

∑L
j=1 p({Y i}|θ∗lj , ξ)

with an importance sampling based estimator for p({y i}l |ξ), where
θ∗lj , l = 1, . . . ,M , j = 1, . . . , L are M samples of size L from p(θ)
obtained independently of the N pairs ({y i}l ,θl) .
Our approach to estimate the expected information gain I (ξ) will

rely upon the Laplace approximation, which is closely connected to
the asymptotic normality of the posterior distribution ([10], p.115).
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Laplace’s method - a reminder I

Approximation is ubiquitous in both statistical theory and
practice ([11], p.1358)

For a classical treatment of Laplace’s method see, for instance, the book
by Wong ([12], pp.55–66) or the book by Evans and Swartz ([13],
pp.62–70).
Laplace’s method provides an approximation for integrals of the form

IM =

∫ b

a

f (θ)eM L(θ) dθ

when M is large.
The idea is that if L has a unique maximum at θ̂ ∈ (a, b), where
L′(θ̂) = 0 and L′′(θ̂) < 0, then for M large the value of IM depends on
the behavior of L near its maximum

IM ≈ f (θ̂) eM L(θ̂)

(
−2π

ML′′(θ̂)

)1/2

as M →∞ .
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Laplace’s method - a reminder II
In the multiparameter case, under regularity conditions, the integral

IM =

∫
Rd

f (θ) eML(θ) dθ ,

can be expressed by

IM = f (θ̂) eML(θ̂)(2π)d/2M−d/2| − ∇∇L(θ̂)|−1/2 (1 + O(M−1)) ,

where ∇∇L(θ) denotes the Hessian of L

∇∇L(θ)
d×d

=

((
∂2

∂θi∂θj
L(θ)

))
ij

.

Tierney and Kadane ([14], 1986) convincingly demonstrated
that Laplace’s approximation holds significant practical value
for Bayesians. ...(Their) article clearly renewed general interest
in Laplace’s method among statisticians working in many
different area of statistics ([11], p.1362).
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Estimation of I (ξ) for determined models I
I Synthetic Data model:

y i = g(θ0, ξ) + εi , i = 1, . . . ,M ,

θ0 is the “true” parameter vector that generates, through the “true”
model g , the synthetic data, ξ is the experimental set-up, y i is the
ith measurement, ε is the measurement noise, M is the number of
repeated experiments.
Let p(θ) be the prior density for θ and define h(θ) := log(p(θ)).

I The posterior density for θ is proportional to

p(θ|ȳ) ∝
M∏
i=1

exp

(
−1

2
r i (θ)TΣ−1

ε r i (θ)

)
p(θ) , (4)

where r i is the residual for the i th measurement,

r i (θ) = y i − g(θ) = g(θ0) + εi − g(θ) ,

and Σε is the covariance matrix of the experimental Gaussian additive
noise.
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Estimation of I (ξ) for determined models II

I The Laplace’s method leads to the following normal approximation
for the posterior density of θ

p̃(θ|ȳ) =
1

(2π)d/2|Σ| 12
exp

(
− (θ − θ̂)TΣ−1(θ − θ̂)

2

)
, (5)

where θ̂ := arg min
θ

[
1
2

∑M
i=1 r i (θ)TΣ−1

ε r i (θ)− h(θ)

]
is the

maximum posterior estimate for θ , and Σ = HF (θ̂) := ∇∇F (θ) ,
with

F (θ) := − log(p(θ|ȳ)) =
1

2

M∑
i=1

r i (θ)TΣ−1
ε r i (θ)− h(θ) + C1 .
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Estimation of I (ξ) for determined models III

We derived ([15], pp.26–27) the following asymptotic approximation for
I (ξ):

I (ξ) =

∫
Y
DKL(ȳ , ξ)p(ȳ |ξ) d ȳ

=

∫
Θ

∫
Y
DKL(ȳ , ξ) p(ȳ |θ0, ξ) d ȳ p(θ0) dθ0

=

∫
Θ

∫
Y

[
−1

2
log((2π)d |Σ|))− d

2
−h(θ̂)− tr(Σ∇∇h(θ̂))

2

]

× p(ȳ |θ0)d ȳp(θ0)dθ0 + O

(
1

M2

)
, (6)

where Σ is the covariance matrix of the posterior distribution, d is the
dimension of θ, h(θ) is the log prior, and θ̂ is the maximum posterior
estimate for θ.
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Estimation of I (ξ) for determined models IV

By using the first order approximation θ̂ = θ0 + Op( 1√
M

) we can show

that

I (ξ) =

∫
Θ

[
−1

2
log((2π)d |Σ|)− d

2
− h(θ0)− tr(Σ∇∇h(θ0))

2

]
× p(θ0)dθ0 + O

(
1

M

)
. (7)

An estimator of I (ξ) based on the Laplace approximation and a simple
Monte Carlo strategy is given by

I (ξ) ≈ 1

N

N∑
i=1

(
−1

2
log((2π)d |Σ|)− d

2
− h(θi )−

tr(Σ∇∇h(θi ))

2

)
.

(8)

Remark
The estimator (8) is consistent only when the conditions for the validity
of the Laplace approximation are fulfilled.
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Estimation of I (ξ) for determined models V
As an illustration, consider the following model (proposed in ([9], 2013):

y(θ, ξ) = θ3ξ2 + θ e−|0.2−ξ| + ε with ε ∼ N (0, σ2
m)

and assume a uniform prior distribution U(0.5, 1.5) for θ.
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Figure : Posterior densities for θ (generated using the following parameters:
σ2
m = 0.01, ξ = 0.2, θ0 = 1) and the Laplace-based approximation density for θ.
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Estimation of I (ξ) for determined models VI

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

ξ

E
xp

ec
te

d 
in

fo
rm

at
io

n 
ga

in
  I

 (ξ
)

●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

● ●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

●

EIG with σ = 0.001

M= 1
M = 10
M = 40

(a)

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●

0.0 0.2 0.4 0.6 0.8 1.0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

ξ

E
xp

ec
te

d 
in

fo
rm

at
io

n 
ga

in
  I

 (ξ
)

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

● ● ●
● ● ● ● ● ● ● ●

● ● ●
● ● ●

EIG with σ = 0.001

M= 1
M = 10
M = 40

(b)

Figure : Left: Expected information gains estimated by Laplace approximation.
Right: Expected information gains estimated by DLMC with 104 × 104 samples.
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Estimation of I (ξ) for determined models VII
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Figure : A zoomed–in version for the case M = 10. The error bar represents
the 97.5% confidence interval, whose width is approximately 0.5% of the
magnitude of the expected information gain.
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Estimation of I (ξ) for under-determined models I
How to deal with the cases where there are unidentifiable parameters?

Example: g(θ, ξ) = (θ2
1 + θ2

2)3ξ2 + (θ2
1 + θ2

2) e−|0.2−ξ|
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Figure : Illustrative unidentifiable submanifold.
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Estimation of I (ξ) for under-determined models II

I Data model:

y = (θ1 + θ2)3ξ2 + (θ1 + θ2) e−|0.2−ξ| + ε ,

with ε ∼ N (0, σ2
m).

I Gaussian mixture model prior for θ

p(θ) =
1

2
p1(θ) +

1

2
p2(θ) ,

where p1(θ) and p2(θ) are the densities of two multivariate Gaussian
distributions with mean vectors [2, 0]′ and [0, 2]′, respectively, and
covariance matrix [

1 0
0 1

]
.
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Illustrative example

y = (θ1 + θ2)3ξ2 + (θ1 + θ2) e−|0.2−ξ| + ε , with ε ∼ N (0, 10−3).
Gaussian mixture model prior for θ
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Figure : Left: the prior pdf; middle: the posterior pdf (M = 5); right: the
convergence of the expected information gain computed by projective Laplace
approximation using Monte Carlo Sampling and sparse grid numerical
integration, and by DLMC. ξ = 1.
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Illustrative example

Log Gaussian mixture model prior for γ = log θ
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Figure : Left: the posterior pdf (M = 5); middle: the posterior pdf (M = 12);
right: the convergence of the expected information gain computed by projective
Laplace approximation using Monte Carlo Sampling and sparse grid numerical
integration, and by DLMC. ξ = 1.
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Conclusions

I We presented some fundamental issues that characterize the
Bayesian learning process based on experimental data, when the
main interest is to make inference about the unknown parameters of
the proposed model.

I We stressed the role of information theoretic measures to obtain
optimal designs.

I We proposed a strategy for fast numerical computation of the
expected information gain by means of the Laplace method. Some
illustrative examples show the remarkable computational advantage
of such method when compared with the double–loop Monte Carlo
sampling integration technique.

I In our recent work we explored how to adapt the Laplace method for
unidentifiable problems.
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