Die Ressourcenuniversität. Seit 1765.
Institut für Numerische Mathematik und Optimierung

Covariance Eigenproblems and their Numerical Treatment

Oliver Ernst
(joint work with Ingolf Busch)

AMCS Seminar, KAUST
September 26, 2012

. . . where again?

PDEs with Random Data

Typical UQ Application: Radioactive Waste Repository Site Assessment

- Waste Isolation Pilot Plant (WIPP) Carlsbad, NM
- Groundwater transport of radionuclides
- Uncertainty in hydraulic conductivity
- Quantity of interest: travel time
- Approach: Model uncertainty (lack of knowledge) stochastically.

Propagate random input data to travel time.

- Requires solution of PDE with random data + post-processing.

PDEs with Random Data

Typical UQ Application: Radioactive Waste Repository Site Assessment

- Waste Isolation Pilot Plant (WIPP) Carlsbad, NM
- Groundwater transport of radionuclides
- Uncertainty in hydraulic conductivity
- Quantity of interest: travel time
- Approach: Model uncertainty (lack of knowledge) stochastically. Propagate random input data to travel time.
- Requires solution of PDE with random data + post-processing.

PDEs with Random Data

Typical UQ Application: Radioactive Waste Repository Site Assessment

- Waste Isolation Pilot Plant (WIPP)

Carlsbad, NM

- Groundwater transport of radionuclides
- Uncertainty in hydraulic conductivity
- Quantity of interest: travel time
- Approach: Model uncertainty (lack of knowledge) stochastically. Propagate random input data to travel time.
= Requires solution of PDE with random data + post-processing.
sw

Sand and Sandstone
Siltstone and Sandstone
 Anhydrite Mudstone and Siltstone \square Halite Limestone

PDEs with Random Data

Typical UQ Application: Radioactive Waste Repository Site Assessment

- Waste Isolation Pilot Plant (WIPP) Carlsbad, NM
- Groundwater transport of radionuclides
- Uncertainty in hydraulic conductivity
- Quantity of interest: travel time
- Approach: Model uncertainty (lack of knowledge) stochastically. Propagate random input data to
 travel time.
- Requires solution of PDE with random data + post-processing.

PDEs with Random Data

Typical UQ Application: Radioactive Waste Repository Site Assessment

- Waste Isolation Pilot Plant (WIPP) Carlsbad, NM
- Groundwater transport of radionuclides
- Uncertainty in hydraulic conductivity
- Quantity of interest: travel time
- Approach: Model uncertainty (lack of knowledge) stochastically. Propagate random input data to
 travel time.
- Requires solution of PDE with random data + post-processing.

PDEs with Random Data

- Waste Isolation Pilot Plant (WIPP) Carlsbad, NM
- Groundwater transport of radionuclides
- Uncertainty in hydraulic conductivity
- Quantity of interest: travel time
- Approach: Model uncertainty (lack of knowledge) stochastically. Propagate random input data to
 travel time.
- Requires solution of PDE with random data + post-processing.

Outline

(1) Expansions of Random Fields

Random Fields and Covariance RKHS
Karhunen-Loève Expansion
(2) Numerical Approximation

Galerkin Discretization
Adapted Quadrature
Lanczos Eigenpair Approximation Hierarchical Matrix Approximation
(3) Numerical Examples
(1) Expansions of Random Fields

Random Fields and Covariance RKHS
Karhunen-Loève Expansion
(2) Numerical Approximation

Galerkin Discretization
Adapted Quadrature
Lanczos Eigenpair Approximation Hierarchical Matrix Approximation
(3) Numerical Examples

Random Fields

Given: compact domain $D \subset \mathbb{R}^{d}$, probability space $(\Omega, \mathfrak{A}, \mathbf{P})$.
A real-valued random field (RF)

$$
a: D \times \Omega \rightarrow \mathbb{R}
$$

is a stochastic process whose index variable is a spatial coordinate.
Thus, for each $x \in D$,

$$
a(\boldsymbol{x}, \cdot) \quad \text { is a random variable (RV). }
$$

Alternatively: for each $\omega \in \Omega$,

$$
a(\cdot, \omega) \quad \text { is a random function defined on } D .
$$

Second-order RF: $a(\boldsymbol{x}, \cdot) \in L_{\mathbf{P}}^{2}(\Omega)=L^{2}(\Omega, \mathfrak{A}, \mathbf{P})$ for all $\boldsymbol{x} \in D$.

Random Fields

Mean, Covariance

Mean of RF at $\boldsymbol{x} \in D$:

$$
\bar{a}(\boldsymbol{x}):=\mathbf{E}[a(\boldsymbol{x}, \cdot)] .
$$

Covariance of RF at $\boldsymbol{x}, \boldsymbol{y} \in D$:

$$
\begin{aligned}
c(\boldsymbol{x}, \boldsymbol{y}): & =\operatorname{Cov}(a(\boldsymbol{x}, \cdot), a(\boldsymbol{y}, \cdot)) \\
& =\mathbf{E}[(a(\boldsymbol{x}, \cdot)-\bar{a}(\boldsymbol{x}))(a(\boldsymbol{y}, \cdot)-\bar{a}(\boldsymbol{y}))]
\end{aligned}
$$

For $\tilde{a}:=a-\bar{a}$, we have $\mathbf{E}[\tilde{a}]=0$ (centered RF).

Random Fields

Covariance

Moreover, for any selection $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ and $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in D$,

$$
0 \leq \operatorname{Var}\left(\sum_{i=1}^{n} \alpha_{i} a\left(\boldsymbol{x}_{i}, \cdot\right)\right)=\sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} c\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

i.e., covariance functions are positive definite. This is also sufficient for $c(\boldsymbol{x}, \boldsymbol{y})$ to be the covariance function of a second-order RF.

Note: if a covariance function $c: D \times D \rightarrow \mathbb{R}$ is continuous along the diagonal set $\{(\boldsymbol{x}, \boldsymbol{x}): \boldsymbol{x} \in D\}$, then it is continuous on all of $D \times D$.

Random Fields

Common assumptions

- Translation invariance:

$$
c(\boldsymbol{x}, \boldsymbol{y})=c(\boldsymbol{x}-\boldsymbol{y})
$$

(RF stationary, homogeneous).

- Rotation invariant:

$$
c(\boldsymbol{x}, \boldsymbol{y})=c(\|\boldsymbol{x}-\boldsymbol{y}\|)
$$

(RF isotropic).

- RF Gaussian: each finite collection $\left\{a\left(\boldsymbol{x}_{i}, \cdot\right)\right\}_{i=1}^{n}$ has multivariate Gaussian distribution.
- For now: assume RF Gaussian, centered, with strictly positive definite, continuous covariance function.

Expansion of Random Fields

Goal: Representation of second-order centered Gaussian RF as

$$
a(\boldsymbol{x}, \omega)=\sum_{j=1}^{\infty} \xi_{j}(\omega) a_{j}(\boldsymbol{x}), \quad \begin{array}{ll}
\xi_{j} \in L^{2}(\Omega, \mathfrak{A}, \mathbf{P}) \\
& a_{j}: D \rightarrow \mathbb{R} \text { suitable functions. }
\end{array}
$$

Convenient Setting: Introduce separable Hilbert space structure.
Set

$$
\mathscr{S}:=\left\{f: D \rightarrow \mathbb{R}: f(\cdot)=\sum_{j=1}^{n} \alpha_{j} c\left(\boldsymbol{x}_{j}, \cdot\right), \alpha_{j} \in \mathbb{R}, \boldsymbol{x}_{i} \in D, n \in \mathbb{N}\right\}
$$

with inner product (note $c(\cdot, \cdot)$ strictly pos. def.)

$$
(f, g)=\left(\sum_{i=1}^{n} \alpha_{i} c\left(\boldsymbol{x}_{i}, \cdot\right), \sum_{j=1}^{m} \beta_{j} c\left(\boldsymbol{x}_{j}, \cdot\right)\right):=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} c\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

Expansion of Random Fields

 RKHS of cThis inner product on \mathscr{S} has reproducing kernel property w.r.t. c :

$$
\begin{equation*}
(f, c(\boldsymbol{y}, \cdot))=\left(\sum_{i=1}^{n} \alpha_{i} c\left(\boldsymbol{x}_{i}, \cdot\right), c(\boldsymbol{y}, \cdot)\right)=\sum_{i=1}^{n} \alpha_{i} c\left(\boldsymbol{x}_{i}, \boldsymbol{y}\right)=f(\boldsymbol{y}) \tag{*}
\end{equation*}
$$

For sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ in \mathscr{S}, if $\|\cdot\|$ denotes associated norm,

$$
\begin{aligned}
\left|f_{n}(\boldsymbol{x})-f_{m}(\boldsymbol{x})\right| & =\left|\left(f_{n}-f_{m}, c(\boldsymbol{x}, \cdot)\right)\right| \\
& \leq\left\|f_{n}-f_{m}\right\|\|c(\boldsymbol{x}, \cdot)\|=\left\|f_{n}-f_{m}\right\| c(\boldsymbol{x}, \boldsymbol{x}),
\end{aligned}
$$

i.e., $\left\{f_{n}\right\}$ Cauchy in $\|\cdot\| \Rightarrow\left\{f_{n}\right\}$ Cauchy pointwise.

Define reproducing kernel Hilbert space (RKHS) \mathscr{H}_{c} of c (or a) as closure of \mathscr{S} w.r.t. $\|\cdot\|$. Reproducing property ($*$) for all $f \in \mathscr{H}_{c}$ follows from separability of compact set D.

RKHS in General

Hilbert space \mathscr{H} of functions $f: D \rightarrow \mathbb{R}, D \subset \mathbb{R}^{d}$, for which all evaluation functionals

$$
\delta_{x}: \mathscr{H} \rightarrow \mathbb{R}, \quad\left\langle\delta_{x}, f\right\rangle=f(\boldsymbol{x}), \quad \forall \boldsymbol{x} \in D, f \in \mathscr{H} .
$$

are continuous.
Reproducing kernel $k: D \times D \rightarrow \mathbb{R}$ such that $k(\boldsymbol{x}, \cdot) \in \mathscr{H}$ and

$$
(f, k(\boldsymbol{x}, \cdot))=f(\boldsymbol{x}) \quad \forall f \in \mathscr{H}, \forall \boldsymbol{x} \in D
$$

i.e., $k(\boldsymbol{x}, \cdot)=\delta_{\boldsymbol{x}}$.

- Long history dating back to [Mercer, 1909], [Aronsajn, 1944].
- Popularized as setting for optimal prediction/estimation of time series by E. Parzen in the 1960s.
- Recent monograph [Berlinet \& Thomas-Agnan, 2007].
- Generalizations to Hilbert spaces of distributions [Meidan, 1979], [Bogachev, 1998]

Expansion of Random Fields

Canonical isomorphism

For $\mathscr{V}:=\operatorname{span}\{a(\boldsymbol{x}, \cdot): \boldsymbol{x} \in D\} \subset L_{\mathbf{P}}^{2}(\Omega)$, define linear mapping

$$
\begin{aligned}
\Xi: \mathscr{S} & \rightarrow \mathscr{V} \\
f=\sum_{j=1}^{n} \alpha_{j} c\left(\boldsymbol{x}_{j}, \cdot\right) & \mapsto \sum_{j=1}^{n} \alpha_{j} a\left(\boldsymbol{x}_{j}, \cdot\right) .
\end{aligned}
$$

Clearly: $\quad \Xi(f)$ Gaussian $\forall f \in \mathscr{S}$ and

$$
(f, g)=(\Xi(f), \Xi(g))_{L_{\mathbf{p}}^{2}(\Omega)} \quad \forall f, g \in \mathscr{S} .
$$

Extend Ξ to all of \mathscr{H}_{c} :

- range equal to all of \mathscr{V}
- limits again Gaussian

Canonical isomorphism between the RKHS and the space of RV associated with RF a.

Expansion of Random Fields

\mathscr{H}_{c} separable, therefore \mathscr{V} separable.
Orthonormal (ON) basis $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ of \mathscr{H}_{c} yields ON basis

$$
\xi_{n}:=\Xi\left(f_{n}\right), \quad n \in \mathbb{N}
$$

of \mathscr{V} where $\xi_{n} \sim N(0,1)$.
ON expansion in $\mathscr{V} \subset L_{\mathbf{P}}^{2}(\Omega)$:

$$
a(\boldsymbol{x}, \cdot)=\sum_{n=1}^{\infty} \mathbf{E}\left[a(\boldsymbol{x}, \cdot) \xi_{n}\right] \xi_{n}
$$

Isometry property of Ξ and reproducing property yield

$$
\mathbf{E}\left[a(\boldsymbol{x}, \cdot) \xi_{n}\right]=\left(c(\boldsymbol{x}, \cdot), f_{n}\right)=f_{n}(\boldsymbol{x})
$$

Expansion of Random Fields

Orthonormal expansion

Result: given an ON basis $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ of \mathscr{H}_{c}, the RF a has the expansion

$$
a(\boldsymbol{x}, \cdot)=\sum_{n=1}^{\infty} \xi_{n} f_{n}(\boldsymbol{x}), \quad \boldsymbol{x} \in D
$$

where ξ_{n} is a sequence of uncorrelated Gaussian RVs with unit variance given by $\xi_{n}=\Xi\left(f_{n}\right)$.

Note: If a has a.s. continuous realizations, then convergence is uniform on D with probability one.

Karhunen-Loève expansion: use scaled eigenfunctions of Fredholm integral operator with kernel function $c(\boldsymbol{x}, \boldsymbol{y})$ as the ON basis $\left\{f_{n}\right\}$.

Expansion of Random Fields

Eigenfunction expansion

Denote by $\left\{\left(v_{m}, \lambda_{m}\right)\right\}_{m \in \mathbb{N}}$ the sequence of eigenpairs of the (compact, selfadjoint) covariance operator

$$
C: L^{2}(D) \rightarrow L^{2}(D), \quad(C u)(\boldsymbol{x})=\int_{D} u(\boldsymbol{y}) c(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y}, \quad \boldsymbol{x} \in D
$$

with $\left\|v_{m}\right\|_{L^{2}(D)}=1 \forall n$.

Theorem (Mercer, 1909)

The continuous covariance kernel c has the expansion

$$
c(\boldsymbol{x}, \boldsymbol{y})=\sum_{n=1}^{\infty} \lambda_{n} v_{n}(\boldsymbol{x}) v_{n}(\boldsymbol{y})
$$

which converges absolutely and uniformly on $D \times D$.

Expansion of Random Fields

Karhunen-Loève expansion

Easy to prove: $\left\{\sqrt{\lambda}_{n} v_{n}\right\}_{n \in \mathbb{N}}$ is a complete ON system of \mathscr{H}_{c}. Therefore

Theorem (Karhunen, 1947; Loève, 1945)

A second-order Gaussian random field $a: D \times \Omega \rightarrow \mathbb{R}$ with continuous covariance function c and mean field \bar{a} has the expansion

$$
a(\boldsymbol{x}, \omega)=\bar{a}(\boldsymbol{x})+\sum_{n=1}^{\infty} \xi_{n}(\omega) a_{n}(\boldsymbol{x})
$$

with uncorrelated $R V s \xi_{n} \sim N(0,1)$ and the scaled eigenfunctions $a_{n}(\boldsymbol{x})=\sqrt{\lambda_{n}} v_{n}(\boldsymbol{x})$. The convergence is in quadratic mean in $L_{\mathbf{P}}^{2}(\Omega)$ and uniform on D.

Next...

(1) Expansions of Random Fields

Random Fields and Covariance RKHS
Karhunen-Loève Expansion
(2) Numerical Approximation

Galerkin Discretization
Adapted Quadrature
Lanczos Eigenpair Approximation Hierarchical Matrix Approximation
(3) Numerical Examples

Covariance Eigenvalue Problem

- Find $(\lambda, u) \in \mathbb{R} \times L^{2}(D)$ such that

$$
C u=\lambda u, \quad\|u\|_{L^{2}(D)}=1
$$

- with covariance operator $C: L^{2}(D) \rightarrow L^{2}(D)$ defined by

$$
(C u)(x)=\int_{D} c(\boldsymbol{x}, \boldsymbol{y}) u(\boldsymbol{y}) d \boldsymbol{y}
$$

- $c(\boldsymbol{x}, \boldsymbol{y})$ covariance function (kernel) of RF defined on $D \subset \mathbb{R}^{d}$.

Covariance Eigenvalue Problem

Galerkin approximation

- Variational Formulation: Find $(\lambda, u) \in \mathbb{R} \times L^{2}(D)$, such that

$$
\begin{aligned}
(C u, v)=\lambda(u, v) \quad \forall v & \in L^{2}(D) \\
(C u, v) & =\int_{D} \int_{D} u(\boldsymbol{y}) c(\boldsymbol{x}, \boldsymbol{y}) v(\boldsymbol{x}) d \boldsymbol{y} d \boldsymbol{x} \\
(u, v) & =\int_{D} u(\boldsymbol{x}) v(\boldsymbol{x}) d \boldsymbol{x}
\end{aligned}
$$

- Galerkin approximation on finite dimensional subspace $\mathscr{U}_{N}=\operatorname{span}\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{N}\right\} \subset L^{2}(D)$
e.g.: \mathscr{U}_{N} space of discontinuous piecewise polynomials on a FE triangulation of D
- No inter-element continuity needed for conforming discretization, basis function have small support.

Covariance Eigenvalue Problem

An approximation result

Theorem (Todor, 2006)

Let $\left\{\mathscr{T}_{h}\right\}_{h>0}$ be a family of admissible triangulations of D with meshwidth h and define S_{h} to be the space of discontinous piecewise polynomials of degree p on \mathscr{T}_{h}.

Then for any $s>0$ there exists a constant $K=K(C, \mathscr{T}, p, s)>0$ such that the Galerkin approximations $\lambda_{m}^{(h)}$ of the eigenvalues λ_{m} of the covariance operator C satisfy

$$
0 \leq \lambda_{m}-\lambda_{m}^{(h)} \leq K\left(h^{2 p+2} \lambda_{m}^{1-s}+h^{4 p+4} \lambda_{m}^{-2 s}\right) \quad \forall m \in \mathbb{N}, \forall h>0,
$$

implying

$$
0 \leq \lambda_{m}-\lambda_{m}^{(h)} \leq K h^{2 p+2} \lambda_{m}^{\frac{1}{2}-s} \quad \forall m \in \mathbb{N}, \forall h>0
$$

Covariance Eigenvalue Problem

Generalized eigenvalue problem

- Coefficient vector $\boldsymbol{u} \in \mathbb{R}^{N}$ for $u=\sum_{j=1}^{N} u_{j} \phi_{j}$
- Galerkin projection leads to generalized eigenvalue problem

$$
C u=\lambda M u
$$

where

$$
\begin{aligned}
{[\boldsymbol{C}]_{i, j} } & =\left(C_{\phi}, \phi_{i}\right) & & \text { (discrete integral operator) } \\
{[\boldsymbol{M}]_{i, j} } & =\left(\phi_{j}, \phi_{i}\right) & & \text { (mass matrix of basis) } \\
& i, j=1, \ldots, N . & &
\end{aligned}
$$

- M can be made diagonal (orthogonalize basis elementwise), but C is in general full.

Adapted Quadrature

Quadrature of non smooth integrands

- High-order quadrature assumes smoothness.
- Example: $\int^{1} e^{-|x|} d x$ with a single Gauss rule. -1
- Better: same Gauss rule on 2 subintervals.

Adapted Quadrature Assembly of C

- For piecewise constant approximation matrix entries are

$$
[\boldsymbol{C}]_{i j}=\int_{\Delta_{i} \Delta_{j}} \int_{i} \phi_{i}(\boldsymbol{y}) c(\boldsymbol{x}, \boldsymbol{y}) \phi_{j}(\boldsymbol{x}) d \boldsymbol{y} d \boldsymbol{x}
$$

- Typical covariance functions have low smoothness for $\boldsymbol{x}=\boldsymbol{y}$.
- Same trick as in previous example: divide the integration region (subset of $D \times D$) into subregions such that no points with $\boldsymbol{x}=\boldsymbol{y}$ lie in the interior of a subregion.

Adapted Quadrature $1 \mathrm{DF} \Rightarrow 2 \mathrm{D}$ integration

- Integration region Cartesian product of intervals Δ_{i} and Δ_{j}.
- Three possible cases for points $x=y$:

Adapted Quadrature

Qudrature rule for identical case

- Only need to worry about identical intervals case.
- Subdivision obvious: divide square into two triangles.
- Compare product Gauss quadrature over square with two triangular Gauss formulas over the two triangles:

Adapted Quadrature 2D RF \Rightarrow 4D integration

- Integration region Cartesian product $\Delta_{i} \times \Delta_{j}$ of two triangles
- After transformation of Δ_{i} and Δ_{j} to reference triangle integration domain is fixed.
- Possible cases in 2D:
- identical triangles
- common edge
- common point
- disjoint

Adapted Quadrature

Basic approach

- Similar quadrature problems in 3D-BEM, but there kernels have stronger singularities in $\boldsymbol{x}=\boldsymbol{y}$.
- Adapt 3D-BEM quadrature techniques [Sauter \& Schwab, 2004]
- Three basic steps::
(1) Change of variables to shift singularity to origin.
(2) Divide domain of integration leaving singularity on subdomain boundary.
(3) Apply standard quadrature on subdomains.
- Consider case of identical triangles.
reference triangle:

$$
R=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: \quad 0 \leq x_{1} \leq 1,0 \leq x_{2} \leq x_{1}\right\}
$$

Adapted Quadrature Identical triangles in 2D

- Reference triangle:

$$
R=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: 0 \leq x_{1} \leq 1,0 \leq x_{2} \leq x_{1}\right\}
$$

- Difference coordinate $\boldsymbol{z}=\boldsymbol{y}-\boldsymbol{x} \Rightarrow$ points with $\boldsymbol{x}=\boldsymbol{y}$ fixed at $z=0$.
- Projection of the domain of integration on the z-plane

- 6 subdomains (all 4 -simplices) \Rightarrow quadrature rules for 4 -simplices or transformation to $[0,1]^{4}$

Adapted Quadrature

Example: $c(\boldsymbol{x}, \boldsymbol{y})=\exp (-\|\boldsymbol{y}-\boldsymbol{x}\|)$

Lanczos Eigenpair Approximation Solving the generalized eigenvalue problem

- Require M largest approximate eigenvalues \& associated eigenvectors of generalized eigenvalue problem.
- Krylov projection methods avoid computing all eigenpairs; require only matrix-vector products
- Covariance operators selfadjoint, hence short recurrence Krylov methods like Lanczos applicable.
- Thick-Restart variant of Lanczos [Simon \& Wu, 2000] allows iterative improvement of desired eigenspace by efficient restarting scheme.
- Extended to generalized eigenvalue problem and block version (multiple eigenvalues)

Lanczos Eigenpair Approximation

Thick-Restart-Lanczos

- Lanczos-decomposition after m (standard) steps:

$$
\begin{equation*}
\boldsymbol{A} \boldsymbol{Q}_{m}=\boldsymbol{Q}_{m} \boldsymbol{T}_{m}+\beta_{m} \boldsymbol{q}_{m+1} \boldsymbol{e}_{m}^{T} \tag{L}
\end{equation*}
$$

- $k<m$ Ritz values $\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{k}$ to be refined in next restart cycle
- Ritz pairs $\left(\vartheta_{j}, \boldsymbol{y}_{j}\right)$ satisfy

$$
\boldsymbol{T}_{m} \boldsymbol{Y}=\boldsymbol{Y} \operatorname{diag}\left(\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{k}\right)=: \boldsymbol{Y} \hat{\boldsymbol{T}}_{k} \quad \text { with } \quad \boldsymbol{Y}^{T} \boldsymbol{Y}=\boldsymbol{I}
$$

Multiply (L) from right by \boldsymbol{Y}

$$
\boldsymbol{A} \hat{\boldsymbol{Q}}_{k}=\hat{\boldsymbol{Q}}_{k} \hat{\boldsymbol{T}}_{k}+\beta_{m} \hat{\boldsymbol{q}}_{k+1} \boldsymbol{s}^{T}
$$

with $\hat{\boldsymbol{Q}}_{k}=\boldsymbol{Q}_{m} \boldsymbol{Y}, \hat{\boldsymbol{q}}_{k+1}=\boldsymbol{q}_{m+1}$ and $s=\boldsymbol{Y}^{T} \boldsymbol{e}_{m}$
but: this is not a Lanczos-decomposition (trailing rank-1 matrix)

Lanczos Eigenpair Approximation

Thick-Restart Lanczos

- Next Lanczos vector $\hat{\boldsymbol{q}}_{k+2}$ by full orthogonalization:

$$
\begin{aligned}
\hat{\beta}_{k+1} \hat{\boldsymbol{q}}_{k+2} & =\left(\boldsymbol{I}-\hat{\boldsymbol{Q}}_{k+1} \hat{\boldsymbol{Q}}_{k+1}^{T}\right) \boldsymbol{A} \hat{\boldsymbol{q}}_{k+1} \\
& =\left(\boldsymbol{I}-\hat{\boldsymbol{q}}_{k+1} \hat{\boldsymbol{q}}_{k+1}^{T}-\hat{\boldsymbol{Q}}_{k} \hat{\boldsymbol{Q}}_{k}^{T}\right) \boldsymbol{A} \hat{\boldsymbol{q}}_{k+1} \\
& =\boldsymbol{A} \hat{\boldsymbol{q}}_{k+1}-\hat{\alpha}_{k+1} \hat{\boldsymbol{q}}_{k+1}-\hat{\boldsymbol{Q}}_{k} \beta_{m} \boldsymbol{s}
\end{aligned}
$$

- $\hat{\boldsymbol{Q}}_{k}^{T} \boldsymbol{A} \hat{\boldsymbol{q}}_{k+1}=\beta_{m} \boldsymbol{s}$
- Obtain decomposition with right structure

$$
\boldsymbol{A} \hat{\boldsymbol{Q}}_{k+1}=\hat{\boldsymbol{Q}}_{k+1} \hat{\boldsymbol{T}}_{k+1}+\beta_{k+1} \hat{\boldsymbol{q}}_{k+2} \boldsymbol{e}_{k+1}^{T}
$$

- Not a proper Lanczos decomposition (\hat{T}_{k+1} not tridiagonal), but can now continue with 3 -term recurrence.

$$
\hat{\boldsymbol{T}}_{k+1}=\left(\begin{array}{cc}
\hat{\boldsymbol{T}}_{k} & \beta_{m} \boldsymbol{s} \\
\beta_{m} \boldsymbol{s}^{T} & \hat{\alpha}_{k+1}
\end{array}\right)
$$

Hierarchical Matrix Approximation

- Algebraic variant of fast multipole method, [Hackbusch et al., 2000]
- Partition dense matrix into rectangular blocks of 2 types
- full near-field blocks,
- low-rank far field blocks
- blocks correspond to clusters of degrees of freedom, i.e., clusters of supports of Galerkin basis functions
- yields data-sparse representation of matrix, construction $O(N \log N)$,
 matrix-vector product in $O(N)$.

Hierarchical Matrix Approximation

Far-field case

- If Δ_{i} and Δ_{j} are well separated, the covariance function can be appproximated by a low degree interpolation:

$$
c(\boldsymbol{x}, \boldsymbol{y}) \approx \tilde{c}(\boldsymbol{x}, \boldsymbol{y})=\sum_{k=1}^{r} c\left(\boldsymbol{x}_{k}, \boldsymbol{y}\right) \ell_{k}(\boldsymbol{x})
$$

- ℓ_{k} are Lagrange polynomials to the interpolation points $\left\{\boldsymbol{x}_{k}\right\}_{k=1}^{r}$
- This is also true for two well-separated clusters σ and τ of elements of the triangulation \mathscr{T}_{h}

Hierarchical Matrix Approximation

Approximation of the matrix entries in the far-field

- For $[\boldsymbol{C}]_{i j}$ for triangles $\Delta_{i} \in \sigma$ and $\Delta_{j} \in \tau$:

$$
\begin{aligned}
{[\boldsymbol{C}]_{i j} } & =\iint_{\Delta_{i} \Delta_{j}} \phi_{i}(\boldsymbol{y}) c(\boldsymbol{x}, \boldsymbol{y}) \phi_{j}(\boldsymbol{x}) d \boldsymbol{y} d \boldsymbol{x} \\
& \approx \int_{\Delta_{i}} \int_{\Delta_{j}} \phi_{i}(\boldsymbol{x})\left(\sum_{k=1}^{r} c\left(\boldsymbol{x}_{k}, \boldsymbol{y}\right) \ell_{k}(\boldsymbol{x})\right) \phi_{j}(\boldsymbol{y}) d \boldsymbol{y} d \boldsymbol{x} \\
& =\sum_{k=1}^{r}\left(\int_{\Delta_{i}} c\left(\boldsymbol{x}_{k}, \boldsymbol{y}\right) \phi_{i}(\boldsymbol{y}) d \boldsymbol{y}\right)\left(\int_{\Delta_{j}} \ell_{k}(\boldsymbol{x}) \phi_{j}(\boldsymbol{x}) d \boldsymbol{x}\right) \\
& =\left[A_{\sigma, \tau} B_{\tau}\right]_{i j}
\end{aligned}
$$

\Rightarrow whole blocks (maybe after permutation of the indices) of C can be approximated by a rank- r matrix in factored form

Hierarchical Matrix Approximation

- Assembly of hierarchical matrix approximation of C :
(1) Divide triangulation into cluster (cluster tree, clustering strategy, minimal cluster size)
(2) Determine for each pair of clusters whether corresponding matrix block can be approximated by a low rank matrix (block cluster tree)
(3) admissibility condition for cluster pair (σ, τ) :

$$
\min (\operatorname{diam}(\sigma), \operatorname{diam}(\tau)) \leq \eta \operatorname{dist}(\sigma, \tau)
$$

(4) compute for each matrix block the low rank approximation (admissible) or the full block (inadmissible)
\Rightarrow assembly of hierarchical matrix and the matrix-vector-product have complexity of $O(N \log N)$.
\Rightarrow Lanczos solver for integral operator becomes scalable.

Hierarchical Matrix Approximation

From \mathscr{H} to \mathscr{H}^{2} matrices

- If clusters well-separated covariance function smooth in \boldsymbol{x} and \boldsymbol{y}
\Rightarrow interpolate the covariance function in both variables:

$$
\begin{aligned}
{[\boldsymbol{C}]_{i j} } & \approx \sum_{l=1}^{r} \sum_{k=1}^{r}\left(\int_{\Delta_{i}} \ell_{l}(\boldsymbol{y}) \phi_{i}(\boldsymbol{y}) d \boldsymbol{y}\right) c\left(\boldsymbol{x}_{k}, \boldsymbol{y}_{l}\right)\left(\int_{\Delta_{j}} \ell_{k}(\boldsymbol{x}) \phi_{j}(\boldsymbol{x}) d \boldsymbol{x}\right) \\
& =\left[V_{\sigma} S_{\sigma, \tau} W_{\tau}\right]_{i j}
\end{aligned}
$$

- another admissibility condition:

$$
\max (\operatorname{diam}(\sigma), \operatorname{diam}(\tau)) \leq \eta \operatorname{dist}(\sigma, \tau)
$$

- Together with certain other techniques (nested cluster basis) matrix-vector product complexity reduced to $O(N)$

Next...

(1) Expansions of Random Fields

Random Fields and Covariance RKHS
Karhunen-Loève Expansion
(2) Numerical Approximation

Galerkin Discretization
Adapted Quadrature
Lanczos Eigenpair Approximation Hierarchical Matrix Approximation
(3) Numerical Examples

Numerical Examples

- Bessel covariance (Matérn family, $\nu=1$):

$$
k_{1}(\boldsymbol{x}, \boldsymbol{y})=\frac{\|\boldsymbol{x}-\boldsymbol{y}\|}{c} K_{1}\left(\frac{\|\boldsymbol{x}-\boldsymbol{y}\|}{c}\right), \quad \boldsymbol{x}, \boldsymbol{y} \in D=[-1,1]^{2} .
$$

- \mathscr{U}_{n} : piecewise constants on triangulation of D
- hierarchical matrix parameters

$$
\begin{aligned}
\text { degree of interpolation } & : 4 \\
\text { admissibility parameter } & : 1 / c \\
\text { minimal cluster size } & : 62
\end{aligned}
$$

- 5 largest eigenvalues with restart length 10
- Environment:

MATLAB 2012a on single node machine,
Opteron 6136 (2.4 GHz), 256 GB RAM,
Calls to HLib 1.4 / HLib Pro libraries (MPI Leipzig) via MEX

Numerical examples

- Gaussian covariance kernel:

$$
k_{2}(\boldsymbol{x}, \boldsymbol{y})=\exp \left(-\frac{\|\boldsymbol{x}-\boldsymbol{y}\|^{2}}{c^{2}}\right)
$$

- correlation lengths $c=0.1,1,2$

Numerical examples

First four eigenmodes $c=0.5$

Numerical examples

Assembly timings, \mathscr{H} matrices

Numerical examples

Assemby timings, \mathscr{H}^{2} matrices

Numerical examples

Solution timings, \mathscr{C} matrices

Numerical examples

Solution timings, \mathscr{H}^{2} matrices

Numerical examples

Convergence for k_{1}, \mathscr{H} matrices

Numerical examples

Convergence for k_{1}, \mathscr{H}^{2} matrices

Numerical examples

Convergence for k_{2}, \mathscr{H} matrices

Numerical examples

Convergence for k_{2}, \mathscr{C}^{2} matrices

Numerical examples

L-site

[Rivière \& Wheeler, 1999]

Numerical examples

L-site: covariance modes, Bessel correlation, $\ell=400 \mathrm{~m}$

Concluding Remarks

Summary

- Scalable covariance eigenvalue solver based on restarted (block) Lanczos and hierarchical matrix approximation
- Adapted quadrature
- Can incorporate conditioning on measured data, Kriging, REML estimates of mean.
- Flexible w.r.t. kernel, geometry.

In progress

- 3D (essentially just the quadrature).
- Pcw. linears/quadratics.
- Localized alternatives to KL (joint with Raul Tempone).

References

國 Robert J．Adler and Jonathan E．Taylor．
Random Fields and Geometry．
Springer Monographs in Mathematics．Springer－Verlag，New York， 2007.

固 Alain Berlinet and Christine Thomas－Agnan．
Reproducing Kernel Hilbert Spaces in Probability and Statistics．
Kluwer Academic，Norwell，MA， 2004.
围 Claude Gittelson．
Representation of Gaussian fields in series with independent coefficients．
IMA Journal of Numerical Analysis，32：294－319， 2012.
國 Wolfgang Hackbusch．
Hierarchische Matrizen：Algorithmen und Analysis．
Springer－Verlag， 2009.
Reuven Meidan．
Reproducing kernel Hilbert spaces of distributions and generalized stochastic processes．
SIAM J．Math．Anal．，10（1）：62－70， 1979.

