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Why nonlinear data assimilation?
The resolution of models is also increasing:



Particle filters

P(vj+1|Yj) =

�

Rn

P(vj+1|vj)P(vj |Yj)dvj

P(vj+1|Yj+1) =
P(yj+1|vj+1)P(vj+1|Yj)

P(yj+1|Yj)

Prediction:

Analysis:

Filtering:

P(vj |Yj) ≈
N�

n=1

w(n)
j δ(vj − v(n)j )

Particle filtering:

P(vj |Yj)

v(n)j



=

�

Rn

P(vj+1|vj)
Q(vj+1|vj , Yj+1)

Q(vj+1|vj , Yj+1)P(vj |Yj)dvj

Particle filters

{v(n)j , w(n)
j }Nn=1 �→ {v(n)j+1, w

(n)
j+1}

N
n=1

How to determine the new positions and weights of particles at 
time j+1 given the weights and positions at time j?

Prediction:

P(vj+1|Yj) =

�

Rn

P(vj+1|vj)P(vj |Yj)dvj



This new particle is then re-weighted according to the analysis 
formulae of filtering to give

�w(n)
j+1 = w(n)

j

P(yj+1|v(n)j+1)P(v
(n)
j+1|v

(n)
j )

Q(v(n)j+1|v
(n)
j , Yj+1)

w(n)
j+1 =

�w(n)
j+1��N

n=1 �w(n)
j+1

�

P(vj+1|Yj+1) ≈ PN (vj+1|Yj+1) :=
N�

n+1

w(n)
j+1δ(vj+1 − v(n)j+1)

Particle filters

2)

3) The weights are normalised so that they sum to one

Leading to:

v(n)j+1 ∼ Q(vj+1|v(n)j , Yj+1)

1)

Overall framework, given {v(n)j , w(n)
j }Nn=1 �→ {v(n)j+1, w

(n)
j+1}

N
n=1

Sample the new position of each particle by sampling from a 
proposal probability distribution



Different particle filters

The key two elements that differ between particle filters are:

v(n)j+1 ∼ Q(v(n)j+1|v
(n)
j , Yj+1)

�w(n)
j+1 = w(n)

j

P(yj+1|v(n)j+1)P(v
(n)
j+1|v

(n)
j )

Q(v(n)j+1|v
(n)
j , Yj+1)

proposal distribution

associated weight update



time j

PN (vj |Yj) :=

P(vj |Yj) ≈
N�

n=1

w(n)
j δ(vj − v(n)j )

v(n)j

Standard particle filter - proposal density

P(vj+1|vj) ∝ exp

�
−1

2

���Σ− 1
2 (vj+1 −Ψ(vj))

���
2
�

Ψ(v(n)j )
v(n)j+1 = Ψ(v(n)j ) + ξ(n)j

proposal distribution
Q(vj+1|vj , Yj+1) ≡ P(vj+1|vj)



=⇒Q(v(n)j+1|v
(n)
j , Yj+1) ≡ P(v(n)j+1|v

(n)
j )

�w(n)
j+1 = w(n)

j

P(yj+1|v(n)j+1)P(v
(n)
j+1|v

(n)
j )

P(v(n)j+1|v
(n)
j )

Standard particle filter - weight update

associated weight update

�w(n)
j+1 ∝ w(n)

j P(yj+1|v(n)j+1)



Standard particle filter - weight update

P(yj+1|v(n)j+1) ∝ exp

�
−1

2

���Γ− 1
2 (yj+1 − h(v(n)j+1))

���
2
�

v(n)j+1 = Ψ(v(n)j ) + ξ(n)j

yj+1



Standard particle filter

v(n)j+1 = Ψ(v(n)j ) + ξ(n)j



Old weights are 
multiplied by the 
new weights

Standard particle filter

v(n)j+1 = Ψ(v(n)j ) + ξ(n)j

�w(n)
j+1 ∝ w(n)

j P(yj+1|v(n)j+1)



Sequential Importance Resampling (SIR) particle filter

v(n)j+1 = Ψ(v(n)j ) + ξ(n)j
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Sequential Importance Resampling (SIR) particle filter

v(n)j+1 = Ψ(v(n)j ) + ξ(n)j



A simple resampling scheme

1. Put all the weights after each other on the unit interval:

2. Draw a random number from the uniform distribution over   [0,1/N], 
in this case (with 10 members) over [0,1/10].

3. Put that number on the unit interval: its end point is the first member 
drawn.

4. Add 1/N to the end point: the new end point is our second member 
drawn. Repeat this until N new members are obtained,

5. In our example we choose m1, m2, m3, m5 twice, m6 twice, m8 
twice and m10 and loose m4, m7 and m9 due to small weights

0 1
w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

0 1

m1 m2 m3 m5 m5 m6 m6 m8 m8 m10



Sequential Importance Resampling (SIR) particle filter

1. 

2. 

3. 

4. 

5. 

6. 

Set j = 0 and PN (v0|Y0) = P(v0)

Draw v(n)j ∼ PN (vj |Yj) (resample)

Set w(n)
j = 1/N, n = 1, . . . , N

i.e. Set �v(n)j+1 = Ψ(v(n)j ) + ξ(n)j , ξ(n)j ∼ N(0,Σ)

Draw �v(n)j+1 ∼ P(�vj+1|v(n)j )

Calculate w(n)
j+1 = P(yj+1|v(n)j+1)/

�
N�

n=1

P(yj+1|v(n)j+1)

�

where P(yj+1|v(n)j+1) ∝ exp

�
−1

2

���Γ− 1
2 (yj+1 − h(v(n)j+1))

���
2
�

j + 1 �→ j and return to step 2
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x−variable

green truth posterior pdf comes from a 1000 particle run of the standard 
particle filter

Lorenz 63 system of equations

posterior (red) compared to truth (green)
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Standard Particle Filter fails - filter degeneracy
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Standard Particle Filter fails - filter degeneracy
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High dimensional systems

 Barotropic vorticity:

 256 by 256 grid - 65,536 variables

 Doubly periodic boundary conditions

 Semi-langrangian time stepping scheme

 Twin experiments

 Observations every 50 time steps - decorrelation time of 42

 32 particles

2

q(xj|xj−1
, y

n) ∼ N(f(xj−1) + ‘nudge’, Q̂)

x
j = f(xj−1) +K(yn −H(xj−1)) + β̂j

p(xn) =
p(xn|xn−1)

q(xn|xn−1, yn)
....

p(x1|x0)

q(x1|x0, yn)
q(xn|xn−1

, y
n)....q(x1|x0

, y
n)p(x0)

=
1

N

N�

i=1

p(xn|xn−1)

q(xn|xn−1, yn)
....

p(x1|x0)

q(x1|x0, yn)
δ(xn − x

n
i )

=
1

N

N�

i=1

w
prior
i δ(xn − x

n
i )

Dq

Dt
=

∂q

∂t
+ u.∇q = 0



Mean of SIR filter fails to capture truth

True model state

• Every variable is observed

• 1200 time steps

Mean of particles
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SIR Filter - filter degeneracy is evident

True model state Mean of particles
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�w(1)
j+1 ∝ exp

�
−1

2

���Γ− 1
2 (yj+1 − h(v(1)j+1))

���
2
�

= exp(−0.005M)

�w(2)
j+1 ∝ exp

�
−1

2

���Γ− 1
2 (yj+1 − h(v(2)j+1))

���
2
�

= exp(−0.02M)

A closer look at the weights

Assume particle 1 is at 0.1 standard deviations s of M 
independent observations. Then its weight will be:

Assume particle 2 is at 0.2 standard deviations s of M 
independent observations. Then its weight will be:



�w(2)
j+1

�w(1)
j+1

= exp(−0.03) ≈ 0.1

�w(2)
j+1

�w(1)
j+1

= exp(−15) ≈ 3× 10−7

A closer look at the weights

The ratio of the weights is:

So for M=2 the ratio of the two weights is:

But for M=1000 the ratio of the two weights is:

Conclusion: the number of independent observations is responsible for the 
degeneracy in particle filters

�w(2)
j+1

�w(1)
j+1

= exp(−0.015M)



Different particle filters

Proposal densities can be chosen to try and reduce this variance 
in the weights.

v(n)j+1 ∼ Q(v(n)j+1|v
(n)
j , Yj+1)

�w(n)
j+1 = w(n)

j

P(yj+1|v(n)j+1)P(v
(n)
j+1|v

(n)
j )

Q(v(n)j+1|v
(n)
j , Yj+1)

proposal distribution

associated weight update



Q(vj+1|v(n)j , Yj+1) ≡ P(vj+1|v(n)j , yj+1)

P(vj+1|v(n)j ) ∝ exp

�
−1

2

���Σ− 1
2 (vj+1 −Ψ(v(n)j ))

���
2
�

v
(n)
j+1 = Ψ(v(n)j ) + ΣHT

�
HΣHT + Γ

�−1
�
yj+1 −HΨ(v(n)j )

�
+ ζ(n)j

ζ(n)j ∼ N(0, P ), P
−1 = Σ−1 +H

TΓ−1
H

Optimal proposal density
proposal distribution

for:

P(yj+1|v(n)j+1) ∝ exp

�
−1

2

���Γ− 1
2 (yj+1 − h(v(n)j+1))

���
2
�

this equates to (assuming a linear observation operator):

This is similar to Kalman gain matrix K but using model error rather than 
prior error



Q(v(n)j+1|v
(n)
j , Yj+1) = P(v(n)j+1|v

(n)
j , yj+1) =

P(yj+1|v(n)j+1)P(v
(n)
j+1|v

(n)
j )

P(yj+1|v(n)j )

�w(n)
j+1 ∝ w(n)

j P(yj+1|v(n)j )

Optimal proposal density - weight update

associated weight update

�w(n)
j+1 = w(n)

j

P(yj+1|v(n)j+1)P(v
(n)
j+1|v

(n)
j )

Q(v(n)j+1|v
(n)
j , Yj+1)

= w(n)
j P(yj+1|v(n)j )

�w(n)
j+1 = w(n)

j

P(yj+1|v(n)j+1)P(v
(n)
j+1|v

(n)
j )

Q(v(n)j+1|v
(n)
j , Yj+1)

= w(n)
j P(yj+1|v(n)j )

Linked to the use of the Kalman gain, the choice of new model state is the 
maximum a-posterior of these two distributions

weight does not depend on new model state



Optimal proposal density - weight update

v
(n)
j+1 = Ψ(v(n)j ) + ΣHT

�
HΣHT + Γ

�−1
�
yj+1 −HΨ(v(n)j )

�
+ ζ(n)j

v(n)j

weight is the maximum weight it is possible 
for a particle to achieve given its position 

sample of random error from stated distribution has no effect on the weight

The variance in the weights is therefore the variance in the maximum weight 
it is possible for each particle to achieve

P(yj+1|v(n)j ) ∝ exp

�
−1

2

���(HΣHT + Γ)−
1
2 (yj+1 −HΨ(v(n)j ))

���
2
�



1. 

2. 

3. 

4. 

5. 

6. 

Optimal proposal density

Set j = 0 and PN (v0|Y0) = P(v0)

Draw v(n)j ∼ PN (vj |Yj) (resample)

Set w(n)
j = 1/N, n = 1, . . . , N

j + 1 �→ j and return to step 2

Draw �v(n)j+1 ∼ P(�vj+1|v(n)j , yj+1)

i.e. Set v(n)j+1 = Ψ(v(n)j ) + ΣHT
�
HΣHT + Γ

�−1
�
yj+1 −HΨ(v(n)j )

�
+ ζ(n)j

Calculate w(n)
j+1 = P(yj+1|v(n)j )/

�
N�

n=1

P(yj+1|v(n)j )

�

where P(yj+1|v(n)j ) ∝ exp

�
−1

2

���(HΣHT + Γ)−
1
2 (yj+1 −HΨ(v(n)j ))

���
2
�



Optimal proposal density - variance of weightsSNYDER: PARTICLE FILTERS
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Figure 2: Histograms of the maximum weight from 103 simulations of the system (17), using either
the standard proposals (left column) or the optimal proposal (right column). The weights come from
a single update step for observations yk, with xik−1 drawn from N(0,I). In the case of the optimal
proposal with Nx = 10 and the standard proposal witht Nx = 160, the first and last bin, respectively,
have greater than 400 occurrences.

The optimal proposal distribution involves a Kalman-filter update of the forecast from xk−1 given obser-
vations yk.

The new weights satisfy

wik ! exp
(

−
1
2
|yk−xik|2

)

, (20)

for the standard proposal and

wik ! exp

(

−
|yk−axik−1|2

2(1+q2)

)

. (21)

The arguments of the exponentials in (20) and (21) have expected values that grow linearly with Ny.
Thus, when Ny is large, a unit change in the arguments will produce increasingly dramatic changes in
wik, leading to a situation in which one or a few realizations of xik (or xik−1 in the case of the optimal
proposal) produce weights that are much larger than all others. For specified Ny, however, the argument
of the exponential in (21) will be less than that in (20) with high probability: the denominator is always
larger and axik−1 will usually be closer to yk than xik is, since xik is affected by the system noise. This
suggests, correctly, that the optimal proposal will reduce the problem of degeneracy.

These points are illustrated in Fig. 2, which shows histograms of the maximum weight from simulations
of a single update step with each of the proposals. The ensemble size is fixed, Ne = 103, and the
dimension of the state and observation vectors varies, Nx = 10, 40, 160. As Nx increases, maximum
weights close to unity become more frequent with either proposal – this is the degeneracy problem
or, in the terminology of Snyder et al. (2008), the collapse of the weights. At each Nx, however, the
degeneracy is less pronounced when using the optimal proposal.

6 ECMWF Seminar on Data assimilation for atmosphere and ocean, 6 - 9 September 2011

Optimal proposal improves on SIR filter, but filter degeneracy still occurs in 
high dimensional systems

(‘Particle filters, the ‘optimal’ proposal and high dimensional systems’ Snyder, 2012)



v
(n)
j+1 = Ψ(v(n)j ) +Kj+1(yj+1 −H(Ψ(v(n)j ))) + (I −Kj+1H)ξ(n)j +Kj+1η

(n)
j+1}

= µ(n)
j+1

Q = (I −Kj+1H)Σ(I −Kj+1H)T +Kj+1ΓKj+1

Q(v(n)j+1|v
(n)
j , Yj+1) ∝ exp

�
−1

2

���Q− 1
2 (v(n)j+1 − µ(n)

j+1)
���
2
�

Ensemble Kalman Filter as proposal

proposal distribution

EnKF:

�v(n)j+1 = Ψ(v(n)j ) + ξ(n)j , ξ(n)j ∼ N(0,Σ)

v
(n)
j+1 = (I −Kj+1H)�v(n)j+1 +Kj+1y

(n)
j+1

y(n)j+1 = yj+1 + η(n)j+1, η(n)j+1 ∼ N(0,Γ)

prediction

analysis

observation 
perturbation }

Deterministic Stochastic



Kj+1 = �Cj+1H
T
�
H �Cj+1H

T + Γ
�−1

Ensemble Kalman Filter as proposal

Kalman gain:

�Cj+1 =
1

N − 1

N�

n=1

(�v(n)j+1 − �mj+1)(�v(n)j+1 − �mj+1)
T

�mj+1 =
1

N

N�

n=1

�v(n)j+1

Approximated using 
the ensemble

So the proposal used to update each particle actually depends on all the other 
particle positions. However, for an infinitely large ensemble of particles, the 
Kalman gain will depend only on the system of model equations via the 
prediction step. 



P(v(n)j+1|v
(n)
j ) ∝ exp

�
−1

2

���Σ− 1
2 (v(n)j+1 −Ψ(v(n)j ))

���
2
�

�w(n)
j+1 ∝ w(n)

j exp

�
−1

2

���Γ− 1
2 (yj+1 − h(v(n)j+1))

���
2
− 1

2

���Σ− 1
2 (v(n)j+1 −Ψ(v(n)j ))

���
2
+

1

2

���Q− 1
2 (v(n)j+1 − µ(n)

j+1)
���
2
�

Q(v(n)j+1|v
(n)
j , Yj+1) ∝ exp

�
−1

2

���Q− 1
2 (v(n)j+1 − µ(n)

j+1)
���
2
�

Ensemble Kalman Filter as proposal - weight update

�w(n)
j+1 = w(n)

j

P(yj+1|v(n)j+1)P(v
(n)
j+1|v

(n)
j )

Q(v(n)j+1|v
(n)
j , Yj+1)

= w(n)
j P(yj+1|v(n)j )

No longer have a simplification in the weights (as in the optimal proposal 
density) and so need to directly calculate the different constituent parts of 
the weight for each particle

P(yj+1|v(n)j+1) ∝ exp

�
−1

2

���Γ− 1
2 (yj+1 − h(v(n)j+1))

���
2
�

�w(n)
j+1 ∝ w(n)

j exp

�
−1

2

���Γ− 1
2 (yj+1 − h(v(n)j+1))

���
2
− 1

2

���Σ− 1
2 (v(n)j+1 −Ψ(v(n)j ))

���
2
+

1

2

���Q− 1
2 (v(n)j+1 − µ(n)

j+1)
���
2
�



Ensemble Kalman Filter as proposal

1. 

2. 

3. 

4. 

5. 

6. 

Set j = 0 and PN (v0|Y0) = P(v0)

Draw v(n)j ∼ PN (vj |Yj) (resample)

Set w(n)
j = 1/N, n = 1, . . . , N

j + 1 �→ j and return to step 2

v
(n)
j+1 = Ψ(v(n)j ) +Kj+1(yj+1 −H(Ψ(v(n)j ))) + (I −Kj+1H)ξ(n)j +Kj+1η

(n)
j+1

Set

Calculate w(n)
j+1 = �w(n)

j+1/

�
N�

n=1

�w(n)
j+1

�

where �w(n)
j+1 ∝ exp

�
−1

2

���Γ− 1
2 (yj+1 − h(v(n)j+1))

���
2
− 1

2

���Σ− 1
2 (v(n)j+1 −Ψ(v(n)j ))

���
2
+

1

2

���Q− 1
2 (v(n)j+1 − µ(n)

j+1)
���
2
�

where �w(n)
j+1 ∝ exp

�
−1

2

���Γ− 1
2 (yj+1 − h(v(n)j+1))

���
2
− 1

2

���Σ− 1
2 (v(n)j+1 −Ψ(v(n)j ))

���
2
+

1

2

���Q− 1
2 (v(n)j+1 − µ(n)

j+1)
���
2
�

Weighted EnKF now ensures the 
true posterior is represented but 
unfortunately filter degeneracy 

still occurs.



SIR particle filter

Summary

Optimal proposal density

Weighted ensemble Kalman filter

• The proposal density is the model transition density and so the model 
equations are used to propagate each particle forward in time
• The weight is calculated based on the likelihood, so the distance of each 
particle to the observation

• The new model state is sampled from a proposal which is the density of 
possible new model states given the old model state and the observation
• The weight is then calculated based on the maximum weight a particle could 
achieve given the old model state and the observation

• The new model state is generated using the Ensemble Kalman equations
• The weight then must be calculated directly through all three constituent 
parts

Although the optimal proposal density improves on the SIR filter, all three schemes 
still suffer from filter degeneracy. This is because of the difficulty in sampling from the 
high probability region of the posterior in high dimensions with large numbers of 
independent observations.
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